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One-atom lasers are important because their governing equations can be solved exactly, even with a

quantized field. We present a fully quantum-mechanical treatment of one-atom lasers modeled by
quantum-optical master equations. These are solved numerically without any significant approxima-
tions. We show that laser action is possible with one atom, and that it might be achievable experimental-

ly. Laser action is characterized by the dominance of stimulated emission over spontaneous emission.
We use the one-atom laser model to investigate, without approximation, some interesting generic laser

phenomena. Under certain conditions lasers produce intensity squeezed light, and then the laser
linewidth increases with the pumping rate, in contrast with standard lasers. We also report "self-
quenching" behavior: lasers with incoherent pumping out of the lower laser level turn off when the

pumping is sufficiently fast because the coherence between the laser levels is destroyed.

PACS number(s): 42.55.—f, 42.50.Dv

I. INTRODUCTION

Treatments of the laser in which the light field, as well
as the atoms, is quantized are usually based on approxi-
mations that make the mathematical problems manage-
able. An important such approximation is that the num-
ber of lasing atoms X„is large enough that some
quasiprobability distribution for the laser satisfies a
Fokker-Planck equation [l]. This paper investigates
lasers that have only one or two lasing atoms and so do
not allow this approximation. Such lasers are potentially
realizable in the small, high finesse optical cavities
currently used in optical cavity QED experiments [2].

Since one-atom lasers may operate with only a small
number of photons in the laser cavity (perhaps less than
ten} the semiclassical approximation is not reliable and a
fully quantum-mechanical treatment, including quantiza-
tion of the field, must be used. We show that it is reason-
able to use the term "laser" since the light is dominantly
produced by stimulated emission. We then use our one-
atom laser model to investigate phenomena that are not
restricted to one-atom lasers: laser squeezing and associ-
ated linewidth broadening with increased pump rate. Fi-
nally we consider "self-quenching, "which may be partic-
ularly relevant to one-atom lasers.

In this paper we numerically solve master equations for
three- and four-level one and two-atom lasers. Provided
the basis set of states for the field is sufficiently large, no
approximations beyond those already in the master equa-
tion are involved in the numerical solution. In principle,
we can study any laser property this way.

Smith and Gardiner have previously modeled lasers
with arbitrary numbers of atoms [3], however, in order to
control numerical instabilities they made the assumption
that a reservoir level was present [4]. This assumption
excludes interesting phenomena such as laser squeezing
[5—8].

The paper is organized as follows. Section II presents

the master equations for the particular laser models we
investigate: incoherently pumped two- and three-level
lasers, and a coherently or incoherently pumped four-
level laser. The method of numerical solution of the mas-
ter equations is described. Section III investigates the
conditions under which one atom in a cavity is really a
laser and estimates the requirements for its construction.
In Sec. IV we consider the photon statistics of the laser
light. Recent predictions of intensity squeezed light gen-
eration by conventionally pumped lasers are confirmed
[5—8]. This is significant since, unlike previous work, our
solutions involve no approximations. Unlike convention-
al lasers the linewidth of "squeezed lasers" can increase
with the pumping rate. In Sec. V we investigate a novel
phenomenon in incoherently pumped lasers: the lasing
turns off for sufficiently high pump rates. We call this
self-quenching. It occurs when the coherence between
the lasing levels is damped by the incoherent pumping.

II. MODEL

The systems under investigation consist of a two-,
three-, or four-level atom coupled to a single mode of an
optical cavity, Fig. 1. The atomic levels are described by
the atomic lowering and raising operators cr,/ =i )(j~
and o,+" =

~j ) ( i ~, obeying the standard anticommutation
relations. The cavity mode is assumed to be resonant
with the atomic lasing transition and is described by the
boson annihilation and creation operators a and a . The
laser transition interacts with the cavity mode via the
electric dipole, rotating-wave approximation, Jaynes-
Cummings Hamiltonian

HJC t~g(a tr/&$ atT/&/ }
+

where the lasing occurs between levels k and I, and g is
the atom-cavity coupling strength
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Incoherent pumping at rate I from level ~1) to level ~p )
is modeled as the inverse process to spontaneous emission
[1]. The generalization to more than one atom is
straightforward [1,6].

