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Fluorescence spectrum of a two-level atom interacting with a quantized field in a Kerr-like medium
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A generalized Jaynes-Cummings model when an ideal cavity is filled with a Kerr-like medium is con-
sidered. The fluorescence spectrum produced by such a system using the infinity of transitions among
the dressed states of the Jaynes-Cummings model is analyzed. A large number of resonances in the spec-
tra are observed that are sensitive to the initial field statistics as well as the nonlinearity of the medium.

Also, the fine structure of the spectra gets considerably modified by increasing the nonlinearity of the
Kerr-like medium.

PACS number(s): 42.50.Dv, 42.50.Lc

The Jaynes-Cummings model (JCM) and its various ex-
tensions have been studied in great detail over the past
few decades [1-7]. Many interesting features such as the
collapse and revivals [6] of Rabi oscillations, quenching
of spontaneous emissions [8], squeezing [9], and chaos
[10] have been predicted. Recent developments in super-
conducting cavities [11,12] have made it possible to ob-
serve some of these phenomena. The JCM has been
adopted also for investigation of emission spectra from
two-level atoms [13,14]. It is well known that the infinite
number of dressed states arise from the diagonalization of
the JCM Hamiltonian. The transitions among the
infinity of the dressed states are important in cavity QED
where the radiation field consists of only a few number of
photons [1]. The spectral features of the JCM have been
examined and it has been shown how the fluorescence
characteristic in a very-high-Q cavity are different from
those in the free space [14]. The vacuum-field Rabi split-
ting is also predicted in the literature [15]. This splitting
results due to transitions between the ground state and
the first excited states of the interacting system
comprised of a two-level atom and the cavity field mode.
The vacuum-field Rabi splitting is reminiscent of similar
effects observed in a more classical situation involving
large photon or atoms numbers. Conversely, the cavity
resonance splitting effect expected with a single atom in
the mode is reminiscent of the cavity pulling effect ob-
served when a macroscopic medium with an index of re-
fraction different from unity is placed inside the cavity.
Nevertheless, the vacuum-field Rabi splitting has been
seen in absorption experiments at optical frequencies
[16,17]. The transitions involving other dressed states
can in principle be seen in nonlinear absorption and mix-
ing experiments [18].

In this paper we deal with a modified JCM in which we
consider the cavity filled with a Kerr-like medium (where
the index of refraction is intensity dependent) and there is
a passage in which an atom can travel through the cavity.
Such a model has been considered previously and its dy-
namic properties have been analyzed in detail [19]. We
study the influence of nonlinear coupling of a cavity
mode to a Kerr-like medium on the dipole-dipole correla-
tion function of an atom interacting with the cavity

mode. The spectrum of the radiated field is determined
by the Fourier transform of the dipole-dipole correlation
function. We present the analytical results for the spec-
trum for an ideal cavity (Q—= Oo ). We demonstrate the
effect of input field statistics on the spectrum by consider-
ing the field to be either in a coherent state or in a
thermal state along with the changes in the spectrum due
to the presence of the nonlinearity of the Kerr medium.

One can argue that it is purely academic to study the
Kerr effect from a field with small photon numbers, as
one would anticipate large photon numbers being neces-
sary to produce significant nonlinear radiative shifts and
thus related changes in the fluorescence spectrum. This
argument is correct for most of the cases of atom-field in-
teractions, but is quite incorrect for studies of nonlineari-
ties in cavity QED where nonlinearities due to intensity-
dependent Stark shifts caused by off-resonant levels have
already been observed in micromasers [11,12,20,21] and
have been proposed as ingredients for quantum-
nondemolition measurements based on the Kerr effect,
which is sufficiently large to produce significant radiative
shifts for photon numbers down to vacuum level [21].
Alternatively, such radiative shifts are manifested in the
cavity-fluorescence spectrum of a two-level atom. Al-
though detecting a one-atom cavity spectrum is a chal-
lenging task, the spectrum contains interesting features
such as a large number of transition among dressed
states, its sensitivity to the input field statistics, etc. ,
which will be discussed subsequently.

