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In this paper, we report the theoretical treatment of ultrafast time-resolved hole burning. The descrip-
tion is valid for nonoverlapping and overlapping pulses as well. Also the effects of the temperature are
included in the theory. The influence of the various contributions to the transient hole-burning spec-
trum corresponding to the level population, pump polarization coupling, and perturbed free-induction-

decay terms is stressed.

PACS number(s): 42.65.Re, 42.65.Hw

I. INTRODUCTION

During the past decade, a large number of coherent op-
tical spectroscopies have been developed to probe the
interna1 dynamics of molecules in the gas or condensed
phase [1—4]. Among these techniques, such as photon
echo [5), coherent Raman spectroscopy [6], photon corre-
lation spectroscopy [7], and polarization spectroscopy
[8], which have been used to study optical dynamics, hole
burning has played a particular role because of its simple
and straightforward application to large varieties of sys-
tems [9,10].

In most solid-state hole-burning experiments, the time
delay between the pumping and probing pulses is longer
than any dynamical time constant of the molecular sys-
tem. Therefore, if the experiments are envisioned as a
particular four-wave-mixing process, the possible in-
terference e8'ects due to the simultaneous presence of the

pump and probe beams do not contribute. As a conse-
quence, among all the contributions participating in the
four-wave rniXin, only those where two pump beam in-
teractions generate an excited level population which is
next tested by the probe beam are accounted for. This is
because, for long time delay, only these terms survive.
Finally, the time-varying polarization resulting from the
four-wave mixing induces in the probing direction a
frequency-dependent energy loss of the probe beam. It is
just this variation which is known as the hole-burning
eff'ect.

In solution, most of the hole-burning experiments have
been performed with pulse durations long enough to es-
tablish a steady-state regime on the system. Here, a
narrow-band laser is used to burn a hole in the optical ab-
sorption spectrum of the rnolecules which are probed by
a time-coincident broadband laser. This technique has
been frequently employed. However, it did not enable
determination of the time scale of the dynamical process-
es in solution and many convicting results were published
concerning the magnitude of their optical dephasing con-

stants [11—14].
%ith the rapid development in experimental and

theoretical approaches of ultrafast processes [15—19] and
the ultrashort laser pulses now available, it is possible to
make observations on a time scale shorter than or compa-
rable to the molecular vibrational periods. This has en-
abled the recent femtosecond time-resolved hole-burning
experiments on solutions which have unambiguously es-
tablished the ultrafast character of the dynamical pro-
cesses taking place on solutions. Here, because of the
high time resolution, the validity of the experimental re-
sults is not questionable and even the apparent discrepan-
cy between the results recently obtained from fem-
tosecond time-resolved hole-burning [20] and photon
echo experiments [21,22] has been clarified as resulting
from the nature of the initially prepared state. At this
point, it has to be mentioned that for very short experi-
mental time resolution, non-Markovian e8'ects become
relevant and consequently the dephasing processes can-
not any longer be described by a time constant T2. As an
example, from the recent femtosecond photon echo ex-
periment done in solution by Nibbering, Wiersma, and
Duppen [23], it is clear that solution dynamics cannot be
described by phenomenological Bloch equations.

However, the observation of spectral holes in solution
may be difficult and hole burning should be observed at
very short time delay. Consequently, the pump-and-
probe pulses overlap and additional processes contribute
to the spectrum. Recently, Brito Cruz et al. [24] have
introduced a four-wave-mixing description of pump-
probe spectroscopy for a two-level system with hyperbol-
ic sequant-square intensity femtosecond pump and probe
pulses. They have established that the signal arising in a
transient hole-borning experiment can be separated in
three contributions. The Srst one, de6ned as the level
population term, re6ects the dynamics of the material
system. It corresponds to the usual hole-burning picture,
where two pump pulses create some excited-state popula-
tion which is next tested by the probe pulse. The second
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contribution, known as the pump polarization coupling
term, follows the chronological ordering pump-probe-

pump interactions. Its contribution is large if the pump
and probe pulses overlap. In addition, its temporal be-
havior follows the pump pulse profile. The third contri-
bution, called the perturbed free-induction-decay term, is

characterized by the chronological ordering probe-

pump-pump interactions. It strongly modifies the signal
when the probe pulse precedes the pump pulse. It in-

creases wirn iime c:onsranr, c 2. L his contrioutcon van-
ishes rapidly for positive delay times.

More recently, Ferwerda, Terpstra, and Wiersma [25]
have shown, by using stochastic light beams with broad
temporal profiles but correlation times smaller than the
relaxation and dephasing constants T, and T2 of the
medium, that coherent artifacts with the same spectral
width are detected in the probe direction k, as well as in
the signal direction 2k, —k, where k, is the wave vector
of the pump beam. Moreover, these artifact contribu-
tions arise from terms which have been identified with
stimulated resonance Raman gain [26) and, in contrast to
the previous conclusions [27] predicting peaks at the
excited-state vibrational frequency, their analysis exhibits
peaks at both the ground- and excited-state vibrational
frequencies. Finally, a number of limitations on measur-
ing solvent motion with ultrafast transient hole burning
have been examined. Among the limitations, spectral
diffusion and spectral congestion are shown to perturb
the determination of the homogeneous linewidth. They
conclude that transient hole burning cannot be observed
in liquids. The effects of these limitations have been
demonstrated experimentally for iodine in hexane [26,27].

