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including electron-correlation effects

Chih-Ray Liu'
Department of Physics and Astronomy, The University of Nebraska Li—ncoln, Iincoln, Nebraska 68588 011-1

Bo Gao and Anthony F. Staracet
Joint Institute for Laboratory Astrophysics, Unieersity of Colorado and National Institute of Standards and Technology,

Boulder, Colorado 8080g-0/$0
(Received 27 April 1992)

A variationally stable, adiabatic hyperspherical treatment of two- and three-photon detachment
of H is presented. Results are compared with analytic predictions of a zero-range potential model
of H . Detailed comparisons are made also with other theoretical results which include the effects of
electron correlations. We predict analytically (and demonstrate numerically) an extreme sensitivity
of the theoretical predictions to any errors in the value of the electron afBnity employed. In an
Appendix we show that the low-intensity limit of the Keldysh treatment [Sov. Phys. JETP 20, 1307
(1965)] of detachment of an electron bound in a zero-range potential agrees with the results of a
perturbative treatment.

PACS number(s): 32.80.Wr

I. INTRODUCTION

The hydrogen negative ion, which is a fundamental
three-body system, has long served as a testing ground
for new theoretical methods, including treatments of mul-

tiphoton detachment processes [1—7]. The recent experi-
mental observation of multiphoton detachment of the H
ion [8, 9] has kindled renewed theoretical interest [10—16].
However, as noted by Geltman [16(b)], the various theo-
retical predictions for the two- and three-photon detach-
ment cross sections of H are quite disparate. While
most theoretical works have described the H system as
a one-electron system in which the active electron moves
in a short-range potential, several of the theoretical cal-
culations treat explicitly some of the two-electron corre-
lations relevant to multiphoton detachment [3,4, 7, 10,13,
14]. Nevertheless, even among the results of only these
more detailed theoretical treatments, disparities remain.

In this paper we present variationally stable predic-
tions of the generalized cross sections [17] for two- and
three-photon detachment of H . Electron correlations
for these processes are treated within a semiempirical,
adiabatic hyperspherical representation. Our variational
procedure for calculating high-order multiphoton pro-
cesses perturbatively [18,19] has been applied extensively
to H [18]. Recently, its implementation for two-electron
systems described in the adiabatic hyperspherical repre-
sentation [20—23] has been outlined and an application
was made to the dynamic polarizability of He [19].

Fink and Zoller [4] have used the adiabatic hyperspher-
ical representation to calculate the generalized cross sec-
tion for two-photon detachment of H by circularly po-
larized light. Our calculations differ from theirs, Grstly,
in that we have used a variationally stable procedure [18,
19] to calculate the transition matrix elements. Secondly,

we have semiempirically adjusted the ~S' hyperspherical
potential curve so that the electron afBnity of the ini-
tial state agrees exactly with the nonrelativistic electron
affinity predicted by Pekeris [24].

Semiempirically adjusting the electron affinity to the
correct value turns out to be extremely important for ob-
taining accurate generalized cross sections for multipho-
ton detachment processes. Using a one-electron, short-
range potential model, for which one can obtain analytic
predictions for the generalized multiphoton detachment
cross sections [16(b)],one can estimate the importance of
having the correct electron affinity. Thus, we show that if
the electron affinity I is incorrect by an amount b,I, then
the N-photon detachment cross section may have a frac-
tional error of as much as (4N —1)b,I/(I+ zkz), where
z~kz is the detached electron's kinetic energy. Thus, at
a kinetic energy z~kz for which the fraction (b,ur/ur) =
EI/(I + zkz) is equal to 0.05, the five-photon detach-
ment cross section may be in error by as much as 100%.
For the two- and three-photon cross sections presented in
this paper, our semiempirical adjustment of the S' adi-
abatic hyperspherical ground-state potential reduces the
peak value of the calculated cross sections by 25% and
40% respectively from the predictions obtained using the
adiabatic hyperspherical value for the electron affinity.

We compare our generalized cross sections for two-
and thr~photon detachment of H with those of oth-
ers which include electron-correlation eff'ects. In place of
comparing individually with the results of the many other
theoretical calculations which employ a one-electron,
short-range potential model of H, we compare our
semiempirical, adiabatic hyperspherical results with re-
sults of our own zero-range potential model, whose ana-
lytic cross-section formulas we present. Geltman [16(b)]
has shown that it is very important in the case of two-
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photon detachment with linearly polarized light to take
into account the ~S' phase shift for the detached electron.
Using the fr==electron Green's function with outgoing-
wave boundary conditions, we obtain the two-photon
transition amplitude analytically in terms of the 8'
phase shift. We show that above the one-photon thresh-
old this transition amplitude is complex except when the
~S' phase shift is zero. Our analytically-determined,
phase-shifted, zero-range potential-model results for two-
photon detachment by linearly polarized light agree well
with the numerically determined results of Geltmsn.
They are compared with our semiempirical adiabatic hy-
perspherical results.

Lastly, we have examined the question of how the
lowest-order perturbation theory results presented here
relate to results of calculations that take into account
the exact interaction of the detached electron with the
laser field. For the velocity gauge, Heiss [2] has shown
that in the low-intensity limit the more general theoreti-
cal results reduce as expected to the results obtained by
lowest-order perturbation theory. In this paper, however,
we employ the length gauge, for which the exact final-
state wave function for an electron moving in a laser field
has been given by Keldysh [25]. As far as we are aware,
the low-intensity limit of multiphoton photodetachment
cross sections using the Keldysh final-state wave function
has never been examined. In fact, Keldysh presented, in
addition to his general result, a low-frequency approx-
imation to his general result. This latter approximate
formula has been found to disagree, in the low-intensity
limit, with results of lowest-order perturbation theory
[26). For this reason, we prove that Keldysh's general
result [25] reduces in the low-intensity limit to results of
lowest-order perturbation theory, as one would expect.

In Sec. II we review briefly our variationally stable
procedure for calculating the generalized cross sections
for two- and three-photon detachment of H within an
adiabatic hyperspherical representation. In Sec. III we
present analytic expressions for the generalized cross sec-
tions for two- and thr"=-photon detachment of H within
a zero-range potential model. From these results we show
the sensitivity of the theoretical N-photon detachment
cross section to any errors in the electron affinity of the
negative ion. In Sec. IV we present our analytic re-
sults for the two-photon detachment amplitude assum-
ing there is a nonzero, final-state s-wave phase shift. In
Sec. V we present our two- and three-photon general-
ized detachment cross section results for H and compare
with results of others. In Sec. VI we discuss our conclu-
sions regarding the role of electron correlations on multi-
photon detachment of H . Finally, in the Appendix we
present our results on the low-intensity limit of Keldysh-
type treatments for multiphoton detachment processes.

II. VAMATIONALLY STABLE TREATMENT
IN THE ADIABATIC HYPERSPHERICAL

REPRESENTATION

In this section we review briefly the hyperspherical co-
ordinate representation for the H ion. We also review
briefly our variationally stable procedure for perturbative
calculations of multiphoton transition amplitudes. Inter-
ested readers are referred to Refs. [20-23] and [18, 19]
respectively for more detailed descriptions of these two
topics.