The numerical method used to solve the master equa-
tions is that of Savage and Carmichael [10,11].
Specifically, the laser master equation (4) can be written
as a system of first order, ordinary differential equations

FIG. 1. Schematic diagrams of the laser systems considered
in this paper. Pumping is either incoherent at rate I or
coherent with field strength proportional to E. The arrow labels
correspond to terms in the master equation (4). The shaded
vertical bars represent cavity mirrors. (a) Two-level laser; (b)
three-level laser; (c) four-level laser.

' 1/2

2' (2)

where yL is the decay rate between the laser levels, cu is
the laser transition frequency, and u(r) is the cavity
mode function.

In the interaction picture, rotating at the driving field
frequency, coherent pumping of the atom is represented
by

HE = ifiE(cr,„—cT,„),

dt

k

p(t)= I+ —L p(0), k~~ .
k

(6)

using the truncated basis set of number-atom states
[ ~n, P), n =0, 1, . . . , N 1; P=1,2—, . . . , pj, where n (P)
denotes the number (atomic) state. L is a sparse
coefficient matrix, and p is regarded as a vector of
(N, XN)(N, XN+1)I2 elements. With N=40 and a
four-level atom, L has about 128800 nonzero elements.
For a two-atom laser, the truncated basis set is
[In,P&,Pz), n C [0, 1, . . . , N I];P„Pz&[1,2, —. . . , JLt] ],
and L has about 3.7 X 10 nonzero elements when N =40.
The differential equations (5) are solved using the one-
step Euler method

where E is proportional to the pump field strength. The
upper pump level label p depends on the model used, and
is 2 for the two-level atom, 3 for the three-level atom, and
4 for the four-level atom. Alternatively the atoms may be
pumped incoherently at the rate I .

Following standard techniques, the atom and cavity
mode may be coupled to suitable reservoirs and
Markoffian master equations for the reduced density
operator p derived [1,9]. The cavity mode is damped by
losses through the cavity mirrors at the rate 2~ photons
per second. Atomic spontaneous emission out the side of
the cavity, from level i to level j, occurs at the rate y;~.
Only those y, shown in Fig. 1 are assumed to be nonzero
in our numerical calculations. The resulting interaction
picture master equation is then

We now derive semiclassical equations for the one-
atom lasers from the master equations. The equation of
motion for the expectation value ( 0 ) of any system
operator 0 follows from the master equation (4)

—(0 ) = ( [O,H ] ) +Tr(OLp),d 1

dt i%

where Lp represents all the dissipative terms on the
right-hand side of the master equation (4). The equations
for the expectation values of the cavity field amplitude,
( a ), and the atomic operators ( 0," ) are, for the four-
level one-atom laser with coherent pumping,
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and for the incoherently pumped three-level one-atom
laser,
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The expectation value (o, ) = ( o;, ), is the probability for
the electrons to be in atomic level li ). The semiclassical
approximation closes these equations by ignoring the
correlations between the atomic and field operators.
That is, the expectation values containing atomic and
field operators are assumed to factorize in Eqs. (8) and
(9), e.g., ( a o 23 &

=
& a ) ( o 23 ) . This assumption is expect-

ed to be valid when the photon number is large.

III. LASER ACTION

In this section we examine the sense in which one
pumped atom in a cavity can be regarded as a laser. If
the atom is pumped hard enough and the cavity losses are
small enough, the system behaves semiclassically and the
usual laser theory applies. However, we are interested in
the marginal case that is likely to occur in an experimen-
tal realization of a one-atom laser. Then the mean cavity
photon number may be quite small and the fluctuations in
photon number relatively large. Consequently a quan-
tized treatment of the field is required.

To remain faithful to the acronym "laser, " light
amplification by stimulated emission of radiation, we
define our one-atom device to be a laser if the net stimu-
lated emission rate into the cavity mode is much greater
than the spontaneous emission rate. For brevity we use
the phrase "net stimulated emission rate" to refer to the
difference between the stimulated emission and absorp-
tion rates. For a multiatom laser the net stimulated emis-
sion rate can be large because many photons build up in
the laser cavity. However for a one-atom laser with a
small number of photons a strong Jaynes-Cummings cou-
pling between cavity mode and atom will be required.