The model presented here consists of a single two-level
atom surrounded by a nonlinear Kerr-like medium con-
tained inside an infinite-Q cavity sustaining a single mode
of the electromagnetic field. The cavity mode is coupled
to the two-level atom as well as to the Kerr-like medium.
The Kerr-like medium can be modeled as an anharmonic
oscillator [19,22] and the total Hamiltonian of the system
in the rotating-wave approximation takes the form

H=cooa a+co,S, +cob b+qb b +g(a b+b a)

+g(a S +S+a)
Here, a (a ) is the annihilation (creation) operator of the
cavity field mode of frequency coo, b (b ) is the annihila-
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tion (creation) operator of the Kerr-like medium (transi-
tion frequency co), and S+,S, are the atomic operators.
Next, we assume that the response time of the Kerr medi-
um is small enough so that the medium follows the field
in the adiabatic manner. In such a situation the Hamil-
tonian [Eq. (1)] can be transformed to an effective Hamil-
tonian containing only atomic and photon operators
[19,22]:

The dipole-dipole correlation function which is propor-
tional to the field radiated sideways is defined as [14]

G(r, r)=(S+(r+r)S (r)) .

We suppose that at the initial moment (t =0) the atom is
in the excited state ~e ) and the cavity mode is prepared
in the state

~ g ),

H,&=co,ata+co, S, +pa a +g(a S +S+a) . (2)

In deriving Eq. {2) the adiabatic limit, i.e., frequencies co

and coo are far from each other, has been used (see the
Appendix). In the expression of H,z, the frequency co,
and the third-order nonlinear susceptibility y are related
to g and q by [19,22].

g=qri /(co —coo)

'g /(~ coo) .

with the photon-number distribution P„= Q„~ . The
initial-state vector of the system under consideration can
be written as

~g&0= ~g& » ~e & =gg„~n, e & .

The correlation function G(t, r) thus reads as

H ~o,g ) = —
—,'a). ~o,g &,

H [
qk ) —~k

J
y2 )

a)+=(n+ —,
' )a), +n ~y+Q„~,

Q„~= [(b /2+ ny) +g (n + 1)]'

5=co, —co„n =0, 1,2, 3, . . . , {x) (4)

Note that the coupling constant y is the dispersive part
of the third-order nonlinearity of the Kerr-like medium.
The eigenstates of H,z [Eq. (2)] are the dressed states
given by

G(t, r) =QP„C„(r)C„'(t r) A„(—r),

where

A„(r)=cos (4„,) exp( i co„+,—r)
+ sin (4„&)exp( ico„&r—),

C„(r)=sin (4„)exp( ice„+r)—

+ cos (4„}exp( i co„r}—, n & 1

(9)

(10)

cos(4„) sin(4„)
n+l, g&+ (@ )

~n, e&,

t an(4„)=g&(n + I)'~'
/[ Q„~ +(4 /2+ng)] .

The time evolution of the states can be expressed as

U~n, e ) =C„~n,e ) +D„~n + l,g ),
U~n, g &

= A„~n, g &+8„~n,e &,

U= exp( iHt) . —

Ao(r) = exp( in), r/—2) .

Next, we calculate the Fourier transform of the time-
averaged dipole-dipole correlation function

S(v)= Re J dr exp( ivy yr)—G(t, r—) . (12)
0

This transform is directly related to the fluorescence
spectrum with the identification of y as the width associ-
ated with the detector [13]. On substituting (9)—(11) in
(12) and carrying out the integration and other necessary
operations we get

S(v)=P [s0in (40)y/[y +(v —coo+ —co, l2) ]cos (40)y/[y +(v—
coo —co, l2) ]]

+QP„[sin {4„)cos (4„,)y/[y +(v+co„+,—co„+) ]+ sin (4„)sin (4„,)y/[y +(v+co„,—co„+) ]

+ cos (4„)cos (4„,)y/[y +(v+co„+,—co„) ]

cos (4„)sin (4„,)y/[y +(v+co„,—co„) ]j . (13)

It is easy to see that S(v) consists of the resonant structures which arises from transitions among the various dressed
states [14],

—(6+Qo~) $0 —~0 g )

v —co= y[(n —1) —n ]+—,'(Q„, ~
—Q„~),

y[(n —1) —n ]+—,'(Q„q+Q„, ~),

(14)
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The intensity of these structures is dependent on the de-

tuning b susceptibility y, and the value of n. For b, =0,
Q„z=yn +[y n +g (n+1)]'/ and the peaks occur
depending on the weightage factor at

V CO=+g,

y[n —(n —1) )+[[n y+g (n+1}]'/

[(n 1 }2y2+g2n]1/2] 1/2

g[n (—n —1} ]+[[n y+g (n+1)]'/

[(n 1)2~2+g2n]1/2] 1/2

for n &0.

