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This paper considers the effect of phase-conjugate feedback (PCF) on the noise characteristics of semi-

conductor lasers. By using the single-mode, rate-equation formalism, it is shown that semiconductor
lasers can achieve a steady state as long as the amount of PCF is below a critical value. For an ideal

phase-conjugate mirror, the average value of the steady-state phase of the semiconductor laser is found

to be locked to a fixed value, determined by the linewidth-enhancement factor of the laser. The noise

characteristics in the presence of PCF are studied by adding the Langevin-noise terms representing the
effect of spontaneous emission to the rate equations and solving them approximately. Both the intensity
noise and the frequency noise are reduced at low frequencies (below 100 MHz). In particular, the fre-

quency noise nearly vanishes at zero frequency because of the phase-locked nature of the steady-state
solution. The spectral line shape does not remain Lorentzian in the presence of PCF. The satellite peaks
occurring at the relaxation-oscillation frequency are considerably enhanced because of a reduction in the

damping rate of such oscillations.

PACS number(s): 42.55.Px, 42.60.Mi

I. INTRODUCTION

The noise characteristics of semiconductor lasers, such
as the relative intensity' noise (RIN) and the spectral
linewidth, are known to be extremely sensitive to the op-
tical feedback occurring when a portion of the laser out-
put is fed back into the laser cavity after being reflected
from an external reflecting surface [1,2]. Some uninten-
tional feedback invariably occurs when semiconductor
lasers are used in actual system applications. For exam-
ple, feedback from the near and far ends of an optical
fiber affects the performance of optical data links and
lightwave communication systems unless optical isolators
are used in between the laser and the Aber. Similarly,
reflections from an optical disk affect the performance of
optical recording systems. The effect of optical feedback
on the semiconductor laser noise has been extensively
studied [1—8]. It can be harmful for some applications
since the feedback often enhances the RIN. On the other
hand, optical feedback can be used to advantage, as it can
reduce the laser linewidth with a proper design [3].

Recently considerable attention has been paid to the
case in which optical feedback occurs as a result of
reliection from a phase-conjugate mirror (PCM) [9—17].
Such a feedback is referred to as the phase-conjugate
feedback (PCF) and difFers considerably from the
conventional-mirror feedback since the phase of the re-
turned light is reversed during reflection. Several experi-
ments have suggested that both the intensity and phase
noise of a solitary laser may be reduced through PCF
[9—15]. The problem does not appear to have attracted
much attention theoretica11y. In a recent paper Agrawal
and Klaus [17] considered the stability of semiconductor
lasers in the presence of PCF and showed that the steady
state can become unstable, leading to self-pulsing and
chaos when the amount of PCF exceeds a critical value.
In this paper we consider the stable regime and study

how the intensity and phase noise of a semiconductor
laser are affected by a small amount of PCF such that the
laser continues to operate continuously (cw operation).
We assume for simplicity that the PCF is provided by a
perfect PCM that responds instantaneous1y without a
change in the signal frequency. Degenerate four-wave
mixing inside a fast nonlinear medium (response time less
than 1 ps) pumped by a narrow-linewidth laser can pro-
vide a PCM whose performance approaches the ideal
PCM assumed here.

In Sec. II, the rate equations for a semiconductor laser
in the presence of PCF are given and the various parame-
ters are described. In Sec. III, these rate equations are
solved in the steady state, and the stability of the steady-
state solutions is investigated. The laser s relative intensi-
ty noise as well as the frequency noise are calculated in
Sec. IV, while the laser line shape is calculated in Sec. V.
A discussion of these results, as well as conclusions, is
presented in Sec. VI.

+ttE (t r)exp(i/—pcM},

dN I N(t} G(t)iE(t)i'+FN(t)—,dt q
(2)

II. RATE EQUATIONS WITH PCF

The dynamical behavior of semiconductor lasers is
generally modeled by a set of rate equations by assuming
that the dipole relaxation time ( Tz in the terminology of
two-level systems) is short enough that the gain medium
is able to respond almost instantaneously to the changes
in the optical field. In the presence of PCF, these equa-
tions can be written as (assuming single-mode operation)
[1,2]

dE 1 1=i btoE(t)+ —6 — (1—ia)E(t)+FF(t}
dt 2 7

46 5890 1992 The American Physical Society



46 EFFECT OF PHASE-CONJUGATE FEEDBACK ON THE NOISE. . . 5891

where E(t) is the slowly varying complex amplitude of
the intracavity optical field, hco is the frequency shift
from the threshold value, ~ is the photon lifetime, a is

the linewidth enhancement factor, N is the electron popu-
lation, I is the injection current, q is the magnitude of the
electron charge, ~, is the electron lifetime, and 6 is the
net rate of stimulated emission assumed to vary linearly
with the electron population as

G =G~(N —No) .