In order to understand the dynamics as well as to
disentangle the contributions associated to various rnech-
anisms of the interactions, it is convenient to separate the
spectral broadening into homogeneous components in-
duced by very rapid interactions and inhornogeneous

components resulting from slowly varying interactions.
In this paper, we shall theoretically treat ultrafast tran-
sient hole burning which holds the prospect of both
separating these components and directly measuring the
rate of the homogeneous component. While conventional
hole-burning experiments have been commonly applied
to glasses and biological systems [28—33], recently, Lor-
ing, Yan, and Mukamel [34] have theoretically studied
the time-resolved hole burning. However, they only treat
the case of nonoverlapping laser pulses, that is, the case
where pump and probe pulses do not overlap. Laubereau
and his co-workers [35,36] have developed and reported
the application of picosecond time-resolved hole burning
to study the dynamics of inhomogeneously broadened
molecular systems. In their experiments, the pump and
probe pulses overlap. All these results, as well as the
temperature dependence on transient hole burning, have
motivated the present study.

In Sec. II, the general theory to describe transient hole
burning as a particular four-wave-mixing process is
presented. It enables us to introduce the third-order po-
larization which is required to evaluate the differential
transmittance. Section III is devoted to the explicit eval-
uation of its frequency dependence, assuming a material

system initially therrnalized. While these expressions are
quite general, in Sec. IV we focus on a particular four-
level system which is the simplest system to account for
temperature effects. Finally, in Secs. V —VII the transient
hole-burning spectrum is calculated and numerical calcu-
lations have been done to emphasize the role of tempera-
ture as well as dephasing processes.

II. GENERAL DESCRIPTION AND FORMALISM

ba(co) ~ co lm[Pq '(cu)/E~(co)], (2.1)

which is the lowest-order term in the pump and the probe
light beams. Here, E~(co) is the Fourier transform of the
k~ component of the probe electric field while P& '(co) is

P
the Fourier transform of the third-order component of
the polarization in the k direction. Finally, the symbol
Im stands for the imaginary part of the expression.

The theoretical framework required to evaluate the
differential transmittance given by relation (2.1) is intro-
duced in this section. It will enable us to calculate the
dynamical evolution of the medium coupled to the pulsed
pump and probe light beams.

The evolution of the total system is derived from the
Liouville equation

ap(t) = ——[Lo+Lv(t)]p(t) —I p(t), (2.2)

where L~(t) represents the Liouville operator for the in-
teraction V(t) between the molecules and the radiation
fields. The operator V(t) consists of the contributions
from the pumping field V, ( t } and probing field V ( t }.
Therefore we have

V(t)=V, (t)+V (t) .

In the dipole approximation, they take the forms

(2.3}

V-(t)= —p [E (co )e ' +E*(co )e ' ]L (t),

j =e,p, (2.4)

In a transient hole-burning experiment, the molecular
system is subjected to two time-delayed hght pulses. The
pump pulse, with wave vector k, and central frequency
e„produced by a narrow-band dye laser is used to selec-
tively pump an optically resonant medium. Because of
the local changes of the environment, the electronic tran-
sition frequency of the molecules in condensed phase has
a static distribution which generates an inhomogeneous
broadening of the linear absorption line shape. After
some period of time, corresponding to the time delay of
the light pulses, the probe pulse emitted by a broadband
dye laser tests the population previously created in the
sample. The physical observable of interest is the tran-
sient hole-burning spectrum. It corresponds to the varia-
tion of the probe beam intensity as a function of the fre-
quency. For weak light beams, the differential transmit-
tance, defined as the imaginary part of the susceptibility
without the pump pulse minus the susceptibility with the
pump pulse, takes the form [37]
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where L,(t) and L (t) denote the laser pulse shape func-
tions. For the sake of convenience, we shall choose

L (t)=e (2.5)

E, (t)= g E, (e, )e ' 'L, (t),

where

(2.12)

where t, and t represent the pumping and probing times,
respectively, T, =y, ' and T =y ' denote the corre-
sponding pumping and probing pulse durations, and H(t)
stands for the Heaviside function. Finally, I represents
the usual damping operator and Lo the molecular
Liouvillian.

To solve Eq. (2.2), we set

E,(1)=EJ(~, ), E, ( —I ) =EJ*(co,),
we get the expression

(2.13)

E~(co)= g E~(ez)e ' ~ '
2 z

e =+1 ~t et } +1'~
P

(2.14)

p(t) =exp — Lot —o (t), (2 6)

where the notation

L' =L —tAI (2.7)

has been introduced. The formal solution can be ex-
pressed as

l t (i /A)L0~ —(i /A)L0w
o'(t) =o(to) —f dr —e Ly(r}e o'(r),

0

(2.8)

and is in a convenient form to get an iterative solution.
Using the perturbation expansion, we find

—(i /A)L0(t —7 )p'"'(t}=—— dr e ' Lv(r)p'" "(r)
0

(2.9}

for n ) 1. Here, p'"'(t) represents the nth-order contribu-
tion to the density matrix. To treat transient hole burn-
ing, the third-order term p' '(t) is needed to calculate the
third-order polarization

PI '(t) =Tr[p' '(t)p] . (2.10)

Ep(to)= f dt Ep(t)e' '.
With the simplifying notation

(2.11)

This is the basic quantity which is required to get any in-
formation on the system. In the following, we will not in-
troduce the rotating-wave approximation. This is be-
cause, in the perturbation approach, all the terms can be
obtained on the same footing. However, as will be shown
in the next sections, this assumption can be introduced
quite easily, if required.