A. Adiabatic hyperspherical coordinate
representation

= 2Z 2Z 2+
sinn cosn [1 —sin(2n) cos Hq2] ~

(5)

The adiabatic channel functions Pu(R;n, rq, rq) are
defined as the eigenfunctions of the angular equation
[20-23].

(—A + RC) (Pu/ sin n cos n)

= [Uu(R) + 4](gu/sinn cosa), (6)
in which R is treated as a parameter. The eigenvalue
U„(R) forms a radial potential. The wave function can
generally be written as the following expansion in the
channel functions:

Q = (R ~ sinacosa) ) Fu(R)gu(R;a, rq, rz), (7)

where F„(R) satisfies

In ordinary coordinate space, the H system is de-
scribed nonrelativistically by the Hamiltonian

1 1 1
H = —-V —-V' ————+2 l 2 2

Tg T2 T$2

The hyperspherical coordinates (R, n, rq, r2) are defined
by

R = (r, + rz), n = tan (r2/rg) .2 1/2 -1

In this set of coordinates, the Hamiltonian becomes
[20-23]

1 82 5 8 A2 C
2 8Rz R 8R Rz R

where

1 d . z s d Iz
Sin G Cos A + 2 + 2 )sin ncos nda dn cos n sin a '

(4)

dz U„+ 1/4 & 8z
dR2+

"
2 +

~ &u 2&u i+2@ Fu(R)+ ) ~ 6 8R2&u ~+2~ 6 6 l Fu(R) =0
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Clearly, each F„(R) is governed largely by the potentials
U„(R), whereas the coupling between different channels
is governed by the radial derivative matrix elements in-
side the sum over p, '.

In the adiabatic (or separable) approximation [20], the
nondiagonal coupling terms in Eq. (8) are ignored. Also,
each state is described approximately by a single term in
Eq, (7). Despite this truncation, the adiabatic hyper-
spherical representation includes much of the most im-
portant electron correlations. For example, in solving Eq.
(6) for the angle functions P„and the radial potentials
U„(R), P„ is expanded in coupled pairs of one-electron
orbital angular momentum states for the two electrons.
Thus, the iS' ground state is expanded in ss, pp, dd, and
ff pairs. The major advantage of the adiabatic hyper-
spherical method is that much of the key physics govern-
ing physical processes involving two-electron systems is
immediately recognizable from the behavior of the adia-
batic radial potentials, U„(R), which determine the two-
electron radial wave function, F„(R), according to the
(truncated) Eq. (8).

In our calculations, we have made a further semiempir-
ical adjustment to the adiabatic hyperspherical ground
state energy of the H ion. The adiabatic hyperspher-
ical prediction [including the effect of the diagonal cou-
pling term in Eq. (8)] for the ground-state energy is
—0.52592 (upper bound). The "exact" nonrelativistic
variational result of Pekeris [24) is —0.527751 a.u. The
small 0.35% difference between these energies would ap-
pear to be negligible. However, the electron affinities
of +0.02592 a.u. and +0.027751 a.u. , respectively, dif-
fer by 6.6FO. While for single-photon detachment this
difference is not very important, for multiphoton detach-
ment processes it can lead to serious quantitative errors
in the predicted cross sections. This electron affinity dif-
ference affects not only the threshold photon frequency
at which dissociation can occur, but also affects the ra-
dial extent of the ground-state wave function and, hence,
the magnitude of the radial transition matrix elements.
A quantitative estimate of the effect of electron affinity
errors on the N-photon detachment cross sections is de-
rived in Sec. III. Because these errors turn out to be large
for the two- and three-photon detachment cross sections
we wish to calculate, our iS' adiabatic radial potential
U„o(R) has been semiempirically adjusted so that the
calculated radial ground-state wave function corresponds
to the Pekeris [24] value of the H ground-state energy.

where

(A'I = (flD

Equation (11)is variationally stable in the sense that any
errors in the determination of ~A) and (A'~ enter Eq. (11)
only as quadratic and higher powers; no linear terms in
these errors appear [18].

In order to evaluate the transition amplitude in Eq.
(11),we express the initial, final, and intermediate states
as adiabatic hyperspherical wave functions:

~i) = (R i sinacosa) Fs(R)ds, , ,. (i4)

(f) = (R i sinacosa) Fs, (R)d«, (15)

—1

~A) = (R i sinacosa )s(R)ts, (16)

—1
~A') = (R i sinacosa )'s(R)ds . (17)

In our calculations p,, denotes the lowest iS' adiabatic
hyperspherical channel, p denotes the lowest iP' channel,
and pf denotes either the lowest iS' or the lowest iD'
channe1.

The first two matrix elements in Eq. (11) thus become

(A'~d~i) = I„„(R)A„'(R)RF„,(R. )dR, .

G

(i8)

and where the atomic Hamiltonian H is defined in Eq.
(3).

Equation (9) can be cast in a variationally stable form
as [18]

tfl,.l (A, A') = (f[D[A) + (A']D [i) —(A'] (E;+~ —H) [A)

(11)

B. Variationally stable procedure for two-photon
detachment

(f~D~A) = f 1„„(R)Fs,(R)RAs(R)dR, (19)

The transition amplitude for a two-photon transition
from an initial state ]i) to a final state (f [ is

tf, —— D Dl

where I~,„(R), which has been given explicitly by Park
et at. [27], comes from the integration over the angles
ri, r2, and a using the length (I) form of the electric-
dipole operator D. The third matrix element in Eq. (11)
is given by

where for light characterized by the polarization vector
~, the electric dipole operator is given by

D=e. ) r, , (10)

(A']E;+~ —H[A) =

(A'„(R) iE; + ~ —h„d(R) iA„(R)),

where

(20)



5988 CHIH-RAY LIU, BO GAO, AND ANTHONY F. STARACE

1 dz U„(R) + 1/4 ( Bz

(21)

Our numerical procedure for calculating the two-
photon transition amplitude is, finally, as follows. Equa-
tions (18)—(20) are substituted in Eq. (11).The unknown
radial functions A„(R) and A'„(R) are each expanded in

an Lz basis set of Slater orbitals. The coefficients of this
expansion are determined by requiring that Eq. (11) be
variationally stable [18]. This procedure is to be con-
trasted with the adiabatic hyperspherical calculation of
Fink and Zoller [4]. They calculate the two-photon tran-
sition amplitude using Eq. (19) and the Dalgarno-Lewis
procedure [28]. Specifically, their radial function A„(R)
in Eq. (19) is calculated by solving the inhomogeneous
radial equation that results from operating from the left
on Eq. (12) with (E; + u —H) and integrating over all
angular coordinates.

linearly polarized light only, the lowest iP' channel; pq
denotes either the lowest D' channel or, for the case
of linearly polarized light only, the lowest iS' channel;
finally, pi denotes the lowest P' channel. These low-

est channels all converge to the H(n = 1) threshold. In
principle, one can add higher channels having the same
symmetries but converging to the H(n = 2) and higher
thresholds. However, we have found the higher adiabatic
hyperspherical channels are not needed to obtain accu-
rate results.