The peaks at +g correspond to the usual vacuum-field
Rabi splitting and have been considerably discussed else-

where. It may be important here to note that in the spec-
trum (i) the structure for n &0 arises from the transitions
among different dressed states, (ii) the form of the struc-
ture is dependent on the initial photon statistics of the
field as well as on the parameter y. In particular, we con-
sider the cases where the cavity field is prepared in the
coherent state with

P„=exp( n—)n "In!

or in the thermal or chaotic state with

P„=n"I(1+n)"+' .

(16)

First we present numerical results for the coherent field

by substituting (16) in (13) and carrying out the sum over
n. Here we take the detector width ylg =0.1 for all the
cases and define 5=(v—co, )Ig. Figures 1, 2, and 3 corre-
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FIG. 1. The time-averaged spectrum S(v) in an ideal cavity as a function of $ =(v—co, )/g for an input coherent field with n = 0. 1,
g/g=0. 1 and (a) 6=0, y=p, (b) L=O, y=1.p, (c) ~=0.5, y=p. p.
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spond to the spectra for a coherent field with increasing
values of average photon number n. From Fig. 1(a)
where 6=0 and y=0, n =0.1 it is clear that for small
value of n, the predominant peaks in the spectrum are
due to the vacuum-field Rabi oscillations which occur at
5=%1. The effect of y@0 and 6%0 has been shown in
Figs. 1(b) and 1(c), respectively. The effects due to y are
less pronounced over those due to 5 when n is small. It
is also seen from the expression (13) of the spectrum that
for nonzero detunings the weight factors of the peaks get
considerably modified and an asymmetry is introduced in
the spectrum. This dependence arises from cos(4„) and
sin(4„) in (13). However, as n is increased additional
resonances which are of the comparable magnitude to the
vacuum-field Rabi peaks start appearing in the spectrum.
This is shown in Fig. 2(a) for n = 1.0 and y=0. We find a
number of peaks corresponding to 5=[&(n+1)+v'n ]

for n=1, 2, 3, . . . , etc. towards the right of 5=1 and
(V2 —1) towards the left of 5=1. The overall spectrum
is symmetric around 5=0. Introduction of nonlinearity
[y=0.5, n =1, Fig. 2(b)] causes drastic changes in the
spectrum. The symmetry around 5=0 is removed and
most of the peaks are situated towards the right-hand
side of the 5=0. For simplicity we have considered 6=0
in all these cases. For larger n [Fig. 3(a), y=0, n =10]
the spectrum matches with the Mollow spectrum but
along with a fine structure due to the dressed states. It is
important to note that this fine structure persists for a
very large value of n (which we have verified separately)
and the separation between the successive fine-structure
peaks is of the order of 1/&n. The presence of nonzero
g [Fig. 3(c), n =10,y=0.2] changes both the quantitative
and qualitative nature of the spectrum. The relative mag-
nitude of the peaks is greatly changed and their separa-
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FIG. 2. The same as Fig. 1. but now n =1.0, 6=0 and (a)
y=0, (b) y=0. 5.

FIG. 3. The same as Fig. 1 but now n =10, 6=0 and (a)
y=0, (b) y=0.2.
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Further we transform it by using the inverse of the
Glauber coherent state generator

D(p) = exp(pa —p'a ), (19)

where ~p) is a coherent state such that D '(p)~p) = ~0).
With this transformation we obtain the following new
Hamiltonian:

H =to, S,+g[(a +p')S+ exp(ico, t)+ c.c. ]

+y(a +p') (a+p) (20)

tron ts no longer 1/~n. The quantitative explanation of
these drastic changes in the spectrum can be attributed to
the changes brought out by the y in the weighting factors
of the various peaks in Eq. (13).

In order to get physical insight in the system we
rewrite the efFective Hamiltonian [Eq. (2)] as

H=cu, S, +g[a S exp(iso, t+ c.c. ]+pat a

Here in this transformed representation the two-level
atom is in the excited state and the cavity field mode is in
its vacuum state initially. The transition from the ground
state ~g ) to the excited state

~
e ) is governed by the semi-

classical Hamiltonian

H, =g(p'S exp(ice, t)+ c.c. )

and the quantum electrodynamic Hamiltonian

H2=g(a S exp(ice, t)+ c.c. ) .