Finally, in order to calculate the hole-burning spectra,
we still require the Fourier transform of the fields and of
the polarization. With respect to the probe light beam,
we have

It has to be noted that, according to the phase-matching
conditions, we will have to select only one component of
the probe beam. This will be done by taking the con-
venient value of e . It can also be mentioned here that,
because of the particular geometry used in a hole-burning
experiment, the contributions satisfying the phase-
matching conditions are exactly those which participate
in the k component of the polarization. To conclude
this section, we still have to introduce from expressions
(2.9) and (2.10) the polarization

I

P' '(t)= ——f dr Tr[e Lv(r)p' '(r)p],

(2.15)

which can be expressed as a convolution product. There-
fore its Fourier transform is given by the expression

I

P' '(~)= — Tr[P—(e ')V(L~(t}p' '(t))p] . (2.16)

It will be evaluated in the following sections to study the
transient hole-burning spectrum observed in some molec-
ular compounds.

III. EVALUATION OF THE
FREQUENCY-DEPENDENT POLARIZATION

In order to extract physical informations from tran-
sient hole-burning spectra, we must focus on some partic-
ular system. For the problem at hand, we can restrict the
dynamics of the system to two electronic configurations
in the presence of one vibrational mode because it enables
the description of the temperature effect, as well.

Before specializing to a given model, we can explicitly
describe the Fourier transform involved in Eq. (2.16). If,
as usual, the dipole moments have no diagonal matrix
elements, the third-order polarization takes the form

2yP' '(a))= —g . g f dQe J
A' „,i(co„~—co}+I„~ z . (t0 —Q —co.i,j) +y.

J

X [@„,.E.(AJ)p,' '(Q) —
gs,~ E (A. )p'„,'(Q)] . (3.1)
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Here, Ip &, In &, and Is & are the eigenstates of the molecu-
lar system alone. It can be mentioned that we have con-
tributions from both second-order population and coher-
ence terms. Except particular situations, such as those
encountered in molecules having permanent dipole mo-

ments [38], the population terms are strongly dominant.
At this stage, we must evaluate the second-order term of
the density matrix. From relation (2.9) and assuming an
initial thermalization of the system, we have

r

1
p' '(t)= —

2 dt, dt2exp — L—o(t ti)—L„(t()exp ——Lo(t, —t2) L~(t2)p( —oo ),
00 QO

(3.2)

where

p( —~)=z 'g Igv&(gvIexp kT
Z= +exp kT

(3.3)

(~~2)( t )—

This implies a Boltzmann population of the vibrational states Iv & in the ground electronic configuration. If only two
electronic configurations are coupled by a dipole moment, we get the explicit expression

—E „/kr
1 1 gf dt, f dt2 ij exp — Lo(t—t, ) —gv gv" L~(t, )g„g„g„,„

VV V

+ ij exp ——L0 t —
t& ev "ev' LV t&,„-,„~„,„

U eU" I '2'Xe '"'" '"'" ' ' Li,(t2 }gv ev'gv gv

+ ij exp ——L0 t —t, ev'ev" Lz t, ,„.,v-,„.„

+ ij exp ——L0 t —t& gv "gv L& t& &„- „,„.„

8UgU t'. U gU 1 2 FL v( t 2 )eu'gu gu gu (3.4)

where, for instance,

(3.5)

ij exp ——L0t k =,.k JIexp —ice

(3.6)

However, if states
I
k & and I

1 & are identical, because of

stands for the transition frequency between the states

Igv & and Iev'&. Then, the evaluation of p'; '(t) requires
the knowledge of the matrix element in the Liouvillian
space ((ij Iexp[ —(ilk')Lo(t t, )]Iki ». —As long as the
states I k & and I i & are different, its expression is quite
simple and takes the form

the transition constants, the evaluation becomes more
tedious. A simple way of doing it is by introducing the
spectral decomposition of the damping operator. Then,
we have

ij exp ——L Ot kk = jj aa0

Xexp( I t)—
X ((aaIkk »5;i, (3.7)

which reduces to a simple diagonalization of the damping
operator in the Liouville space. From the previous obser-
vations, we can rewrite the required matrix elements into
the form

p( )(t)—
—E „/kr f' dt f'dt, y

VV V 8=+1
IPP» ' ' " ((pplg g »

P

+(1—5„,-}(5, „5 g„5s(+5 „5, „-5s i)e g"g" g"g" '
ig,„-(8)g Ek(vk8)e ' " " Lk(ti)

vk, k
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5...-5, g «sslPPl »se sos ' «PPlev'ev'»s
13

+(1—5„.„,. )(5„„5&„5s&+5&,„.5„„.5s &)e
'" " '" '" ' p,„z„(8)g Ek(vk8)e ' " Lk(tl )

vk, k

(3.8)

Of course, p'„,'(t) can be obtained straightforwardly from
the preceding expression by the simple substitution s ~n
and p ~s. For the sake of simplicity, the following nota-
tions have been used:

8=1 « tt l«»e= « tt'I«», p~J(&) =p~J,
()= —1—« ttl«», =« ttl«»', p)(&)=It,; .

(3.9)

In addition, the matrix elements of the Liouvillian Lz(t),
given by

L v( t )mnpq

=( —p 5„+p „5 ) QE, (e )e ' 'L (t),
6 J

(3.10)

I ( t, A ") =exp( A 'Jt )/A ",
J ( t„t 2, A " ) = [exp( A "t, ) —exp( A "t2 ) ] /A ",
H(t r) =1 —H(r t) —. —

(4.1)

IV. APPLICATION
TO A FOUR-LEVEL SYSTEM

At this point, we must specify the molecular system.
The simplest model mathematically tractable for our pur-
pose is a four-level model. It implies that at most one vi-
brational quantum is present in the system. Such a model
is depicted in Fig. 1 where the various relaxation and de-
phasing constants have been introduced.