Note that, for each pair of intermediate channels

(pz, pi) contributing to the three-photon transition am-
plitude in Eq. (25), the form of their contribution is very
similar to the variationally stable form for the two-photon
transition amplitude [cf. Eq. (11)].Only the third term
is different. We evaluate the three-photon transition am-
plitude in Eq. (25) by expanding each A»„„and A'„,„,
function in an L2 basis of Slater orbitals and requiring
the coefficients of the expansions to satisfy the variational
stability conditions for Eq. (25).

C. Variationally stable procedure for three-photon
detachment

xI„,„,(R)R (E, + ~ —h„)
xI„,„(R)RiF„,. ) . , (22)

Here the summations extend over all adiabatic hyper-
spherical channels p,i, y,z converging to the H(n = 1)
threshold that are permitted by electric-dipole selection
rules. Defining ~A»„, ) and (A'„,„,~

as

~A»„,)—:(E, + 2' —h„,) I„,„,(R)R

x (E, + u) —h„,) I„,„(R)R[F„,)(23.).
(A„',„,~

= (F„,~r„',„,(R)R(E, +2~ —h'„', )

xI„,„,(R)R (E, + ~ —h'„~), (24)

the transition amplitude in Eq. (22) may be written in
the following variationally stable form [18, 19]:

tf~,
l —— ) (F„,~I~,„,(R)R~A„,„,)

P2)P1

+ ) (A'„,„,[I~,„(R)R~F„,).
P2iP1

—) (A'„,„,i (E, + cu —h„,) I„,„,(R)R

x (E;+ 2u) —h„,) ~A»„, ) .
(25)

In our calculations for three-photon detachment, pf de-
notes either the lowest F' channel or, for the case of

The adiabatic hyperspherical approximation to the
three-photon transition amplitude may be expressed in
terms of the radial functions defined above as the follow-

ing radial matrix element:

t~~,.
l ——) (F„~~I„„,(R)R (E; + 2(u —h~»)

P2ip1

III. ANALYTIC ZERO-RANGE POTENTIAL
MODEL FORMULAS FOR MULTIPHOTON

DETACHMENT CROSS SECTIONS

We present here analytic expressions for multiphoton
detachment cross sections in the approximations that,
first, the detached electron may be represented by a
plane wave and, second, that the initial state may be
represented by a zero-range potential-model wave func-
tion. These formulas are presented primarily in order
to estimate the sensitivity of theoretical multiphoton
detachment cross section results to any inaccuracies in
the value of the negative ion's electron affinity. As we
shall show, even for the two- and three-photon processes
treated here, the theoretical cross sections are very sen-
sitive to the value of the electron afBnity employed. We
have verified this sensitivity numerically in our adiabatic
hyperspherical calculations, as discussed in Sec. V be-
low. Regarding the zero-range potential model, Geltman
[16(b)] has presented a recurrence relation for the N-
photon transition amplitude. We present here explicit
expressions for the N-photon detachment cross sections
in the case of circularly polarized light and for the N = 1,
2, and 3 photon detachment cross sections in the case of
linearly polarized light.

A. Free-electron approximation results

If we assume that the bound electron is described by
the wave function Q;(r), that the detached electron is
described by the plane wave,

y (r) = (2x) / cake r (26)

and that the electric Geld of the incident light is described
by

E = ED&sinu)t, (27)
then the time-independent transition amplitude for N-
photon detachment in lowest-order perturbation theory
ls
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T, .=lim —
~

.
~

(2~)~e'e" e r ~ z . e
&2( i kN, + V + xrI kN 2+ V + ~rI

1x. e r ~ z e r@i(r)
k, + Vs+ ir)

(28)

where

and

zk„= E; +rue

~k~ ——E, + N~. (29b)

and inserting complete sets of plane wave states between
each of the operators in Eq. (28), we obtain the momen-

tum space expression for T&,
(N)

(N) 1 1 1
Tyi 2(

—Eo) e Vkk2 k~8 Vkk2
N —1 N-2

(Note that the transition operators t&, and t.
&, defined(2) (3)

in Eqs. (9) and (22) are formally related to T&, in Eq.
(28) by the relation

1
x e Vkk2 ~g Vkp, (k)

1 - k=kf

N
T(N) ~t

Eo ~ (N)

2i) In deriving Eq. (32), we have used the result

(32)

Q;(r) = (2r) r& f d kP;(k)r' (»)

due to the fact that only the polarization vector of the
electric field was used to define t&, [cf. Eqs. (10) and(N)

(27)]. Of course the wave functions used to calculate each
amplitude are quite different; thus the equality in Eq.
(30) holds only when the same wave functions are used
to calculate each amplitude. ) By expressing the initial
state g; in terms of its Fourier transform, i)), (k),

((2z) ~ elk' r~e r~(2z) s~ eikr)

is V' 6(k ——k') (33)

as well as the fact that the imaginary parts in Eq. (28)
do not contribute to Eq. (32) since for k = ky, none of
the energy denominators in Eq. (32) is singular.

One may proceed to evaluate the transition amplitudes
in Eq. (32) by using the gradient formula [29]:

f(k)Ye (k) = (-1)' (&')

+ (-1)™(~)"'
I m'—

1 t'& (d E')
Yem

~

———
I f(k)m) (dk kp er=c+i

m, ,'=en, +q

1 Z IIY
I

d (/+1)llf(k)
m) gdk k

rn'=m, +q

(34)

Given the transition amplitude T&~, , the transition
rate is given by the golden rule as

(N)
= 2 ]T'",. '~'„„,kq, (35)

and for an incident photon flux (cE2/8vru) the total N
photon detachment cross section is given by

(N) 8x(u
(&)

f gE2 Q ky (36)

B. Zero-range potential model results

In order to evaluate the N-photon transition ampli-
tude in Eq. (32) using the gradient formula in Eq. (34)
we require a speci6c form for the momentum-space wave
function, P, (k), of the initial state. We choose

kbz/2 -=]E;i . (39)

where B is a normalization constant. This form of the
inital-state wave function is a well-known approximation
stemming from the effective range theory for an s elec-
tron [30]. It represents also the solution of an attractive
spherical b-function potential, whose eEect may be de-
scribed by a particular boundary condition at the origin

[»]
For H the constant B in Eq. (37) is properly cho-

sen to have the value 0.31552, as explained in detail
by Du and Delos [32]. Briefly, we note that this is not
the value which normalizes the approximate ground-state
wave function. Rather B is the constant which normal-
izes the exact ground-state wave function according to
the effective range theory [30], i.e. ,

B = (kg/27') (1 —kyar, er)

where

p, (k) = 2s zB(kz —2E;) 'Ypo(k), (37)
Its value for H is obtained from the variational calcula;
tion of Ohmura and Ohmura [33], who found that
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and

kb = 0 2355883, (40a)
(47)

r,g ——2.646 . (40b)

2'~'B'
3c ) icos)

' (41)

(7I B E'\ ( ky y + ~ kf I

Substituting the ground-state wave function in Eq.
(37) into Eq. (32) for the N-photon transition amplitude
and using Eqs. (34)—(36), we find the following analytic
expressions for the N-photon detachment cross sections

cr&~, (L). and oP}(C) for the cases of linearly (L) and
circularly (C) polarized incident light of frequency u:

Since in most cases b,~ is negative, this implies that as
N increases the theoretically predicted N-photon disso-
ciation cross section will be increasingly too large.