In Eq. (3), No is the transparency value of N and the pa-
rameter 6z is related to the derivative of the optical gain
with respect to the carrier density. The Langevin noise
sources Fs(t) and Fz(t) represent the noise introduced by
spontaneous emission and the shot noise due to carrier
generation and recombination, respectively.

The last term in Eq. (1) is due to PCF and contains
three parameters a., r, and /post ~ The feedback rate a and
the round-trip time ~ are given by

R t c~ 2L.x~K= T
R ' c

where g, is the coupling eSciency, R is the laser facet
reflectivity, ~L is the round-trip time in the laser cavity,

Rpc~ is the reflectivity of the PCM, and L,„, is the spac-
ing between the laser and the PCM. The parameter P~cxt
accounts for a constant phase shift occurring at the
PCM. The round-trip phase shift ~OT where ~0 is the
laser frequency, is absent in Eq. (1) because of the phase-
conjugate nature of the feedback; i.e., any accumulated
one-way phase shift gets canceled during the return trip.

L

This feature introduces qualitative changes in the laser
behavior in comparison with the case of conventional
feedback. For example, the steady-state solutions of Eqs.
(1) and (2} are independent of r or the PCM location.
Note, however, that the dynamic behavior still depends
on ~ because of the delayed nature of the feedback. Note
also that the PCM is assumed to respond instantaneously
in Eq. (1). If the PCM response is slower than the
round-trip time ~, ~ would become time dependent. This
case can be studied by adding a third equation that
governs the PCM dynamics to the set of Eqs. (1) and (2).
Our approach assumes the PCM to be ideal. Such an
ideal PCM cannot be realized by self-pumping. The as-
sumptions implicit in this approach are that (i) the PCM
is realized by using degenerate four-wave mixing in a
fast-responding nonlinear medium, (ii) the pump frequen-

cy matches the semiconductor-laser frequency coo exactly,
and (iii} the pump beams are nearly monochromatic so
that the noise induced by them can be ignored. The effect
of pump noise can be included by adding pump-phase
fluctuations to Pt,est.

Equation (1) does not include the gain nonlinearities,
which reduce 6 at high power levels. For this purpose, it
is convenient to express E(t}as

E(t)=&P(t)exp[ —iP(t)],
where P(t) is related to optical intensity and P(t) is the
optical phase. For simplicity of notation, E(t) is as-
sumed to be normalized such that P(t) represents the
number of photons stored in the laser cavity. By substi-
tuting Eq. (5) in Eq. (1), P and P are found to satisfy the
following two rate equations:

dp
dt

1
G(1 eP) P—( t)+R—„+Ft(t)+2tt[P ( t —r )P (t) ]'"cos[P(t)+P(t r}+$t est—],

P

(6)

1/2
P (t r)—

P t
sin[/(t)+ P(t r)+/pc~]—dP, 1= —ha)+ —'a G — +F (t) d-

dt 2

P

where 6 has been reduced by a power-dependent factor
1 eP in Eq. (6) to—account for the gain reduction occur-
ring because of the nonlinear nature of the gain [1]. The
nonlinear-gain parameter e controls the amount of gain
reduction and has values —10 . Since typically P is
—10, the gain reduction is at most by a few percent.
The functional form of the nonlinear gain depends on the
mechanism responsible for it and is generally different for
the spectral hole-burning and carrier-heating mecha-
nisms. However, in both cases the reduction factor can
be written as 1 —eP as long as eP (& 1.