Semiclassically a laser is said to be at threshold when
the pumping rate is just sufficient for photon production
to balance the losses. This happens when sufficient popu-
lation inversion, and consequent net stimulated emission,
is achieved. However the one-atom laser is not necessari-
ly semiclassical and specifically quantum-mechanical pro-
cesses may be occurring. Note that although processes
such as stimulated and spontaneous emission and absorp-
tion may be adequate to describe the physics of semiclas-
sical devices, they may not be sufficient to describe fully
quantized systems [12].

We now find expressions for the stimulated and spon-
taneous emission rates in terms of the diagonal density-
matrix elements. For the four-level laser the equations
satisfied by the diagonal density-matrix elements for n

photons and the lasing levels are, from the master equa-
tion (4),

d—(n, 2lpln, 2) =2m[(n + 1 )(n + 1,2lpln + 1,2) n(n, 2lpln, —2) ]+gv'n (( n —1,3lpln, 2) )+ ( n, 2lpln —1,3) )

—y]2(n, 2lpln, 2) +y23( n, 3lpln, 3) +y24(n, 4lpln, 4),
(lo)

(n, 3lpln, 3) =2m[(n + 1)(n +1,3lpln+ 1,3) n(n, 3lpln, 3—) ] g&n + 1((n—+ 1,2lpln, 3) + (n, 3lpln + 1,2) )

r]3& n, 3lpln, 3 &
—

y23& n, 3lpln, 3 & +y34& n, 4lpln, 4 & .
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For the density-matrix elements determining the coherence between the lasing levels,

d (n —1,3lpln, 2& =2K[v'n (n +1)(n,3lpln +1,2& —(n —
—,
' )(n —1,3lpln, 2&]

+g(3/n (n —1 3lpln —1,3& v'—n (n, 2lpln, 2&)— "+ "+ "
( —1,3lpl, 2& .

2 2 2

Now we assume that the first term on the right-hand side, proportional to ~, is small in comparison with the other two

terms. We are assuming that (n —1, 3lpln, 2& =(n, 3lpln +1,2&, which is reasonable if the photon number distribution

is slowly varying, and that the cavity decay rate ~ is not too large compared to the coupling g and the atomic decay
rates, i.e., the good cavity limit. Assuming a steady state for Eq. (11) and solving for the off-diagonal density-matrix ele-

ments, Eqs. (10) become

d—(n, 2lpln, 2& =2K[(n +1)(n +1,2lpln+1, 2& —n (n, 2lpln, 2&]+6„n((n—1,3lpln —1,3 & ) —(n, 2lpln, 2& )

—
y l2& n, 2lpln, 2 &+y23& n, 3lpln, 3 &+y2a& n, 4lpln, 4&,

(12)
d—(n, 3lpln, 3& =2K[(n +1)(n +1,3lpln +1,3& n(n—, 3lpln, 3&]—G„(n+1)((n,3lpln, 3& —(n+1, 2lpln +1,2& )
t

—y»& n 3lpln 3 &
—

y23& n, 3lpln, 3 &+y3$(n, 4lpln, 4&,

with ~„=g G„[n(n,3lpln, 3& (n+—1)(n +1,2lpln+1, 2&] .
n=0

4g 2

yl2+yl3+y23+2K[n —
—,
' —Vn (n + 1 )]

4g 2

712+713+3 23
(13)

si classical ( n }& & ~23 (15)

(14)

Assuming semiclassical factorization of the density rna-

trix, this becomes the semiclassical expression

where the approximate equality follows if the spontane-
ous emission rates are sufficiently large compared to the
cavity damping rate. The terms on the right-hand sides
of Eqs. (12) can be identified successively as due to cavity
loss, emission into and absorption from the cavity mode,
and spontaneous emission into free space. We are thus
led to define the excess rate of stimulated emission over
absorption to be

where 623 denotes the population inversion on the lasing
levels. The rate of spontaneous emission into the cavity
is

R„=g G„&n,3lpln, 3& .
n=0

Solving the semiclassical version of Eqs. (8) for the
coherently pumped four-level laser, we find above thresh-
old,

(n & =(yl2(o2& —y23(o'3&)/2K,

(o &=2E [1—(y, +y )K/g ]
V 34

4E + y "r"+ r"4E
2

(o3 & (o2 &+(3 12+3 23)
2g

where we have assumed that y, 4 is negligible. The popu-
lation inversion is then

obtained by numerically solving the master equation (4)
and evaluating

K( y l2+ y23 ) /2g above threshold
~23= .