The case of a i~}(L) for linearly polarized light requires
a more careful analysis. For this analysis we have exam-
ined the low-intensity limit of the nonperturbative N-
photon detachment cross sections calculated assuming
the detached electron may be represented by a Volkov
state [34]. However, the results may be understood as a
simple extrapolation in N of the formulas for N = 1 —3
given in Eqs. (41)—(43).

Far above threshold, i.e. , zk&z » ~E, ~, the error in the

magnitude of cr&+}(L) is determined by the term having
the highest power of kf, particularly for large values of
N. One finds then that

k2N+1

) A, ~oo ~ ~4N 1'-(N} f (48)

~~&, }(c)=

2s3~c ]
(43)

(2N)((~2B2g2N-2 ( kzN+& )
2 (N!) (2N+1)!!c (ur -i)

where C~ is a constant. For this high-energy limit, then,
the fractional error in o!+}(L) is the same as for cr&+}(C)
and is given by Eq. (47).

Near threshold, i.e., 2kf « ~E, ~, the error in the mag-

nitude of o!+}(L) is determined by the term having the
highest power of u in the numerator of the fraction shown
for N = 1 —3 in Eqs. (41)—(43). In this limit one finds

(44)

where ky is related to a in each case according to Eq.
(29b). We note that, as may be expected, these results
are identical to those obtained by using a Volkov final-
state wave function to calculate the N-photon detach-
ment cross sections nonperturbatively and then taking
the weak laser field limit (i.e. , Eo -+ 0) of the resulting
formulas [34].

g(N}(L)
C2 s& &

(N = even)

k~s

, Cs s~

(49a)

(49b)

where C2 and Cs are constants. Accordingly the frac-
tional error in the linear polarization cross section near
threshold is estimated as

C. Sensitivity of the .1V-photon detachment cross
sections to the electron affinity

(3N —1) ( ) (N = even)

l. 3N (-~-) (N = odd) .

(50a)

(50b)

We proceed here to estimate the fractional error to be
expected in theoretical calculations of N-photon detach-
ment cross sections if the value of the electron affinity

(—E,) for the negative ion [cf. Eq. (29b)] is in error by
the amount b,E, . For a calculation—of cri+} at the de-
tached electron kinetic energy zk&z, the fractional error
in the photon frequency is

(45)

If in a theoretical calculation one uses an approximate
photon frequency u based on the incorrect electron affin-
ity (E, + b E',), then we ma—y write

As we shall show in Sec. V, adiabatic hyperspherical
calculations carried out with the adiabatic hyperspher-
ical value of the electron affinity give multiphoton de-
tachment cross sections that are much larger than those
obtained in our semiempirical adiabatic hyperspherical
calculations. In the latter calculations, the adiabatic hy-
perspherical potentials are semiempirically adjusted to
give the correct electron affinity. The differences in the
magnitudes of the multiphoton detachment cross sections
are in line with the estimates provided here based on the
zero-range potential model.

cd~ =ca)
/
1+ ~ ) (46)

IV. EFFECT OF FINAL STATE a-WAVE
PHASE SHIFTS ON THE TWO-PHOTON

DETACHMENT CROSS SECTIONS
One sees readily from substitution of Eq. (46) in Eq.
(44) that the fractional error in the N-photon detach-
ment cross section for circularly polarized light is

Geltman [16(b)] has shown that zero-range potential-
model results may be improved significantly by represent-
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ing the detached electron with phase-shifted plane waves.
This is particularly true for two-photon detachment using
linearly polarized light since in that case the dominant
partial wave near threshold is the s wave, which has a
large overlap with the residual H atom. Geltman ob-
tained his so-called "best phase" results numerically. In
order to demonstrate the sensitivity of the two-photon
detachment cross section to the s-wave phase shift, we
present here analytic expressions for this cross section.
Our results show in particular that a necessary condition
for the imaginary part of the transition amplitude in Eq.
(28) to be nonzero is that the final-state partial waves
have nonzero phase shifts.

E 4
(54a)

4

i2J 8) (54b)

where the radial transition amplitude Pe is defined by

out the angular integrations by standard procedures for
the case of linearly polarizmi light, we find that the ab-
solute squares of the transition amplitudes to each of the
two final states in Eq. (52) are

A. Formulation

Pee —= lim(uee]r(E, + ~ —he y+ ig) 'r]uo),
g-+0 (55)

We treat here two-photon detachment of an electron
bound in a zero-range potential. We use the same initial-
state wave function as in Sec. III B. From Eqs. (31) and
(37) this is

~-kgr
A(r) =B

where

uo(r)
r (51a)

uo(r) = (4n) / Be "'" (51b)

and where B and kg are defined in Eqs. (38) and (39)
and the immediately following text. Electric-dipole selec-
tion rules for detachment of this E = 0 electron result in
only E = 0 and E = 2 final-state angular momenta. The
energy-normalized radial wave functions for these final
states are

1 d' E(|!+ 1)
2 dr 2T

(56)

Substituting Eq. (54) into Eqs. (35) and (36) and taking
into account that the final states in Eq. (52) are energy
normalized (in contrast to the momentum-normalized
plane waves used in Sec. III) we obtain for the two-
photon total cross section (in a.u. )

o('& = E'[-'[P
[ + fP

f
]-

C

B. Evaluation of the radial transition amplitudes

where he(r) denotes the radial Hamiltonian for an elec-
tron having orbital angular momentum f,

( 2 ) 1/2

ue, , (r) =
i [ sin[kfr+ 6, (kf)],
(vrkf j (52a,)

We evaluate the radial amplitudes in Eq. (55) using
the analytic Green's function [36):

( 2 ) 1/2

uee=2(r) =
I I kfrj2(kfr),
(~kf/

(52b)

G&~+
& (r, r')—:lim (E, + u —he q + ig)g~o

= —2iklr(js (klr()r) h&

(kyar)

),(s) (58)

where efFective range theory [35] gives the following for-
mula for the s-wave phase shift 6, (kf):

kf cot 6,(kf) = —kt, + ~r,ef (k~ + kf),

where the variationally determined [33] values of kb and
r,ee for the H ion are given in Eq. (40).

Treating this short-range potential-model approxima-
tion to the H ion as a one-electron system and carrying

where

-'kI =—E, +~,

and where j q (kl T) and h& (kIr) are spherical Bessel func-(~)

tions of the first and third kinds [37]. Substituting Eq.
(58) into Eq. (55) and using Eqs. (51b) and (52) for the
initial and final wave functions, we may write the two
desired radial amplitudes as

Pe~=0 = 2B(2/kf) (sin[kf1 +6B(kf)][T]A(E2+LL T)), (60a)

Bsr —s = 2B(2/kr )
&* —

2 r sinks r —(rk(B; + ts, r)])
—(sin

kyar(r(k

(B, + ts, r)) )f dr
(60b)
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where we have defined

A(E, +(u, r) = lim(E, +~ —hi+iran) 'r[e "'")
g-+0

(61a)

and

(&)
ref=0 = ~2B2E2' (72kfu')

'
C

2i—klrhi (krr) (r') j i(klr')e "'" dr'
0

—2ik rjl(k|gr) f (r') h~i'i(klr')e "'"dr' .