In Eqs. (6) and (7) R,„represents the rate of spontane-
ous emission into the lasing mode, and Ft, (t) and F&(t)
account for the noise by spontaneous emission. The
effect of spontaneous emission is included in Eq. (1)
through the Langevin noise source Fz(t), a random quan-
tity whose average vanishes. In the MarkoFian approxi-
mation, the autocorrelation of Fz(t) can be written as

(F,(t)F,(t') ) =28,,5(t t'), —

where D, is the diffusion coe"fficient and i,j =P, N, or P.
The explicit expressions for the diffusion coefficients are

Dpp =R pP Dpp R $p /4P Dpi =0

D~~ =R,p+&I~„Dp~ = —R, P, D~~=O .

(10a)

(lob)

(F&(t)Fg (t')) =R, 5(t t'), —

where 5(t t') is the Dirac —delta function. The Langevin
noise sources Ft, (t), Fz(t), and F&(t) are also defined
such that they vanish on average, i.e., (F,(t)) =0 for
i =P, N, and P. Their second-order moments are 5-
function correlated as
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III. STEADV-STATE SOI.UTIGN

The steady-state solution of Eqs. (2), (6), and (7) is ob-
tained by neglecting the Langevin noise sources and set-
ting the time derivatives to zero .Since Eqs. (6) and (7)
explicitly contain the laser phase P, the steady state can
be reached only if P becomes a constant, i.e., the laser
phase is pinned. This is a consequence of the phase-
conjugate nature of the feedback. The steady-state values
of P and N are obtained by solving

[G ( 1 FP) 7& jP +R&p+2KP cos[2$+PpcM] =0

D(A, )=CD, +C2A, +C, A, +Co,
where

=]—a2 —$2
3 (17a)

Ci=
2aI p 2+I'~ 1 p(1 —a)+ —(a+a +b )

(17b)

Cz=l ~(1 a —b—)+I p(1 —a)+ —(a+a +b ),2

I N —GP=0.

(1 la)

(1 lb)

+(1—a ab )G—G~P,
2Q 2

Cp = I p I ~ +—
( a ab )G—G~P

(17c)

(17d)

By substituting G r' —from Eq. (11a) into Eq. (7), the
phase equation can be written as

The parameters a, b, I z, and I N are defined as

a =K1 cos(2$+PpcM) b =K'r sin(2$+PpcM) (18)
d = —bco+bco, —a(1+a )' sin(2$+PpcM+Pg ), I =R, /P+eGP, I =1/r +G P . (19)

(12)

where

Pit =tan 'a,
and hen, is the static frequency chirp given by

b,co = (eGP —R—/P) .
a

C SP

(13)

(14)

0+ (('pcM+ (t'R =2m ', (15)

The dominant contribution to hu, comes from the non-
linear gain.

In the absence of feedback (~=0), Eq. (12) shows that
the steady state can be reached if h~=hco, . Thus the
mode frequency shifts by Aco„a phenomenon known as
mode pulling in laser theory. In the presence of feed-
back, this steady state can still be achieved if the laser
phase P is pinned to a value such that

The steady state becomes unstable whenever Re(A, ) & 0
for any of the roots of the polynomial. Among the three
roots, one root is real while the other two form a
complex-conjugate pair. The real part of the complex-
conjugate pair is related to the damping rate I z of relax-
ation oscillations, while the imaginary part provides the
frequency Qz of relaxation oscillations. Figure 1 shows
how the damping rate I z changes with feedback for the
case in which L,„,= 5 cm (r=0.33 ns). Table I shows the
values of device parameters used for numerical calcula-
tions. For as=0, the damping rate of a solitary laser is
given by I „=(I++I p)/2, where I z and I p are ob-
tained from Eq. (19). The effect of PCF is to reduce the
damping rate such that I „becomes zero at a certain
value ~, of the feedback parameter a. The exact value of
K at which I z becomes zero depends on the linewidth
enhancement factor a. Qualitatively speaking, the criti-
cal value of sc, decreases with an increase in a, as seen

where m is an integer. The pinning of the laser phase P
to a constant value is a consequence of the phase-
conjugate nature of the feedback. In the case of conven-
tional feedback, P does not appear in the steady-state
phase equation. Rather, one obtains multiple solutions
for the frequency shift Ace. In the case of PCF, the laser
frequency remains unchanged and, at the same time, the
laser phase P gets pinned to a value specified by Eq. (15).
It should be stressed that it is only the average phase that
takes a constant value. Because of spontaneous emission,
the actual phase P fluctuates around its average value.
However, as shown later„ the character of phase Auctua-
tions is also affected by the phase-conjugate nature of the
feedback.