(0 below threshold . (18) 623= g ((n, 3lpln, 3& —(n, 2lpln, 2&) .
n=0

For the fully quantum-mechanical case the inversion is Figure 2 presents solutions for the case g )&a, which is
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not expected to be experimentally feasible. In Fig. 2(a)
we plot the mean number of cavity photons versus the
coherent pumping field. The semiclassical curve shows a
laser threshold where the photon number becomes

nonzero. This is a semiclassical signature of laser action.
The fully quantum-mechanical result shows that the pho-
ton number in the cavity is always nonzero due to spon-
taneous emission. Far above threshold the semiclassical
and quantum-mechanical results agree. The semiclassical
laser threshold is at the coherent pumping field
E=0.052, where semiclassical population inversion first
occurs. However in the quantum-mechanical case, popu-
lation inversion is always present, Fig. 2(b). The solution
of the master equation (4) shows that net stimulated emis-
sion dominates spontaneous emission well above the
semiclassical threshold, Fig. 2(c). This justifies calling the
one-atom device a laser.

In the limit of weak cavity coupling compared to the
cavity decay rate, g &&~, it is impossible to achieve lasing
for a one-atom laser since the loss rate exceeds that of
photon generation. The semiclassical formula for the
mean photon number Eq. (17) suggests that to produce
laser light, g and ~ should be chosen to satisfy the condi-
tion

0.5 Y12'2) V23~~3) ' (20)

p4

0.3

0.2

0.1

for some pumping rate.
Experimentally it may be possible to achieve an atom-

cavity coupling ten times both the cavity and laser transi-
tion decay rates ~=y23=0. 01&&2 g =0.1&&2. Figure 3
shows the predicted mean number of cavity photons as a
function of the coherent pumping rate. Assuming the
atom is at the center of a Gaussian ring cavity mode, the
value of the mode function is

0.0
0.00 0.02 0.04 0.06 0.08 ~u~=( —,'~Lw ) (21)

0.006
00002

where L is the length of the cavity and m is the mode
waist, and the Jaynes-Cummings coupling strength Eq.
(2) becomes

0 004 ~ 00001—

1/2
LC

4m L(w/A, )
(22)
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00000
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FIG. 2. Evidence for laser action in the coherently pumped
four-level one-atom laser. In (a) and (b) the solid curves are ob-
tained from a numerical solution of the master equation (3), and
the dashed curves from the semiclassical approximation. (a)
The mean number of photons in the cavity vs coherent pumping
field E. Semiclassical curve from Eq. (17). (b) Population inver-
sion vs coherent pumping field E, Eq. (19). Semiclassical curve
from Eq. (18). (c) Emission rate from lasing levels vs coherent
pumping rate, obtained from numerical solution of the master
equation (4) ~ The solid curve is the excess rate of stimulated
emission over absorption, Eq. (14), and the dashed curve the
spontaneous emission rate, Eq. (16). All parameters are scaled
by y&z to make them dirnensionless and are ~=0.001, g =0.01,
y23 0.01, y =1, y, =0.
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FIG. 3. The mean cavity photon number vs coherent pump-
ing field E for the four-level coherently pumped one-atom laser
when ~ is larger, and hence more realistic, than in Fig. 2. The
solid curve is obtained by numerically solving the master equa-
tion (4), and the dashed curve from the semiclassical approxima-
tion, Eq. (17). The parameters are againscaledbyy, z. «=0.01,
g=0. 1, y23 0.01, y34 2 yi4=0.
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Ify, 2=10 s ', so yL(=y23)=~=10 s ' andg=10 s
the required cavity finesse F=nc/. 2La and mode waist
are related to the cavity length L in meters by

0.29 &

500 w 1

2v'L (23)
Q(a}'

So for a cavity length of 1 cm the required finesse is
F=50000 and the required mode waist about five wave-
lengths. Similar conditions have been attained in the lab-
oratory [2]. For a pumping rate in the saturated regime
E=2 the net stimulated emission rate is seven times
greater than the spontaneous emission rate, suggesting
laser action is occurring. This can be confirmed by exam-
ining the Q-function quasiprobability distribution for the
field, Fig. 4. The Q function Q(a) =