Now, if the double time integration is performed, we
obtain the second-order term p,

' '(t). Its expression can
be greatly simplified by introducing again some notations.
We first define the functions

have been introduced. Here, I," is the usual dephasing
constant defined by

Also, from the integration over t2, we have

W)(l, B' )=e ' 'I(tt, B J+yt) e' 'I(tt,—B'J yt), —

W2(1,8' )=e ' '/(8'J —yt),r„= ~ (r„„+r„„)+r',,". , (3.11)
W (I,B'J)=e ' '/(8' +yt),

(4.2)

if I'; ' is the pure dephasing constant, i or j standing for
either (gv'} or (ev"). In the following, it will be con-
venient to focus on a specific model to make the calcula-
tion simpler. This is done in the next section.

a'f' =0, a j =(8"—yt) .
From the formal expression given in Appendix A, and
taking advantage of the previous notations, we finally get
the expression

—E 0 lkT 6 C'~t

~,',"(t)=——,X X X X XI"-'e
vv'v" 8=+1 a=1 vk, k pi, l

2

X g W„(1,8' )[e ' "[H(t —tk)H(tk tt)J(tk, tt, A' +yk+a„'—)

n=1
+H(t tt)H(tk t)H(tk— tt)J(t, —tt, A' —+yk+a„' )]

k k+e " [H(t tk)H(tk —tt }J(t,tk, A'~ ——yk+a'~ )

+H(t tt)H(tt tk )J(t, t—t, A'~——yk+a„'~ )]}
W3 ( I,8 ~~ ) [e " "[H ( t tt )H( tk —tt )I ( tt, A '~ +—8 '~ +y k +y t )

+H(ti t)H(tk tt )I(t, A—t'+8'~+yk—+y, )

+H(t —
tk )H(tt tk )I(tk, A ' +8' + yk+—yt )

+H(tk t )H(tI tk )I(t, A' +8' +—'y—k+yt )]

+e ""[H(t tt)H(tt tk)J(tt, tk, A' +8' yk+y)t—

+H(ti —t)H(t tk)H(tt —tk)J(t—, tk, A' +8' —yk+y&)]} (4.3)
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~ii33

is

3344 4433

~2244

iir„„r„„

l4)

~ii44

~ +
1 8COgv ev ~ K gv

A g = A g (p6) = tHr—i)k'vk +i 8to««+ I,„«
(4.6)

Finally, we give the symbols introduced in the coherence
terms. We just have

Pg =Pg (P5)=(1—5„-)(5, „5 5e, +5 g, 5, -5e, )

Xp„.g -(8) Ek(vkH)pgu «.(8).E((ptH),

Pg =P6P(P6) = —(1—5,.„.)(5„,-5,„5e,+5,„-5„„5e,)
XIg«g„(8) Ek(vkH)iggU«(8) E((p(8),

Ag = Ag (P5) = iH—cokvk+iHcog„g, +I g„g„

FIG. 1. Energy scheme of the four-level system and the cor-

responding transition rates of interest in this study.

All the quantities introduced in the preceding expression
are de6ned below. We 6rst describe the symbols corre-
sponding to the population terms. We have for the par-
ticular value a=1
PP'=P'((Pi)=5, .„-p«g„(8).Ek(vkH}pg. - (8)'EI(HAH)

X( «» IP,P, »,«P,P, lgU gU»e

-«-Ip, p, »,«pp, l- - »,),
(4.4)

A'(= A'((P, ) =I
& & & & iHcokvk —i Hco „,„—.—I

~ Ql uCOgv ev' ~gv ev' &

Bf'=Bg (P5)+B'(

Bg =Bg (Ps}=B'( .

The second contributions p„','(t) are obtained similarly.
Because the transient hole-burning spectra have been ex-
pressed in terms of the Fourier transform of the polariza-
tion, we still require the Fourier transform of p' '(t) es-

tablished to calculate P' '(co} given by Eq. (3.1). Taking
advantage of the formal result given in Appendix B and
introducing the notation

C = f'ttpgg ~
tx= lq2q 3~4

pi }= 'H~lpl+iH~ .+ I'

and next for a=2, 3,4

P'~=P((P ),
A'~= A ((P ),
B'~ =B'((P~) .

(4.5)

Cg
——t Hcog„g„-

—I'g„g„-,

Cg = i8co,„-«— I ««—,

we obtain p',~'(Q) in the form

(4.7)

p(2)( Q )—
—Eg„lk T

e
z X X X XP'-'

8=21 a=1 vk, k pl, l

2 J(tk, t,iQ+C t'+ A't'+ +a'g
X y W„(I,B'~) —e

"~ H(t„—t ) i0+C I'

i 0+C'~ i 0+C'~

J(tk, tI, i Q+C'~+ A'~+B'~ —yk+y( }
+W, (l,B$) e '"H(t, tk)—r'0+ C'~

I(t(,iQ+C'~+ A'~+B'~+yk+y()—e ' "H(t t}-
i 0+C'~

I(tk, iQ+C t'+A'~+B'~+yk+y()—e ""H(t,—t„}
i 0+C'~

(4.8)
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By performing the last integration, we get the frequency-dependent third-order polarization which is required for the
evaluation of the transient hole-burning spectrum. It can be written as

p(3)(~)—
—E /kT

XXX X P'~p„, E (A., )

X . g W (I,B' )[e ""H(tk t,—)[F(Wi &t} F(W„t„)]+e ""[H(t„ti}—F(W3, t„)+H(t& t„—)F(W2, tt)]
m=1

3(1 B' )[e " "H(tt tk )[F—( Wq, tk )
—F( W4, tg )]—e ""[H(tk tz

—)F( W3 tt )+H(tz tk }F(W3 tk }]j
r

2
P"'It—,,~ EJ(AI) g W (I,B"')[sp +n—s j+ W3(I, B"'}[sp~ns j .

m=1
(4.9)

The terms in the curly brackets of the preceding expression [sp ~ns j correspond to the ones above except that now the
quantities are evaluated by simple substitution from the matrix element p,

' '(t). For the sake of convenience, the follow-

ing parameters have been introduced:

8' =iQ+C'~,

8'1 = A'~+yk+a'~

e,= A'~ —y, +a„'~,

8'3 = A'~+8'~+yk+y),

W4= A~~+B'~ —yk+yl .