The stability of the phase-locked solution can be
checked by linearizing Eqs. (2), (6), and (7) around the
steady-state solution and solving the resulting set of three
linear equations for the damping rate A, of small perturba-
tions frown the steady-state values. This standard pro-
cedure provides a third-order polynomial in A, as

2.5

2.0
N

C3

~ 1.5
0
0ic 10
E0

C)

0.5

0.0
0.0 0.1 0.2 0.3 0.4

Feedback Parameter

FIG. 1. Relaxation-oscillation damping rate I & as a function
of feedback strength a~ for difFerent values of a. The external
cavity length is 5 cm (~=0.33 ns) and other parameter values
are given in Table I.
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clearly in Fig. 1. Since Re()i. ) &0 for ir&~„ the steady
state becomes unstable through a Hopf bifurcation when
the feedback level exceeds a critical level [17]. One can
use Eq. (4) to estimate the phase-conjugate reflectively
&pcM for which ~ exceeds ~, . The coupling loss is ex-
pected to be negligible (ri, = 1 } for PCF since the
reflected light more or less traces the path of the emitted
light. The laser-cavity round-trip time ~L is about 6 ps
for a 250-pm long cavity. If we take R =30%%uo for the
laser facet, assumed to be uncoated, a=1X10 s ' for
R pcM 2 X 10 . Clearly, the steady state can become
unstable for relatively small levels of the PCF.

Even though the steady state does not depend on the
external cavity length L,„„the stability range depends on
it because of the appearance of the feedback delay time ~
in Eqs. (6) and (7). Figure 2 shows the variation of the
critical value x, of the feedback parameter ~ with L,„, by
using the parameter values of Table I. The steady state
for a given value of a is stable in the region below the
curve corresponding to that value of a. In general, larger
values of ~ can be tolerated for smaller values of L,„,.
However, the difference is relatively minor for large
values of a. For a)2, the feedback rate ~ should be
below 1 GHz for the steady state to remain stable. As
noted earlier, such values of ~ correspond to relatively
small values of the feedback (RpcM &2X10 } for typi-
cal device parameters. It should be mentioned that the
stability curves of Fig. 2 are sensitive to the exact values
of the parameters. In particular, larger values of ~ can be
tolerated if the damping rate I R of the solitary laser is
larger. Since the dominant contribution to I R comes
from the nonlinear gain term in Eq. (19},a, would be
larger for lasers for which t. is larger. Thus,
In& „Ga„As P& lasers may remain stable over a larger
range of RpcM than GaAs lasers for the same value of a.
In practice, a is typically larger for In& „Ga„As„P&
lasers, making them more sensitive to the PCF. Strained
quantum-well lasers are expected to exhibit a much larger
stability range, as a can be quite small for such devices

3.0

2.0
N

C3

Parameter

Photon lifetime
Electron lifetime
Gain coefficient
Rate of stimulated

emission
Rate of spontaneous

emission
Number of photons per

milliwatt

Operating output power
Nonlinear gain coefficient
Line width-enhancement

factor

Symbol

Tp

+e

G~
G

Rsp

P,„,
E'

Value

1.5 ps
2 ns

4.5X10' s

6.67X10" s

1.7 G

2.5X 10'

5 mW
4X 10

3

(a ( 1 is possible in some cases), while, at the same time,
e is relatively large.

IV. INTENSITY AND FREQUENCY NOISE

To study the effect of PCF on the noise characteristics
of semiconductor lasers, we need to solve Eqs. (2), (6),
and (7), which include fluctuations in P, N, and P through
the Langevin noise sources. These equations generally
require a numerical solution because of their nonlinear
nature. However, it is possible to obtain an approximate
analytic solution by linearizing these equations around
the average steady-state values. The linearization pro-
cedure is generally valid for lasers operating far above the
threshold, since fluctuations from the average values are
relatively small in that case. Although we have solved
Eqs. (2}, (6), and (7) numerically, we follow the analytic
approach in this paper because of the physical insight
provided by it. Numerical results are in agreement with
the analytical results for lasers operating far above
threshold such that the output power exceeds a few mil-
liwatts.