(61b)

[Note that in Eq. (60b), the first term in curly brackets
results from an integration by parts. ]

The analytic form for A(E, + ~, r) may be obtained
from Eq. (61b). One substitutes the explicit forms for
the spherical Bessel functions and then carries out the
integrations over r'. The result is

1 &. li
A(E, + ~, r) = —

I
ikr ——

~

e' '"
r)

x (2kf —3k'(u) cos[b, (kf)]

+ (5cuki, —2kbkf —4ikr) sin[6', (ky)]

(65c)

Note that in the limit b, (ky) -+ 0, Eq. (65) be-
comes equal to the free-electron result in Eq. (42). In
the near-threshold region, the energy-dependent s-wave
phase shift 6, (kf ) should represent most of the final-state
electron-correlation efFects, as we shall show by compar-
ison with our semiempirical adiabatic hyperspherical re-
sults in the next section.

+—
i

mr+ kb+ —
i
e

1 t'

~2 rp
(62) V. RESULTS

The analytic forms for the radial transition amplitudes
Pgi in Eq. (60) are obtained by substituting Eq. (62)
into Eq. (60) and carrying out the radial integrals. The
results are

Pg p = B(2/k ) ~ (2~z)

(2k' —3kf~) cos[b, (kg)]

+ (5u)ki, —2kskf —4ikr) sin[b, (kf)]

(63)

We present here our semiempirical adiabatic hyper-
spherical results for two- and three-photon detachment
of H for the cases of linearly and circularly polarized
light. In order to elucidate the role of electron corre-
lations in multiphoton detachment of H, we compare
our results with the free-electron, zero-range potential-
model results derived in Sec. III as well as, for the case
of two-photon detachment, the phase-shifted zero-range
potential-model results derived in Sec. IV. In order to
demonstrate the sensitivity of the theoretical results to
the electron affinity of H, as discussed in Sec. III C, we
compare our semiempirical adiabatic hyperspherical pre-
dictions with adiabatic hyperspherical predictions. Fi-
nally, we compare our results with other calculations
which include electron-correlation efFects [10,13,14].

Pgi z = B(2/kf)—
(2ld )

(64)

where

(2) (~) (2)= ~e,=2+ ~z&=0 (65a)

(2l x BzE (2) f&y r

c (45)

Notice that for E, + ur ( 0, kr = /2(E, + a) = &ikri,
so that the —4ikls coefficient of the sin[b, (ky)] term in
the curly braces in Eq. (63) becomes real and equal to
—4]ki] . For E;+~ ) 0, however, kI = ]ki] andthiscoef-
ficient of the sin[b, (kf)] term in curly braces in Eq. (63)
is imaginary and equal to —4i]kl] . In this latter case,
Pgi phas a complex —value unless b, (kf) = 0, whereupon
Pg~ 0 is real. Hence in the free-electron case, Pgf 0 has
no contribution from the energy shell.

The two-photon cross section can now be obtained an-
alytically by substituting the absolute squares of Eqs.
(63) and (64) into Eq. (57). The result is

A. Numerical aspects

In our variationally stable procedure for evaluating the
two- and three-photon transition matrices in Eqs. (11)
and (25) respectively, the unknown functions A and A'

are each expanded in Slater orbital bases. For the case
of two-photon detachment, about 70 Slater orbitals were
used, each having the same exponential function. For the
case of three-photon detachment, a total of about 120
Slater orbitals were used, with two different exponential
functions.

In our semiempirical adiabatic hyperspherical treat-
ment, we adjust the adiabatic hyperspherical radial po-
tentials U„(r) in Eq. (8), ignoring the coupling terms,
so that the total ground-state energy E~ for H agrees
with the nonrelativistic energy predicted by Pekeris [24],
i.e., —0.527751 a.u. This compares with the adiabatic
hyperspherical value of —0.525 92 a.u. The adjustment
of U„(R) is accomplished by deepening the bottom of the
well very slightly and smoothly joining the deepened part
onto the adiabatic hyperspherical potential by a spline
procedure. No correction to the angular function P& for
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(&)~( )

y'N —1 '

where the photon flux is

Eozc

8m~

(66a)

(66b)

B. Two-photon detachment of H

In Fig. 1 we see that our semiempirical adiabatic
hyperspherical result for two-photon detachment of H
with linearly polarized light is about 25% lower in magni-
tude than the adiabatic hyperspherical result for zk&~ ——

0.01 a.u. Alternatively, the adiabatic hyperspherical re-
sult is 33% larger than the semiempirical adiabatic hy-

perspherical result. This compares well with the analytic
zero-range potential-model estimates for the expected er-
ror in the calculated cross sections due to the difFerent
electron affinities. The Pekeris value [24] for the electron
affinity E, is +0.027—751 a.u. , while the adiabatic hyper-
spherical value is +0.025 92 a.u. At a detached electron

I

C)

b

0
0.000 0005 0010 0015

Electron Energy (Q.U. )

0.020

FIG. 1. Generalized cross sections for two-photon detach-
ment of H using linearly polarized light plotted vs photo-
electron kinetic energy. Solid curve: Semiempirical adiabatic
hyperspherical results. Dashed curve: adiabatic hyperspheri-
cal results. Dotted curve: free-electron zero-range potential-
model results. Dash-dotted curve: Zero-range potential-
model results with nonzero, 6nal-state s-wave phase shifts.

the ~S channel was made. The final-state radial function
for the ~S detachment channel was also calculated in the
semiempirically adjusted radial potential U„(R). Finally,
we note that our potentials U„(R) and angle functions P„
were only calculated numerically for R & 40 a.u. In the
range 40 a.u. & R & 120 a.u. , the analytically known
asymptotic forms for these functions [20] were used. A
spline fit was used to join the numerical and analytic
values of quantities dependent on U„(R) and P„ in the
vicinity of R - 40 a.u.

We present our results for the generalized cross sec-
tions [17], which depend only on the properties of the
H system and not on the electric field strength Eo of
the incident light. The generalized cross section o~+l is
defined in terms of the cross sections in Eqs. (36), (41)—
(44), (57), and (65) by

kinetic energy zk&
——0.01 a.u. , this gives a fractional

error in the photon energy, according to Eq. (43), of
(b,u/ur) = —0.049. Hence, according to the estimates in
Eqs. (48) and (50a), for linearly polarized light the adi-
abatic hyperspherical cross sections will be in error by
from 24% to 34% at this value of ky, although neither of
the limits at which these formulas apply (i.e., ky ~ oo
and ky ~ 0 respectively) really applies at z k&

——0.01 a.u.
However, the order of magnitude in the error is quite well
predicted.

One sees from Fig. 1 also that the semiempirical adia-
batic hyperspherical cross section is about 11% higher at
z~k&z

——0.01 a.u. than the zero-range potential model re-

sult calculated according to Eq. (65), in which the Ey = 0
partial wave is phase shifted. We attribute this increase
above the phase-shifted zero-range potential-model cross
section as due to the electron correlations treated in our
semiempirical adiabatic hyperspherical calculation. That
electron correlations increase the H two-photon detach-
ment cross section has been noted by Crance [13]. This
contrasts with electron-correlation effects on the two-
photon detachment cross sections of F [38] and Cl
[39], which lower the calculated cross sections relative to
Hartr===Fock (HF) predictions. (Of course, it is not clear
how the zero-range potential-model predictions compare
to results of a HF calculation for H .)