& alp la & is defined to
be the coherent-state diagonal density-matrix elements.
It gives a complete description of the quantum-
mechanical field. It may be interpreted as the joint prob-
ability distribution for measurement of the quadrature
phase amplitudes. Q(a) at the phase plane point a is
proportional to the probability density for obtaining the
real and imaginary parts of a, respectively. The Q func-
tion shown in Fig. 4 is typical of a laser. It is centered on

0
6 6

Im(u) Re(a)

6"-6

FIG. 4. Q function for the coherently pumped four-level
one-atom laser far above threshold, E=1.5. Same parameters
as Fig. 3.

zero amplitude and phase symmetric because of laser
phase diffusion.

We now analyze the three-level laser model, Fig. 1(b),
in a similar manner. Assuming g, y, 2&&K, we find, from
the master equation (4),

—&n, llpln, l &
= 2~[( n+1)&n+1, 1 pin+1, 1& n&n llpln—, l &]+G„'n(&n—1,2 pin —1,2& —&n, llpln 1&)

+y12&n 2lpln 2&+y13&n 3lpln 3& I &n llpln 1&
(24)—

& n, 2lpln, 2& =21'[(n +1)&n +1,2lpln +1,2& n& n, 2—lpln, 2&]—G„'(n+1)(&n,2lpln, 2& —
& n + 1, 1 lpln + 1, 1& )

with

—
y12& n, 2lpln, 2 &+y23& n, 3lpln 3 &,

Gl 4 2

y, 2+I +21'(n ,' v'—n —(n—+1))
4g 2

r F2+I
(2&)

Analogously with Eq. (14) we define the excess rate of stimulated emission over absorption to be

R,', = g G„'( n & n, 2
I p I n, 2 & (n + 1 ) & n—+ 1, 1

I p I
n + 1, 1 & ) .

n=0

In the semiclassical approximation this becomes

st classical G(n }& &~12 &

where 6,2 denotes the population inversion on the lasing levels. The spontaneous emission rate is defined to be

(26)

(27)

R,'~= g G„'&n,2lpln, 2& .
n=0

Solving the semiclassical version of Eqs. (9), the semiclassical mean photon number above threshold is
r

K
I:r2 I'+r»~][r»+r +,(r12+1»1

r23
1

2g
2K'B r23[ (r13+r23)+~]~

V f3+ /23+

and the semiclassical population inversion is

(28)

(29)
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~(I +r, 2)/2g above threshold

12 c&assica& . r ( 1 —r } 1
below threshold .

r r 3+f'(ri2+r23)

(30)

For the fully quantum case, the inversion is given by 20

15

6, = g ((n, 2~p~n, 2) —(n, l~p~ n, l)) .
n=0

(31)

Figure 5 gives the results of solving Eq. (4) numerically,
with g = 1 and a =0.01 (all the parameters are also scaled
by r, 2 for this model). According to Fig. 5(a) the full
quantum-mechanical solution for the mean photon num-
ber versus pumping rate lacks a clear laser threshold.
However Fig. 5(c) shows that stimulated emission dom-
inates spontaneous emission into the cavity for a wide
range of pumping rates. Hence despite the presence of
only 10 to 20 photons in the cavity, it is reasonable to call
this device a laser.
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0.6
CI

0.01
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0 3

0 20 40 60 80 100

IV. ONE-ATOM SUB-POISSONIAN LASER

0.2

0.0
20 40 60 80 100

F= (n') —(n &'

(n) (32)

With a vacuum field outside. the cavity the intensity
squeezing spectrum outside the cavity is [15]

In this section we consider laser physics, which is not
specific to one-atom lasers. However it is useful to study
laser properties with the fully quantized one-atom model
because unlike other models, no approximations are re-
quired for its solution.

Recently it has been predicted that sub-Poissonian,
also called intensity squeezed, light can be generated by
conventional multilevel lasers [5—8]. This is different
from the regular pumping rnechanisrn for reducing popu-
lation fluctuations [13],which has been successfully real-
ized using diode lasers pumped with sub-shot-noise
current [14]. The basic requirement for obtaining sub-
Poissonian light without regular pumping is that pump-
ing from the lower lasing level to the upper lasing level
have at least two steps with approximately equal transi-
tion rates. Hence at least a three-level laser is needed to
produce sub-Poissonian light.