If p, n, and 5 represent fluctuations from the steady-
state average values of P, N, and P, Eqs. (2), (6), and (7)
lead to the following set of coupled linear equations after
keeping terms up to first order in p, n, and 5:

(1+a)P 2Pb5 =G~Pn ——I pp 4(b lr)P5+F~ (t—),
(20)

TABLE I. Parameters and their numerical values for a GaAs
semiconductor laser operating at 5 mW.

1.0 (1—a)6 —(b I2P}p =(al2)G&n —2(a /r)6+F&(t), (21)

ri = —I ~n —Gp+F~(t), (22)

0.0

External Cavity Length (cm)

10

where a and b are given by Eq. (18) and I p and I z are
given by Eq. (19). The delayed nature of the feedback
was accounted for by approximating P (t r) and-
rtp(t r) by—

FIG. 2. Critical value of feedback parameter a vs L,„t for
different values of a. For a given value of a, the laser is stable
in the region below the corresponding curve.

P(t r) =P(t) rP(t), tt(t—r) =P(t)—r6 . — —(23)

This approximation has also been made in the previous
work related to the conventional feedback and simplifies
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the analysis considerably [3]. It is valid as long as p and
vary slowly during the time interval r so that

rp(t)/p «1 and r5/P«1. This assumption is expected
to hold if ~ is less than the coherence time of the solitary
laser.

Equations (20)—(22) can be solved in the Fourier
domain in a straightforward manner owing to their linear
nature. Thus, by using

p (t)= I p(co)exp(icot )dco,
1

27T
(24)

and similar relations for n(t), 5(t), Ft, (t), Ft, (t), and

FN(t), we obtain the solution

1 GxPFz
P(co)=

&
a2z Fp+ I „+i~

—110

-130
N

m

X

—150

-170
10 ' 10

Frequency (GHz)

10'

a Gee
12 (25)

FIG. 3. RIN spectrum at 5 mW output power for ~~=0. 1,
L,„,=5 cm, and a=3. Dashed curve shows the RIN spectrum
of the solitary laser (~~=0).

a5(co)=—a„F +—
2 r +ia)

~21 Fyy +
I ~+leo

(26)

2R„, la„l'
SRIN(co) = ", la221'+

Pb 4P
(32)

F~ —Gp
n(co) =

I ~+lN
(27)

SFNs(co) = 2co R,~P, la~~ I'

4P' (33)

~here

a, ) =[I t, +ico(1+a)](I tc+ico)+GGtcP,

a, 2 =2bP (2/r i co)(I N+—i co),

a2, =(cz/2)GG~ i(bco/2P—)(I tc+i co),

a2z = [2a/r+ico(1 —a)](I tc+i co),

6, =(ai, a22 —aizaz&)/( lx +im),

(28a)

(28b)

(28c)

(28d)

(29)

a and b are given by Eq. (18) and I'p and I z are given by
Eq. (19). The denominator b in Eqs. (25) and (26) is a
third-degree polynomial in co and is related to D appear-
ing in Eq. (16) as h(co) =D (i co).

The spectrum of intensity and phase fluctuations is ob-
tained by using Eqs. (25) and (26), which show how the
Langevin noise sources Fp, F&, and F~ contribute to such
fluctuations. It is common to characterize intensity fluc-
tuations through the RIN spectrum and phase Quctua-
tions through the frequency noise spectrum (FNS)
defined as [1,2]

Figures 3 and 4 show RIN and FNS for a=3 for a
laser operating at 5 mW when the PCF is such that
lcm=0. 1 and L,„,=5 cm (v=0. 33 ns). Dashed curves
show for comparison the expected behavior in the ab-
sence of feedback. The RIN spectrum shows that the
low-frequency RIN is reduced by the feedback, while the
RIN is enhanced near the relaxation-oscillation frequen-
cy (which is slightly reduced from its solitary-laser value).
The FNS shows a similar behavior, except that the fre-
quency noise is reduced by orders of magnitudes at low
frequencies. In fact, it is easy to show by taking the limit
co~0 in Eq. (33) that the spectral density of frequency

1
010

10
0

c 10
C)

S, (co)=& lp(co)l ) /P (30)

0
0
g) 107
CL

ff)

SFNs(co) —
& Icos(co) I (31) 10

10 ' 10' 10'