Also the functions F ( W;, t ) have been defined from the convolution product. They take the form

2 ( wo+ w,. )t

F(W„t)=f dQe
00 (~—fl —~.g. ) +y. Wo(WO+ W, )

(4.10)

2~e ''
I(t, W, +C~~ —y +i(a) co A, ))—C'~ —

y +i(a)—co I, )a j j j

4my e ''p F.

I(tj, W, +C'~ y, +i(a) —
co, A,, ))H(Re—( W;+C't')) H(t t,)—

—y—2~e I(t, W, +C~~+yi+i(c0 cuJAJ ))—C~~ +y J +i (co cojA)— ,

4~y e
—y.f.

+— I(t&, W;+C'~+y, . +i(co cu&Ai))—H( —Re(W;+C'~))

4my e
—y, F.

I(t, C t'+y~ +I(co co h})I.—(t, W., ) H(t t) . — (4. 1 1)

Therefore we have established all the expressions which
are required to evaluate the transient hole-burning spec-
trum. In the next section, we will select the contributions
participating in the third-order polarization for a given
geometry of the experiment. Also, to simplify the results,
we will introduce the rotating-wave approximation.

V. TRANSIENT HOLE-BURNING SPECTRUM

The transient hole-burning spectrum is obtained from
the attenuation of the probe beam as a function of the fre-

I

quency. Therefore the phase-matched terms giving the
main contributions to the spectrum correspond to some
particular combinations. These terms will be generated
by the k component of the polarization. They can be
obtained by selecting the appropriate terms in the previ-
ous expression (4.9), involving two interactions with the
pump beam and only one with the probe beam. There-
fore just three terms contribute, and they correspond to
the chronological ordering
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I =e,

I =e,

k=e,

k=p,

k=p,

j =p=E (t, )E,(t2)E, (t3),

j =e=E,(t, )E (t, )E,(t, ),
j =e—E,(t, )E,(t, )E,(t, ),

(S.la)

(5.1b)

(S.lc)

cit development of the spectral decomposition introduced
for the free evolution of the system. Here, because of the
transition rate constants, the Liouvillian representation
of the free evolution is not diagonal in the zero-order
basis. A simple diagonalization gives the eigenvalues:

if t, ~ t2 & t3. The resonant terms, which survive when
the rotating-wave approximation (RWA) is introduced
into the second-order population, are given by the values

pI = —1 and vk =1. Next, in the expression of the third-
order polarization, the resonant terms in the k direction
are obtained by taking the appropriate values of A, and 8.
The first resonant contribution denoted (S.la) just above
characterizes, in a diagrammatical scheme, the pathways
and their complex conjugates required to build up the
second-order population and the subsequent third-order
polarization. They correspond to the values A, = 1,
8=+1. Next, the second resonant contribution (S.lb) is
obtained for the values A. = 1, 8= + 1, because the k,
component does not contribute. Similarly, the last reso-
nant contribution (5.1c) corresponds to I,= 1, 8= —l.

Finally, to get a complete analytical expression of the
transient hole-burning spectrum, we still require an expli-

PPPP

r, p =r„„+r„„,
rap a a

=—'((r3333+
(5.2)

—I(r„„—r....) +4r„r„„)] j,2 1/2

r»z& ——
—,
'

I (r„„+r....)

+I(r„„—r....)'+4r„„r„„)]'"j.

Next, we must evaluate the overlappings. In fact, we just
need the product of the overlappings. They can be ob-
tained directly from the Laplace transform of the equa-
tions for the free evolution. The results are listed below
foriAj:

(&pplp;p;»«p;p;Ipp »= p =1;i,j =1,2 or p =3;i,j =3,4,

«pp I p;p; » « p;p; Ipp » = p =2;i j =1,2 or p =4;i j =34,

p =1;i,j =1,2 or p =3;i,j =3,4,

p =2;i,j =1,2 or p =4;i,j =3,4,

P P P P (p+1)(p+1)(p+1)(p+1)

PJPJP, P, P;P;P;P;

I p.p.p.p. + I (p —1)(p —1)(p —1)(p —1)

PJ PJ PJ PJ P;P;P;P;

«pp IP;P; » «P;P; l(p+1)(p+1) » =
PJPJPJ.PJ P;P; P;P;

((pp 113;P; »«P, P;I(p —1)(p —1)» = „
PJPJP, P) P;P;P;P;

(5.3)

((nn IP;P, »((13,P, Imm » = —1

4

II (ra, a,a,a,Ji=1

~p;P P;P;+~

I 2211

I 1122 1133 1144

—rp p p p+r„„r„„r„„
—I p pp p+I.-.

~4433 P.P P.P + 3333
l l l I n(m —2)

i =1,4 for n =1,2 and m =3,4 .

Therefore we have now established the expression of the
transient hole-burning spectrum for the four-level system.
It will be useful, in the next sections, to discuss the
influence of the artifact contributions, as well as to ana-
lyze the role of the dephasing processes and temperature
effects, in such an experiment.