The deviation of the photon statistics from Poissonian
is quantified by the ratio of the variance to the mean,
called the Fano factor

I

0.8
( )

0.6

o.4 t-

0.2

0.0

( o.6

04
02
00

-O2 II

I

I

-0.4

0 20 40 60 80 100
r

FIG. 5. Evidence for laser action in the incoherently pumped
three-level one-atom laser. In (a) and (b) the solid curves are ob-
tained from a numerical solution of the master equation (4), and
the dashed curves from the semiclassical approximation. (a)
The mean number of photons in the cavity vs incoherent pump-
ing rate I . Semiclassical curve from Eq. (29). Note the self-
quenching for high pumping rates, discussed in Sec. V. (b) Pop-
ulation inversion vs incoherent pumping rate I, Eq. (31). Semi-
classical curve from Eq. (30). (c) Emission rate from lasing lev-
els vs incoherent pumping rate, obtained from numerical solu-
tion of the master equation (4). The solid curve is the excess
rate of stimulated emission over absorption, Eq. (26), and the
dashed curve the spontaneous emission rate, Eq. (28). All pa-
rarneters are scaled by y&2 to make them dimensionless and are
K—0.01, g = 1, y23 0.5, y l3 =0.
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S(co)=1+4a Re f drexp(iron)(g' '(~) —&n ) )
0

(33)

co is the spectral frequency and the second-order correla-
tion function is defined to be

g' '(r)= lim &a (t)a (t+r)a(t+r)a(t)) . (34)

S(ro) equal to zero corresponds to perfectly regular pho-
ton arrivals (c.f. number state) and S(~) equal to 1 corre-
sponds to Poissonian photon arrivals (c.f. coherent state).
S(co) between zero and 1 is referred to as sub-Poissonian
statistics. We find g' '(~) using the formula [16]

g' '(r) =Tr[a a exp(Lr)[ap, a ]], (35)

which is valid for Markovian systems. The density
operator p, is the stationary solution of the master equa-
tion Eq. (4).

In the following we only present results for the
coherently pumped four-level laser. The incoherently
pumped three- and four-level lasers behave similarly. An
intensity squeezing spectrum for the four-level coherently
pumped one-atom laser is shown in Fig. 6. The Fano fac-
tor for the field outside the cavity, which is the zero-
frequency intensity squeezing, can be obtained from the
Fano factor inside the cavity via the Mandel Q parameter

Q =F 1. For th—e case of Fig. 6 the Q parameters inside
and outside the cavity are, respectively, —0.34 and
—0.704. So the ratio of the Q parameter outside the cav-

ity to that inside the cavity is about 2.07. This is to be
compared with the ratio of 2 predicted if the intensity
squeezing spectrum is Lorentzian [7]. We have
confirmed by direct calculation of the zero-frequency in-

tensity squeezing that the Q parameter outside the cavity
is always a factor of 2.07 greater than that of the light in-

side cavity for the parameter ranges we consider.
Figure 7 plots the Fano factor of the output field as a

function of the coherent pumping field for different
atom-cavity coupling strengths. When g is small, g =0.1,
super-Poissonian light is produced, with only a small
amount of squeezing for slow pumping rates. This im-

bee=a/&, n) . (36)

A more exact formula for the normal laser linewidth

plies that noise from the lasing transition, from level ~3 )
to level ~2), has destroyed the sub-Poissonian statistics.
Making g larger, g =1, strongly sub-Poissonian light can
be produced. In this case the Fano factor agrees well

with that predicted by the simple statistical theory of
squeezed lasers [6-8]. Since this approach also works
well for multiatom lasers, we conclude that provide the
atom-cavity coupling is sufficiently large, the physics of
squeezed one-atom lasers is the same as that of squeezed
multiatom lasers. However if g is not large, a multiatom
laser will give better squeezing, since increasing the num-

ber of atoms has a similar effect to making the atom-
cavity coupling stronger. This suggests that the sub-
Poissonian light from a two-atom laser will be better than
that from a one-atom laser if g is small enough to make
the noise from the lasing transition significant.