The free-electron, zero-range potential-model results
shown in Fig. 1 have an incorrect energy dependence
above threshold. The cross section peaks near 10 s a.u.
electron energy and then rapidly decreases to a minimum
value near 10 2 a.u. , whereupon it rises slowly with in-
creasing electron energy. Note also that our zero-range
potential-model predictions are = 30% larger than those
of Geltman [16]. This difference stems from our different
approaches to the zero-range potential model [40]. Gelt-
man [16] treats H as a two-electron system whose 1s
orbital in both initial and final states is the zero-range
potential-model wave function, normalized to unity. We
treat H as a one-electron system in which the initial-
state wave function is the zero-range potential-model
wave function, normalized according to efFective range
theory (cf. Sec. III B).

In Fig. 2 we compare our semiempirical adiabatic hy-
perspherical result with other theoretical results that in-
clude electron correlations: the correlated basis calcu-
lation of Crance [13], the initial-state correlation results
(using a Hylleraas-type wave function) of Dorr e5 aL [14],
and the many-electron, many-photon theory (MEMPT)
results of Mercouris and Nicolaides [10(c)]. Our results
lie about a factor of 2 higher than those of Crance; also
our results rise much more sharply to a broad plateau
above threshold. The magnitude of our results is gen-
erally in agreement with those of Mercouris and Nico-
laides, although their results appear to mimic slightly
the near-threshold peak and subsequent decreasing cross
section of the zero-range potential-model results shown
in Fig. 1. The results of Dorr et al. show that inclusion
of ground-state correlations alone gives a much better
description of the near-threshold rise of the cross section
than does the zero-range potential model. Their results
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C. Thr==-=photon detachment of H
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are very close to ours from threshold to about 0.0015
a.u. above. Further above threshold, however, their use
of a free-electron final state results in their cross sec-
tion mimicking the shape of the free-electron zero-range
potential-model cross section.

In Fig. 3 we present the generalized cross section for
two-photon detachment of H with circularly polarized
light. We see that at 2k' ——0.02 a.u. , the adiabatic hy-
perspherical results are = 28% larger than our semiem-
pirically adjusted adiabatic hyperspherical results. This
compares very well with the zero-range potential-model
estimate of 27%%uo given by Eq. (47). Our semiempir-
ical adiabatic hyperspherical results are = 9% larger
than predictions of the free-electron zero-range potential
model. As for the case of linearly polarized light, we at-
tribute this difFerence to electron-correlation efFects. The
energy dependence of our semiempirical adiabatic hyper-
spherical results appears to be consistent with that pre-
dicted by Dorr et at. [14], however our results have a
magnitude approximately three times larger.

5.
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FIG. 3. Generalized cross sections for two-photon detach-
ment of H using circularly polarized light plotted vs pho-
toelectron kinetic energy. Solid, dashed, and dotted curves
have the same connotation as in Fig. 1. Dash-dotted curve:
correlated ground-state calculation of Dorr et sl. [14].

FIG. 2. Generalized cross sections for two-photon detach-
ment of H using linearly polarized light plotted vs photo-
electron kinetic energy. Solid curve: present semiempirical
adiabatic hyperspherical results. Pluses: MEMPT results of
Mercouris and Nicolaides [10(c)]. Dashed curve: Correlated
ground state calculation of Dorr et al. (14]. Dash-dotted
curve: correlated-basis calculation of Crsnce [13].
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FIG. 4. Generalized cross section for three-photon detach-
ment of H using linearly polarized light plotted vs photoelec-
tron kinetic energy. Solid, dashed, and dotted curves have
the same connotation as in Fig. 1. Pluses: MEMPT re-
sults of Mercouris snd Nicolsides [10(c)].Dash-dotted curve:
Correlated-basis calculation of Crsnce [13].

In Fig. 4 we present our generalized cross sections for
three-photon detachment of H using linearly polarized
light. At the maximum in the cross section near sk&z ——

0.003 a.u. , the adiabatic hyperspherical result is —67%
greater than the semiempirical adiabatic hyperspherical
result. At this kinetic energy, EuI/ur = —0.06, so that the
zero-range potential-model estimates for the difference
between the cross sections are - 65% [using Eqs. (48)
and (47)] and = 54% [using Eq. (50b)]. Since kf is
neither infinite nor zero, neither of these estimates applies
at the cross section maximum. However, the order of
magnitude of the error in the adiabatic hyperspherical
cross section due to the error in the electron affinity is
correctly predicted.

Surprisingly, Fig. 4 shows that our semiempirical adi-
abatic hyperspherical results are in excellent agreement
with predictions of the free-electron zero-range potential
model from threshold to the region of the cross section
maximum. At higher energies, our semiempirical adia
batic hyperspherical results decrease faster than those of
the free-electron zero-range potential model. In this lat-
ter model, the Ef = 1 and Ey = 3 partial waves of the
detached electron are not phase shifted. However, the
phase shifts for these partial waves are in any case small
[16(b)]. Note that our zero-range potential-model results
are - 30% larger at the cross section maximum than the
zero-range potential-model results of Geltman [16]. As
noted above, this difference stems from our difFerent ap-
proaches to the zero-range potential model [40]. Geltman
[16] treats H as a two-electron system whose ls orbital
in both initial and final states is the zero-range potential-
model wave function, normalized to unity. We treat H
as a one-electron system in which the initial-state wave
function is the zero-range potential-model wave function,
normalized according to efFective range theory (cf. Sec.
III B).

Our semiempirical adiabatic hyperspherical results dif-
fer significantly from those of other calculations which
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FIG. 5. Generalized cross section for three-photon detach-
ment of H using circularly polarized light plotted vs photo-
electron kinetic energy. Solid, dashed, and dotted curves have
the same connotation as in Fig. 1.

include electron-correlation effects. As shown in Fig. 4,
below the cross section maximum our results are a factor
of 2 or so larger than those of Mercouris and Nicolaides
[10(c)]. Above the maximum, our results are in much
closer agreement with theirs, although their results agree
best with our free-electron zero-range potential-model re-
sults. In contrast, over the entire energy region shown our
results lie a factor of 3 or so larger than those of Crance
[13].

Finally, in Fig. 5 we present our generalized cross sec-
tion results for three-photon detachment of H using cir-
cularly polarized light. At the highest energy shown,
&Iof ——0.012 a.u. , the adiabatic hyperspherical result
lies 70Fo higher than our semiempirical adiabatic hyper-
spherical result. This compares reasonably with the zero-
range potential-model estimate for the difference in the
cross sections (based on the different electron affinities) of
51'%%uo, which was obtained from Eq. (47). Over the entire
energy range shown, the semiempirical adiabatic hyper-
spherical results are close to those of our free-electron
zero-range potential model. This indicates the rather
small effect of electron correlations on the cross sections
for circularly polarized light.