(21)

(22)

Note that the change in photon numbers in the cavity
mode field is brought out by the Hamiltonian Hz. Due to
the presence of the nonlinear interaction term we have an
additional part in the form

H3 =2g[(a a+ ~p~ )p'a + c.c.]+g[a p + c.c. ] . (23)

This term is responsible for the change of photons in the
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FIG. 4. The same as Fig. 1 but now for thermal field with
n = 10, b =0 and (a) y =0, (b) g=0.2.

FIG. 5. The same as Fig. 4 but now n =100, 5=0 and (a)

y =0, (b) y =0.2.
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mode while keeping the state of the atom intact. Hence
in the case of strong nonlinear coupling, i.e., for
yn )g+n, the term K3 dominates and there is a reduc-
tion in the tendency of emission of photon from the excit-
ed state. This leads to a drastic change in the fluores-
cence spectrum of the system.

The fluorescence spectrum for an input thermal (chaot-
ic) field are shown in Figs. 4 and 5, respectively, for
n =10 and 100, respectively. For small n the spectra for
coherent as well as thermal input fields are alike. The
effect of field statistics can be clearly observed by com-
paring Figs. 3 and 4 in the absence of the nonlinear medi-
um as well as in the presence of the nonlinear medium.
The transitions among the infinity of dressed states is
present also in this case which give rise to the fine struc-
ture of the spectrum. However, increasing n up to 100
(Fig. 5) causes a further change in the quality of the spec-
trum.

Thus, these results show that the nonlinear coupling of
the cavity field mode to the Kerr-like medium leads to
drastic changes in the fluorescence spectrum for both
coherent as well as thermal input fields. To this date the
observation of the single atom-cavity spectrum remains
yet to be achieved. The diSculty resides in the marginal-
ly small values of the Rabi frequency in the optical
domain. The vacuum splitting effects, however, have
been observed on systems made of a collection of X iden-
tical atoms coupled to a high-Q cavity mode. In the opti-
cal domain, it has been observed on the transmission
spectrum of small Febry-Perot cavities crossed by sodium
or barium atomic beams. The minimum number of
atoms required to see such splitting is about 30 in these
experiments [16,17]. However, for Rydberg atoms cou-
pled to microwave cavities, the number of atoms required
to see such splitting would be much less. Under certain
conditions, even a Rydberg atom may behave like an
anharmonic oscillator [22], thus providing a Kerr-like
dispersive coupling to cavity field. Hence with the
present state of the art micromaser systems it may be
possible to observe at least some of the features reported
here. Detecting the effect of a single atom on the
transmission spectrum of a cavity remains a challenging
goal. However, it should be noted that the experiments
in the cavity QED domain have completely changed the
classical scenario involving a large number of photons to
detect such effects. Even as low as one external photon

on the average can affect significantly the spectrum pro-
duced by the excited atom in the cavity. In conclusion,
these features reveal some noteworthy effects in the cavi-
ty QED of two-level atoms.

APPENDIX

In this appendix we derive an expression for the
effective Hamiltonian utilized for the Kerr-like medium
in Eq. (2). For this purpose we start with the Hamiltoni-
an

H=rooata+robtb+qbt bz+ri(atb+b a) . (A 1)

The Heisenberg equation for the evolution of medium
operator in the interaction picture is given by

8= 2iq(—B B)8—irie' 'A,

with

LNpfA=e 'a,
B=e' 'b,

(A2)

(A3)

Next, we adiabatically eliminate [22,23] medium opera-
tors by formally integrating the Eq. (A2), assuming that
the field operators in the interaction representation vary
slowly with respect to optical frequencies, and the
response time of the Kerr medium is very fast. Further,
we make use of the conservation law [22]

a a+b b=N= const, [H,N]=0 . (A4)

For very large detuning 6 &&0, there is no exchange of
photons with the medium. Therefore, ata remains con-
stant, implying b b is a constant of motion in Eq. (A2).
The formal integration of (A2) thus gives (under the as-
sumption that Z is very large)

8 = —(gib, )e' 'A . (A5)

Reverting back from interaction picture and substituting
for b in Eq. (Al) yields [22]

0 &=co a a+pa a

where co, and y are as defined in Eq. (3).
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