To confirm this point we solve the coherently pumped
two-atom four-level laser with the same parameters ex-
cept for smaller g, g =0.5. Since the calculation is com-
putationally expensive for two atoms, we only solve for a
few coherent pumping fields, namely E=0.2, 0.3, 0.4,
0.5. The Fano factors are found to be F=0.641, 0.436,
0.331, 0.301 in comparison with the corresponding one-
atom laser results F=0.645, 0.442, 0.336, 0.305. The
light from the two-atom laser is slightly more sub-
Poissonian because the effective atom-cavity coupling
constant is increased by the square root of the number of
atoms, i.e., +2.

We now show that the spectral linewidth of a sub-
Poissonian laser behaves quite differently to that of a nor-
mal laser. A simple expression for the linewidth of a nor-
mal laser is due to Schawlow and Townes [17,18]

1.0
15

0.8 1.0

0.6
M

0.4

s I i I i I i I s I ~02
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.5

0.0 0.5 1.0 1.5

FIG. 6. Intensity squeezing spectrum outside the cavity for a
coherently pumped four-level one-atom laser, Eq. (33). co is
scaled by yl2 and hence dimensionless. Parameters are the same
as Fig. 3, except for g = 1 and F. =0.5.

FIG. 7. Fano factor of the laser output field vs coherent
pumping field for the four-level one-atom laser. Solid curve is
for g = 1; dashed curve for g =0.1. The prediction of the statist-
ical model of Refs. [6—8] (not shown) for g = I, agrees very well

with the numerically computed curve. Other parameters are
the same as for Fig. 3.
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This formula was obtained by treating the lasing levels as
a two-level laser and by assuming g &&K,y23. A charac-
teristic feature of these formulas is that the laser
linewidth decreases with increasing laser power, i.e., with
(n ). The laser linewidth can be understood as due to
phase fluctuations caused by spontaneous emission into
the laser mode [18].

The laser spectrum outside the cavity is

S(ro)= A lim Re f exp( iror—)(a (t)a(t+r))dr
f —+ oo 0

(38)

where A is a normalization constant, and co is the spec-
tral frequency in radians per second. The first-order
correlation function (a (t)a(t+r)) is calculated using
[16]

(at(t)a(t+r)) =Tr(a(t)e"'[p(t)a (t)]], (39)

which is valid for Markovian systems. In the limit
t ~ ac, p(t) is the stationary solution of Eq. (4), p, .

The linewidth of the coherently pumped four-level
laser is shown as a function of coherent pumping rate in
Fig. 8, which should be compared with the corresponding
Fano factor graph, Fig. 7. For a cavity field coupling of
g =0. 1 the laser output is super-Poissonian and the laser
linewidth increases with pumping rate. This convention-
al behavior is not followed when g is increased to g =1,
so that the laser output becomes sub-Poissonian. In this
case the laser linewidth increases with pumping rate.
Presumably, decreased photon number fluctuations are
associated with increased phase fluctuations, giving an in-
creased phase diffusion rate and consequent increased
linewidth. Note however that the linewidth does not de-
crease after the squeezing starts to degrade, above

0.020

0.015

0.010

0.005

above threshold is given by Haken [1]
2

bco=
2 g ((n, 2~p~n, 2)+(n, 3~p~n, 3)) .

4 n (~+y23)2„=o

(37)

E=0.5. This is because other factors, such as the elec-
tron populations, must also be considered, Eq. (37).

V. SELF-QUENCHING LASERS

d
d, &o )~) = —

—,'(y)2+1)(o 12&+g&a &&o, ), (4O)

—(o, &= —(y„+r)(o,& —y„+r—4g(a)(cr, ),d

where (o, ) = (o 2) —(cr
&
). Other variables and param-

eters are the same as those in Sec. II. For the multiatom
laser we adopt the following standard scaling of the vari-
ables [1]

( a ) =V'N, ( & &, ( o.„)=N, & rr„),( rr, &
=N, & rr, ),

(41)
where N, denotes the number of atoms. The multiatom
semiclassical laser equations are then

—&a &
= —«&tf &+QN. g(rr, ,&,

d

—(o&&) = —
—,(y&2+I )(o'~&)+QN, g(a)(o, ), (42)dt

—„(o,) = —(y„+r)(u,) —y„d

+I 4+N, g(a)(o, z) . —

Setting the derivatives to zero we find the steady-state
solution for the mean photon number above threshold