VI. CONCLUSIONS

In this paper we have examined the role of many-body
effects on multiphoton detachment of the fundamental
H ion. We have compared results of a two-electron
semiempirical adiabatic hyperspherical calculation with
results of two single-electron, zero-range potential-model
calculations: one in which the detached electron is de-
scribed by a plane wave and one (for the case of two-
photon detachment using linearly polarized light) in
which the detached electron's Ef = 0 partial wave is
phase shifted. We find that for two-photon detachment
using linearly polarized light the use of the s-wave final-
state phase shift in the zero-range potential-model cal-
culation is crucial to obtain reasonable agreement with
the more accurate semiempirical, adiabatic hyperspher-
ical results. For the other cases considered, two- and
three-photon detachment with circularly polarized light

as well as three-photon detachment with linearly polar-
ized light, the free-electron zero-range potential-model
predictions are reasonably close to the predictions of the
more accurate hyperspherical results, especially for cir-
cularly polarized light.

It should be noted that it is difficult to quantify pre-
cisely the role of electron correlations on multiphoton
cross sections for H . Since H is not bound in Hartree-
Fock approximation, we cannot use the standard measure
of electron correlation, namely, the difference between a
HF result and the corresponding result of a treatment
which goes beyond the HF approximation by including
interactions not treated in the HF approximation. In this
paper we have therefore put forward the comparison of
our semiempirical adiabatic hyperspherical results with
results of single-electron model calculations as indicative
of the magnitude of effects due to electron correlations.

We have presented analytic formulas for our zero-range
potential-model cross sections. These have been used to
predict a significant sensitivity of the theoretical cross
sections to the value of the electron affinity used in
the theoretical calculations. This sensitivity has been
demonstrated numerically by comparing results of two
adiabatic hyperspherical calculations: one using the adi-
abatic hyperspherical value of the electron affinity and
one semiempirically adjusted to give the variationally
determined nonrelativistic electron affinity predicted by
Pekeris [24].

The sensitivity of the theoretical predictions on the
electron affinity may explain perhaps some of the dis-
parity between theoretical predictions of multiphoton
detachment cross sections for H by different theoreti-
cal groups. We have compared our semiempirical adi-
abatic hyperspherical results with those of three other
calculations which include electron correlations. On the
whole, our results agree best quantitatively with those
of Mercouris and Nicolaides [10(c)],especially away from
the near-threshold region. However, near threshold the
agreement is not as good as that between our semiempir-
ical adiabatic hyperspherical results and our best zero-
range potential-model results (i.e. , for two-photon de-
tachment with linearly polarized light, our phase-shifted
zero-range potential results, and for all other cases, our
free-electron zero-range potential results).

Finally, in the Appendix we have shown that the low-
intensity limit of the Keldysh treatment of multipho-
ton detachment reduces to the perturbative results we
present in Sec. III.
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APPENDIX: LOW-INTENSITY LIMIT
OF KELDYSH- THEORY MULTIPHOTON

DETACHMENT TRANSITION AMPLITUDES

into account the time dependence of the initial-state wave
function,

We derive here the low-intensity limit of Keldysh-
theory transition amplitudes for multiphoton detach-
ment. We show that they are equal to the results of
perturbation theory in which the detached electron is free
and in which the length form of the perturbation is used.

1. Form of the transition amplitude

0'(p, t) = 4'(p)e "',
we obtain

+oo

s~, =~ ~ (—gee"") i~ y,)«,

where we have used

i Q—f ——
z (P+a) Qf .

(All)

(A12)
In the Keldysh approximation, the length gauge is used

for describing the interaction of an electron with a laser
field. The S matrix in the length gauge is [41]

Now the analytic solution for Eq. (A12) in momentum
space is [46]

+00
SfLt = —i (yfL~VfL~y, )dt, (Al) V (Epe kf&

lpf ——6(p —kf ) exp —i
~ z ~

sin cut
i

where Q, is the initial-state wave function, which is as-
sumed to be unaffected by the laser field; where QfL is
the exact solution for a free electron moving under the
inHuence of the laser-electron interaction VfL; and where

VfL is given in momentum space by

Vf ——iEp sin its 7'p, (A2)

where the laser electric field is defined by Eq. (27). Using
the following properties of the initial- and final-state wave
functions,

where

=1 2sf = 2kf,

E0V:—
8v

2
0S=

4u

+v sin 2ut + (sf + s)t

(A13)

(A14a)

(A14b)

(A14c)

i —Q =eQ
t '

Eq. (Al) may be rewritten as

+q; =~ f (Cql ,'g' —~;lg;)«. -

(A3)

(A4)

(A5)

Expanding now the harmonic dependence of the trans-
formation operator T~ in Eq. (A7) as

exp —i cosa% r
4)

) (—i)"J„~i e V'p
~

e ' ', (A15)

Since an analytic expression for the final-state wave func-
tion is known in the velocity gauge, we make the standard
gauge transformation [42—44]:

where the J„(z) are ordinary Bessel functions [47], and

expanding the harmonic dependence of (Qf )~ in Eq.
(A13) as

yL TyV

where

T = exp [ia(t) r),
where

( )
Ep cosldte

( 6)

( 7)

(A8)

(Epe kf )
exp i

~ ~

sinut+ v sin 2ut)

) ( 1)taJ
~

f
~

tncut-(A16)

and

r = i'7p. (A9)

where the J (y, z) are generalized Bessel functions [48],
one may substitute these results in Eq. (All) and carry
out the time integration to obtain

Substituting Eq. (A6) into Eq. (A5), operating with
T~ on (zpz —e,) ~Qt) using the property that T~ acts
as a momentum-displacement operator [45], and taking

Sft —) Sfj (N)6(ef + s —et —Ntd)
N

where

(A17)
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Sf,(N) =2m-tee( —1) ) i"rijiv n[, ,
—i~

I Jn
I

t e '%7k, I gh(kf) .(Epe kf ) f'. Ep

) & ') (A18)

The N-photon detachment transition amplitude is then, of course, defined by

T~,(N) = —(2+i) S&,(N) . (A19)

2. Low-intensity limit

Equations (A18)—(A19) give the exact Keldysh expression for the transition amplitude for detachment of an electron
by a laser field. In order to make connection with the free-electron perturbation theory results (in length form)
presented in Sec. III of the present paper, we take the low-intensity limit of the Keldysh transition amplitudes in
Eqs. (A18) and (A19). These limits may be derived by substituting the small-argument limiting forms for both the
ordinary Bessel functions and the generalized Bessel functions [49]. The result is

(A20)

where we have defined

Aiv „= lim Jiv „[ ~,—v~ .
(Eps kf

r
(A21)

Using the small-argument expressions for the generalized Bessel functions [48, 49] to evaluate Aiv „,we obtain the
low-intensity result for the N-photon detachment amplitude in Eq. (A20). For N = 1, 2, and 3, we obtain

rA~'~: '(' v~)&~"~~ (A22a)

2 2

&p(2):,
~

l (l &y) (O'Vg ) ~(+'+k ) A(kf), (A22b)

T (3): ( ~

—Il — (i vk)F., Pt2~p 4 ( )
(d 3

+ (E ky) (E vk )
——(E vg ) tt, (kf). (A22c)

One may easily confirm that these expressions are equal
to those given by the free-electron perturbation theory in
Eq. (32). One must simply carry through the derivatives
with respect to k in Eq. (32) and then relate the energy
denominators to the photon frequency ~ using Eq. (29).