VI. INFLUENCE OF FIELDS AND DYNAMICS
ON THE DIFI'RRENTIAL TRANSMITTANCE

From the expression of the transient hole-burning
spectrum or its corresponding differential transmittance

I

ha(t0) previously established, we introduce some numeri-
cal calculations to emphasize the influence of the physical
parameters, such as the spectral linewidth of the laser
beams, the time delay of the pulses, and the relaxation
and dephasing constants of the molecular system.

To start this discussion, we first consider the variations
of the differential transmittance with the time delay be-
tween the pump and the probe pulses ~ . This calcula-
tion has been done for two different ranges of pump spec-
tral widths associated typically to femtosecond and pi-
cosecond time scales. They correspond to Figs. 2 and 3,
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FIG. 2. Differential transmittance in arbitrary units plotted
as a function of the time delay ~~. The ground and excited vi-
brational frequencies are both 100 cm ', and co=co~

cog Q)3$ Q)42 15 000 cm '. Curves A, B, and C are the lev-
el population, pump polarization coupling, and perturbed free-
induction-decay terms, for different values of the pure dephas-
ing. Solid, short-dashed, and dot-dashed lines correspond to
I f 3 I Q4 0, 5, and 15 cm ', respectively. The other parame-
ters are r",,'=r",,'=r,"3'=r,", =0, rf/22 I33 —15 cm

f ) 33 f ]44 2233 2244
—1 cm, p, )3 A/4 @23 p /4

=Q.3, T=P &, I'p 5QQcm ', and I', =50 cm

respectively. The pump and the probe beams are degen-
erate and resonant with the electronic transition, so that
cop co f03 ] For the frequency co =co& &, we represent, at
zero temperature, the three components of the
differential transmittance ha(co~, ). The main com-
ponent, labeled A, comes from the traditional hole-
burning term where the population is burned as a conse-
quence of two interactions between the pump beam and
the molecular system, and is next tested by a spectrally
broader probe beam. This contribution increases with
the time duration of the probe and decays subsequently
with the lifetime of the excited state l3 ). When the spec-
tral width of the pump pulse is not large enough to in-
duce a coherent excitation of the vibrational levels, the
decay of the difFerential transmittance is monotonic, as
shown in Fig. 3. These contributions A have been
termed So and S& level populations, as they result from
the populations created by the pump in the ground So
and excited S, electronic configurations. In the opposite
case sketched in Fig. 2 and attainable in some fem-
tosecond experiments, we observe an oscillatory decay of
frequency co=co2] c043 if the vibrational frequencies are
degenerate, or more complex oscillations if the vibration-
al frequencies are different. This variation results from
two contributions. The first one is due to the populations
created by the pump pulse in the So and S& electronic
configurations, and the second one arises from coher-
ences induced between the vibrational levels of the same
electronic configuration. The overall decrease of the
differential transmittance follows the time constant T& of
the level 3. However, the oscillatory structure, whose
frequency characterizes the vibrational pattern of the

FIG. 3. Differential transmittance in arbitrary units corre-
sponding to the same parameters as in Fig. 2 except I ~

=500
cm ' and I,=10 cm

molecular system, is damped with the dephasing time T2
of the corresponding vibrational levels [39]. These quan-
tum beat effects are well known, and have been described
and observed experimentally in the literature [40—45].
In their works on impulsive stimulated Raman scattering
[44,45], Chesnoy and Mokhtari have observed that vibra-
tional excitation occurs in the ground and in the excited
configuration as well. The changes of the probe pulse
amplitude depend on the excited electronic configuration,
while dispersion effects, inducing a phase perturbation of
the probe, arise from the ground electronic states. With
their experimental setup, they performed the measure-
ments of the vibrational oscillatory decay of malachite
green, with different types of solvents, by measuring the
dephasing time from induced birefringence and frequency
modulation experiments in the ground electronic state,
and induced absorption and amplitude modulation exper-
irnents for the excited electronic configuration. Next the
contribution labeled 8 results from the chronological or-
dering pump-probe-pump of the interactions. It requires
the simultaneous interactions of the molecule with the
pump and the probe pulses, and increases with the over-
lap of the pulses. This contribution, termed the So and
S& pump polarization coupling term, is generated by the
diffraction of the pump by the grating created previously
by the pump-and-probe pulses. Its time extension at half
maximum is of the order of 2/I, . The last contribution,
designated by C, is dominant when the probe pulse pre-
cedes the pump pulse. It is termed the So and S, per-
turbed free-induction-decay term. It increases with a
time constant of the order of the dephasing times and ex-
hibits oscillations which are specific for the differences
between electronic transitions and field frequency. Final-
ly, the increase of the pure dephasing I'&&'=I 24', by act-
ing on the dephasing time T2, decreases the overall
response of the three contributions. It does not affect
their time delay dependence [39], except for the per-
turbed free-induction-decay term, as can be seen in vari-
ous previous works [16,20,24,26].
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FIG. 5. Numerical FWHM of the central line shape as a
function of the dephasing between levels 1 and 3, with

r', 3 I 24 for different time delay ~~, . Other parameters are

the same as in Fig. 2, except I ~
=900 cm ' and I,=25 cm

Next, we consider the frequency dependence of the
differential transmittance. Figure 4 exhibits these varia-
tions for various time delays ~, . The two sidebands are
corresponding to the transition frequencies co32 and co4&

and the main peak accounts for the pure electronic tran-
sition frequencies co» and co42, as it has been observed in

dynamic hole-burning experiments on cresyl violet [20].
Again, we consider a zero temperature and the pump fre-
quency resonant with the electronic transition. For the
sake of simplicity, we assume a spectral width of the
pump pulse narrow enough to avoid a coherent excitation
of the vibrational levels, as stated in most of the hole-
burning experiments. When the time delay is smaller
than —1 il'„ the main contribution comes from the per-
turbed free-induction-decay term. If ~p, increases, the

pump polarization coupling term starts contributing too.
For coincident pulses, i.e., ~, =0, all the contributions
are of the same importance. Then, for positive values of
7

p
the usual hole-burning term corresponding to the SQ

and S& level population term is predominant. The ar-
tifacts have negligible contribution and the linewidth of
the main peak becomes proportional to the value of the
dephasing between levels 1 and 3, say ha=21». If we