2iV, g
(43)

In Sec. III we found that for suSciently high pumping
rates the laser power was a decreasing function of the in-
coherent pumping rate, Fig. 5(a). We refer to this effect
as self-quenching. In this section we use semiclassical ar-
guments to show that self-quenching is to be expected in
all lasers that are incoherently pumped out the lower
laser level. The reason is that the incoherent pumping
destroys the coherence between the laser levels, inhibiting
the transition. Self-quenching is likely to be particularly
significant for one-atom lasers because they must be
pumped hard to produce a significant amount of light.

First we show that the effect occurs in the two-level
laser in the semiclassical approximation. As described in
Sec. II the following semiclassical equations can be de-
rived from the master equation (4) for the two-level laser

—(a ) = —ir(a )+g(a ) .
d
dt 12

0.000
0.0 0.5 1.0

I i I

1.5 According to this formula the mean photon number has a
quadratic dependence on the pumping rate. The mean
photon number is zero for

FIG. 8. Linewidth of the four-level laser vs coherent pump-
ing field, from Eq. (38), for the same cases as Fig. 7. The solid
curve is for g = 1, corresponding to sub-Poissonian statistics; the
dashed curve is for g=0. 1, corresponding to super-Poissonian
statistics.

X,gI (n)=0=
K

N g2
I

1/2

.g (44)

The smaller zero is the laser threshold pumping rate,
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while the larger zero is the self-quenching pumping rate.
The pumping rate at which the photon number starts to
decrease with increasing pumping rate is halfway be-
tween these two values:

N, g
/start y 12

K
(45)

I Ih,',»»d=2r ' cos(8+4m/3) —u /.3, (46)

Figure 9 shows the mean cavity photon number as a
function of pumping rate for the one-atom, N, =1, two-
level laser.

The reason for the self-quenching can be identified in
the semiclassical laser equations (40). The equation for
the atomic polarization (a &~), has a damping term pro-
portional to the sum of the spontaneous emission and in-

coherent pumping rates. As the polarization is damped
to zero at large pumping rates the source term g ( o,z ) in

the field amplitude equation becomes zero and so the field

drops to zero. Since the pumping rate at which self-
quenching starts, Eq. (45), increases with the number of
atoms in the laser, self-quenching will be enhanced in few
atom lasers. Other conditions favoring the occurrence of
self-quenching are a large cavity loss rate K and a small
Jaynes-Cummings atom-cavity coupling strength, g.

The three-level laser, unlike the two-level laser, can be
realized experimentally. Assuming y» =0, the semiclas-
sical version of the three-level laser equations (9) yield the
following expression for the semiclassical lasing thresh-
old:

30

p, 20
V

10

10 20 30

FIG. 9. Cavity photon number vs incoherent pumping rate
for the two-level, one-atom laser under the semiclassical ap-
proximation, Eq. (43). Parameters are g = 1, K=0.05, y» =2.

1I,'„'„=2R ' cos —arccos
3 F23

3 1/2

4g'r23
(49)

provided this is greater than the laser threshold Eq. (46).
The laser photon number starts decreasing as the pump-
ing rate is increased above the pumping rate,

where

[ [ 1( 1 2)]3(1/2 7p 3 g r238 2 2

e =
—,",~23+

2g
F12+F23+7 23 7 12

K

2Y23(7 23 7 12)g
2

«r ig+r~3)

( r 12+r 23 ) (47)

2g
K

(y„+y„).

1 20=—'arccos —— u ——'uU+ m
3 2T 27

where y» and y12 have been set equal to zero. The laser
self-quenching can also be seen in the expression for the
excess of stimulated emission over absorption, Eq. (26),
since the coefficient G„',Eq. (25), decreases with increas-

ing pumping rate.
In summary, we have demonstrated that it may be pos-

sible to build a one-atom laser. Furthermore we have
shown that the fully quantized one-atom model can be
solved numerically and exactly in a variety of interesting
circumstances. Finally, we examined the phenomenon of
self-quenching in incoherently pumped lasers.

The pumping rate at which the laser turns completely oft'
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