In conclusion, we have shown the equality of the low-
intensity limit of the Keldysh transition amplitude in Eq.

I

(A20) to the length-form perturbation-theory results (for
a free-electron final state) for the particular cases N = 1,
2, and 3. Mathematical proof of this equality for arbi-
trary values of N requires an inductive proof. However,
physically we see no reason why such an equality should
not hold for arbitrary N.

Present address: University of Tennessee Medical Group,
Department of Radiation Oncology, 877 JeHerson Av-
enue, Memphis, TN 38103-2807.
Permanent address: Department of Physics and Astron-
omy, The University of Nebraska, Lincoln, NE 68588-
0111.

[1] S. A. Adeimsn, J. Phys B6, 1986. (1973).
[2] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
[3] M. Crance and M. Aymar, J. Phys. B 18, 3529 (1985).
[4] M. G. J. Fink and P. Zolier, J. Phys. B 18, L373 (1985).
[5] G. P. Arrighini, C. Guidotti, and N. Durante, Phys. Rev.

A 35, 1528 (198?).
[6] R. Shakeshaft and X. Tang, Phys. Rev. A 36, 3193

(1987).
[7] Th. Mercouris and C. A. Nicolaides, J. Phys. B 21, L285

(1988).
[8] C. Y. Tang, P. G. Harris, A. H. Mohagheghi, H. C.

Bryant, C. R. Quick, J. B. Donahue, R. A. Reeder, S.
Cohen, W. W. Smith, and J. E. Stewart, Phys. Rev. A
39, 6068 (1989).

[9] W. W. Smith, C. Y. Tang, C. R. Quick, H. C. Bryant,
P. G. Harris, A. H. Mohagheghi, J. B. Donahue, R. A.



5998 CHIH-RAY LIU, BO GAO, AND ANTHONY F. STARACE 46

Reeder, H. Sharifian, J. E. Stewart, H. Toutounchi, S.
Cohen, T. C. Altman, and D. C. Risolve, J. Opt. Soc.
Am. B 8, 17 (1991).

[10] (a) Th. Mercouris and C. A. Nicolsides, J. Phys. B 23,
2037 (1990); (b) ibid. 24, L165 (1991); (c) Phys. Rev. A
45, 2116 (1992).

[11] X. Mu, Phys. Rev. .A 42, 2944 (1990); X. Mu, J.
Ruscheinski, snd B. Crasemsn, ibid. 42, 2949 (1990).

[12] F. H. M. Fsisal, P. Filipowicz, snd K. Rzyiewski, Phys.
Rev. A 41, 6176 (1990).

[13] M. Crance, J. Phys. B 23, L285 (1990);24, L169 (1991).
[14] M. Dorr, R. M. Potvliege, D. Proulx, and R. Shakeshaft,

Phys. Rev. A 42, 4138 (1990).
[15] W. Becker, S. Long, and J. K. McIver, Phys. Rev. A 42,

4416 (1990).
[16] (a) S. Geltman, Phys. Rev. A 42, 6958 (1990); (b) ibid.

43, 4930 (1991).
[17] P. Lsmbropoulos, Adv. At. Mol. Phys. 12, 87 (1976).
[18] B. Gao and A. F. Starace, Phys. Rev. Lett. 61, 404

(1988); Phys. Rev. A 39, 4550 (1989).
[19) B. Gao, C. Pan, C. R. Liu, snd A. F. Starace, J. Opt.

Soc. Am. B 7, 622 (1990).
[20] J. H. Macek, J. Phys. .B 1, 831 (1968).
[21] U. Fano, Rep. Frog. Phys. 46, 97 (1983).
[22] C. D. Lin, Adv. At. Mol. Phys. 22, 77 (1986).
[23] A. F. Starace, in Pundamental Processes of Atomic Dy

namics, edited by J. S. Briggs, H. Kleinpoppen, and H.
O. Lutz (Plenum, New York, 1988), pp. 235-258.

[24] C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
[25] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov.

Phys. JETP 20, 1307 (1965)].
[26] N. G. Basov, A. Z. Grssyuk, I. G. Zubarev, V. A. Katulin,

and O. N. Krokhin, Zh. Eksp. Teor. Fiz. 50, 551 (1966)
[Sov. Phys. JETP 23, 366 (1966)].

[27] C. H. Park, A. F. Starace, J. Tan, and C. D. Lin, Phys.
Rev. A 33, 1000 (1986).

[28] A. Dslgarno and J. T. Lewis, Proc. R. Soc. London. Ser.
A 233, 70 (1955).

[29] M. Rotenberg, R. Bivins, N. Metropolis, and J. K.
Wooten, Jr. , The Sjand 6jSymbols (Technology Press,

M.I.T., Cambridge, MA, 1959), pp. 6—7.
[30] H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950).
[31] Yu. N. Demkov and G. F. Drukarev, Zh. Eksp. Teor. Fiz.

47, 918 (1964) [Sov. Phys. JETP 20, 614 (1965)].
[32] M. L. Du and J. B. Delos, Phys. Rev. A 38, 5609 (1988).
[33] T. Ohmura snd H. Ohmura, Phys. Rev. 118, 154 (1960).
[34] B. Gao, Ph. D thesis, The University of Nebraska —Lin-

coln, 1989, Appendix D.
[35] C. J. Joachsin, Quantum Collision Theory (North Hol-

land, Amsterdam, 1975), Eq. (11.296).
[36) L. S. Rodberg and R. M. Thaler, Introduction to the

Quantum Theory of Scattering (Academic, New York,
1967), Eq. (3.59).

[37] Handbook of Mathematical Punctions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1965),
Sec. 10.1.

[38] C. Pan, B. Gao, snd A. F. Starace, Phys. Rev. A 41,
6271 (1990).

[39] T. F. Jiang and A. F. Starace, Phys. Rev. A 38, 2347
(1988).

[40] Compare Eqs. (51) snd (38)—(40) of this paper with Eqs.
(12)—(16) of Ref. 16(b).

[41] B. Gao and A. F. Starsce, Phys. Rev. A 42, 5580 (1990),
Sec. III A.

[42] S. Olsriu, I. Popescu, and C. B. Collins, Phys. Rev. D
20, 3095 (1979).

[43] R. R. Schlicher, W. Becker, J. Bergou, snd M. O.
Scully, in Quantum Electrodynamics and Quantum Op-
tics, edited by A. O. Barut (Plenum, New York, 1984),
pp. 405—441.

[44) C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Photons and Atoms: Introduction to Quantum Electro
dynamics (Wiley, New York, 1989), Sec. IV.B.3.

[45] L. D. Landau and E. M. Lifshitz, Quantum Mechanics,
2nd ed. (Pergamon, Oxford, 1965), p. 45.

[46] Cf. Ref. [41], Eqs. (2) and (7).
[47] Cf. Ref. [37], Eqs. (9.1.5) and (9.1.7).
[48] H. R. Reiss, Phys. Rev. A 22, 1786 (1980), Appendix B.
[49] Cf. Ref. [41], Eqs. (37), (38), and (58)—(60). Note that

the latter three equations are obtained from Ref. [48].