I

focus on this particular case, as shown in Fig. 5, it is not
possible to relate in a simple way the linewidth of the cen-
tral peak to the various parameters of the molecule and
fields if either the two pulses overlap or the probe pulse
precedes the pump pulse. The total contribution de-
creases with a time constant corresponding to the lifetime
of the excited electronic state. This well-known result
has been observed on transient absorption spectra of typi-
cal organic dyes in various solvents [47], as well as in
low-temperature glasses of resorufin in glycerol, ethanol,
and d-ethanol [48].

VII. TEMPERATURE EFFECTS
IN TRANSIENT HOLE BURNING

This last section is dedicated to the study of the tern-

perature dependence on the hole-burning spectrum. To
this end, from expression (3.1) corresponding to the
Fourier transform of the third-order polarization, and re-
stricting the description to the central peak of Fig. 4, that
is to say, to light fields resonant with the pure electronic
transition co» or co42, we obtain

P"'(~)=—g J dQe J

(co —0—co A, ) +yJ~J J J J

XE(A, )
1

[/ 31Pll (+) P41P34(+) P31P33(+) I 32P21(~)]I413
(2) (2)

i(co3, —Cg)+ I'3,

1 (2) (2)
~

( )+I [P41P12 (+) / 42P44(+) V'32P43 (+)+I442P22 (~)]824
1(CO42

—CO)+I 42
(7.1)

For large time delay, such that v &&1/I „the dominant
contribution to the polarization comes from the hole-
burning term. In addition, we assume a spectrally nar-
row pump beam so that the second-order coherence in
Eq. (7.1) can be neglected. Because in the usual transient

I

hole-burning experiment, the spectral distribution y of
the probe beam is very large with respect to y, and to
any spectral characteristic of the molecules, we can ap-
proximate the convolution product by
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P (co)=— p E (1)(3) i 2 F13
A'

y~ i(co» —co)+I »

X f dQ[p'„'(Q) —p' '(Q)]

AN=2I 31,

b,a(co) =
(8'—co) +I

(7.9)

fi y~ i(co~2 co—)+I 42

X J dQ[pqq'(Q} —p '(Q)) (7.2)

With N21 N43 U, we can approximate the second-order
population terms for levels 2 and 4, which can be written
as

(2)(Q) e
—UlkT (2)(Q)

(2)(Q) e
—UlkT (2)(Q)

(7.3)

since for large time delay, the thermal equilibrium is es-
tablished between the vibrational levels. Also, with an in-

itial thermalized population and a pump beam well-
defined energetically, so that only transitions 1-3 or 2-4
are resonant, the population of the ground electronic
configuration is just transferred to the excited one. If we
assume

e ((1,
I»«I42

are satisfied, we have

(7.10)

is recovered. When the temperature increases, the
temperature-dependent term in Eq. (7.6) alters the origi-

nal behavior described by a single Lorentzian. We have

now a sum of two Lorentzian curves, the second one be-

ing weighted by a Boltzmann factor. This is true as long

as the inhomogeneous broadening can be neglected. The
simple linear law between the FWHM and the electronic
dephasing is no longer valid in experiments which are
performed at room temperatures.

It has to be noted that, if the pure electronic dephasing
is independent of the temperature and such that
I 3 1 I 42 only the dephasing constant I » is tempera-

ture dependent through the relaxation constants of levels

1 and 3. Then, if the conditions

P =824=813

N31 N —
N42 N —8 N,

(7 4) 1+31 I 42

(7.11)

and parallel polarizations of the fields, we obtain the
third-order polarization in the form

P'"(co)=— p, E~(i)p
A y

1 ~
—U/kT

X +.i(W —~)+r„ i( W —~)+I„
X dQ p'„' 0 —p' ' 0 (7.5)

From the definition of the differential transmittance given
by the relation (1.1) and neglecting the frequency depen-
dence of E (co) and co over the frequency range of in-

terest, we obtain

b,a(co) = +e
—U/kT

I 42

(W —co) +I ( W —co) +I 42

(7.6)

and we recover the linear dependence of hN with I » at
low temperature, as used in the experiments performed
on glasses. In these works, temperature behavior of the
electronic dephasing is taken into account by power laws

[49—51], or by a mixing between power laws and Ar-
rhenius temperature dependence [48].

In Fig. 6, we show the temperature dependence of AN,

either from the simple model discussed previously and

giving the dependence of Eq. (7.6} or by extracting nu-

merically hco from the exact calculation (7.1) established
in the preceding section. This comparison has been done

50

40

E 30

With the notation
—U/kTp

42 42 31 (7.7}

I—
203

Cl

the full width at half maximum (FWHM} is expressed by 10

b,co= V'2 —(I,—I ) 1 —2
I 42

42
T

+ (I 3)
—I'42} 1 —2

42

1/2 ' 1/2

+4I 31I 42

At T =0, the well-known result

2

(7.8)

30 60 90

Temperature T ( K )

120 150

FIG. 6. Temperature dependence of FWHM plotted for
different values of the pure dephasing. Numerical and analyti-

cal results are shown as solid and dashed lines, respectively.
Curves A, B, C, and D correspond to I',3'=I z4'=0, 5, 10, and

15 cm '. The other parameters are given in Fig. 2, except
I =900cm ', I,=30cm '. ~~, =15/I, .



5970 A. A. VILLAEYS, J. C. VALLET, H. MA, AND S. H. LIN 46

for different values of the pure dephasing. We observe a
good agreement between these two evaluations, which
validates our approximation.

Next, we compare the variations of hco, given by Eq.
(7.6), with respect to the limiting value bc00=213, as a
function of the temperature. This is done in Fig. 7 for
different values of the pure dephasing. For temperature
of the order of 30 K or lower, the agreement between the
exact results and the two-resonance model previously in-
troduced is quite good. In addition, for a given tempera-
ture, as the pure dephasing becomes more important, we
observe an increasing deviation of hco with respect to
2I », due to the growing contribution of I 42 in hco.

Finally, in Fig. 8, we show the variation of the ratio
b,co/21'». It has been seen in the previous figure that the
pure dephasing increases the difference bee —2I ». In
fact, this variation is not monotonic, as it could be
thought from Fig. 7. To clarify this point, we increase
I 3] chosen here equal to I 4z', up to the limiting value
I 3&/14&= 1. The dotted curves represent the variations
of Leo/21 3& obtained from Eq. (7.8). Also we note that
the curves corresponding to different temperatures start
at different values of the ratio I »/I 4t. This is due to the
fact that the minimum value of I'»/I 42 is temperature
dependent. For increasing values of the ratio, we observe
that the full line corresponding to the exact evaluation of
hem(T) differs notably from bco/21'3& given by Eq. (7.8).
This discrepancy is due to the overlapping of the reso-
nances at co=co4& and co32 with the one at co=co3& and co42,
when the broadening of the central peak is increased.
Then, b,co/21'» reaches a maximum which varies with
the temperature and next decreases toward 1. This is be-
cause, when the pure dephasing increases, we have
I 3] —I 42 I and Eq. (7.6) becomes

hu(co)=(1+e "
)

I
(7.12)

( $P' —~)2+ 1 2

so that we recover the behavior of a two-level system
characterized by a single Lorentzian with a linewidth
he=2I, instead of the four-level system previously con-
sidered.
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FIG. 8. The ratio of FWHM over 2I » is plotted vs the ratio

rf3/I 24, for increasing values of the pure dephasing I'&3'= r,4'.

Numerical and analytical results correspond to solid and dashed

lines, respectively. The case of different values of the tempera-
ture has been considered. The other parameters are the same as

in Fig. 7.

VIII. CONCLUSION

In this work, we have reported a theoretical treatment
of ultrafast transient hole-burning experiments. In this
approach, valid when the pump and the probe pulses
overlap, the hole burning is described as a completely
general four-wave-mixing process. From this description,
the various contributions participating in the hole burn-
ing have been shown for systems undergoing relaxation
and pure dephasing processes, as well. From their com-
parison, it has been possible to stress the importance of
the coherent artifact as a function of the time delay be-
tween the pulses. In addition, the influence of the de-
phasing processes on these contributions has been em-
phasized. Next, the frequency dependence of the
differential transmittance has been analyzed for the same
internal parameters, previously discussed. Finally, the
influence of the temperature on the differential transrnit-
tance has been studied. Although the general expression
has been established analytically, a simple model has been
deduced which gives a very good agreement with the ex-
act result, at least for low temperature in a physical situa-
tion where the usual hole-burning term is dominant.
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APPENDIX A

The formal time integral required for the double-sided
exponential envelope is given here. The quantities
fV„(l,B ) and a„are defined in the text For simp. licity,
the upper indices have been omitted.
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dt, f dt2e 'e '[e " ' " H(tk t—t)+e ' ' " H(t, —tk)][e ' ' 'H(tl t2—)+e ' ' 'H(t2 —t!)]
2= g W„(1,8 )[e ""[H(t tk)—H(tk tl—)J(tk, tl A +yk+a„)

n=1

+H(t —tl}H(Fk t)H—(tk —tl)J(t, tl, A +yk+a„)]

+e ""[H(t tk—)H(tk tl)J—(t, tk, A —yk+a„)
+H(t tl)H—(tl tk)J—(t, tl, A. r—k+a. )]]

+ W3(l, B )[e ""[H(t tl—)H(tk t, )I—(tl, A, +8 +yk+yl)

+H(tl t )H(tk t!)I(t A. +B.+rk +yl }

+H(t —tk )H(tl tk )I(—tk, A~+B~+rk+rl )

+H(tk —t)H(Fl tk)I(t, A +8 +yk+11)1

+e "' "[H(t tl)H(tl tk)J—(tl, tk, A +8 —yk+yl)

+H(tl t)H(t —
tk )H(t—l tk )J(—t, tk& Aa+Bn yk+—rl }]]. (A1}

APPENDIX B

We give here the formal result of the Fourier transform of the time-dependent term presented in Appendix A:

J(tk, tl&iQ+C +A +yk+a„)= g W„(l,B } —e ""H(F„F,)—
n=1

I(tk, iQ+C +A —yk+a„)+e ""H(tk tl)—
I(tl, iQ+C + A —yk+a„)

+e ""H(tl Fk)—
i 0+C

J(tk, tl, iQ+C + A +8 —yk+yl)+ W3(1,8 ) e ""H(tl tk)—iQ+C

I(tl, iQ+C +A +8 +yk+yl)—e " "H(Fk Fl)—iQ+C

I(tk, iQ+C +A +8 +yk+yl)—e ' "H(t F)—
i Q+C (BI)
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