The average over the Langevin noise sources can be per-
formed by using Eqs. (9) and (10). The contribution of
F~ is generally negligible to both the RIN and the FNS.
If we ignore this contribution for simplicity, RIN and
FNS are found to be given by

Frequency (0Hz)

FIG. 4. FNS at 5 mW output power for a~=0. 1, L,„,=5 cm,
and a=3. Dashed curve shows the FNS of the solitary laser
(~~=0).
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noise vanishes at co=0. This is in sharp contrast with the
solitary-laser FNS, which becomes flat at low frequencies
and takes a constant nonzero value at co=0. The reason
behind such a qualitative change can be understood by
noting that the PCF locks the average value of the laser
phase in the long-time limit. Since the frequency fluctua-
tions are related to dgldt, which becomes zero as t ~ ac,
clearly the frequency noise vanishes as co~O. In prac-
tice, pump noise added by the PCM mirror would make
it impossible to realize complete phase locking. The
spectral density of frequency noise near co=0 would then
not vanish but take a value that is governed by the
linewidth of the pump laser. The next section considers
the effect of PCF on the single-mode spectrum.

V. SPECTRAL LINE SHAPE

The spectral line shape is obtained by taking the
Fourier transform of the field autocorrelation and is
given by

Sz(co}= Re —f (E'(t + t')E (t})exp( i cot')—dt'
P 0

(34)

can be included in a straightforward manner. The result
1s

(ap'(r'))= " f (!a„!'+4P~!a„~! )

(1—cosset ')

/b, (co)i
(40)

This integral can be performed analytically by using the
method of contour integration. The denominator! b, (co)

~

is a sixth-order polynomial in co with six roots given by
+i A„+, iA2, and +i A3, where A, A2, and A3 are the three
roots of the third-degree polynomial D (A, ) given by Eq.
(16). Since one root of D (A, ) is real (call it y), ! h(tu)! has
two zeros, I', y, lying on the imaginary axis. The other
four zeros lie at +Qz+iI „,where Q~ and I z are the
frequency and the damping rate of relaxation oscillations.
If we close the contour in the upper-half plane, only three
poles (at iy, 0++iI a, and —0++iI a) contribute to
the integral. The dominant contribution comes from the
pole lying on the imaginary axis. If we retain only this
contribution, the phase variance is given by

where Re stands for the real part of the bracketed expres-
sion and the optical field E (t) is given by (41)

E(t)=[P+p(t)]'~ exp[ —i(/+5(t))] . (35)

The angular brackets denote the ensemble average over
the intensity and phase fluctuations, denoted by p(t) and
5(t) in Eq. (35). The effect of intensity fluctuations on the
spectral line shape is almost negligible for lasers operat-
ing far above threshold. By substituting Eq. (35) into (34)
and neglecting p (t), we obtain

SE(co)=Re f exp[ —
—,
' ( AP (t') ) ]exp( idiot')dt'—

(36)

where b,P(t')=5(t+t') —5(t) is the difference in phase
fluctuations at times t+t' and t. In obtaining Eq. (36),
hP(t') is assumed to be a Gaussian stochastic process, so
that

where a» and a2& are evaluated at co=i y.
Figure 5 shows the phase variance calculated by using

the parameter values of Table I for several values of ~v.
The external cavity length of 5 cm corresponds to
~=0.33 ns. The contribution of all three poles was in-
cluded in Fig. 5. Oscillations seen near the origin are due
to relaxation oscillations and result from the contribution
of poles located at Qz+i I „.This contribution vanishes
after a few nanoseconds, after which (AP (t')) is given
by Eq. (41). Figure 5 shows the dramatic change intro-
duced by the phase-conjugate nature of the feedback.
For a solitary laser (a =0},( hP (t') ) varies linearly with

0.4

(exp[id/(t') ) =exp[ —
—,
' ( AP~(t') ) ] .

By using the Fourier relation

(37)

0.3
0

5(t }= f 5(co}exp(icot )de,
277

the variance of b.P( t ') is found to be

(38)

(~y'(r ))=—' f" (!8(~)!')(I—cosset')des, (39)

0 0.2
0

0
~~0.1

where 5(co) is given by Eq. (26). Thus the spectral line
shape is obtained in two steps. First, the phase variance
is calculated by using Eq. (39). Second, the result is used
in Eq. (36}to obtain Sz(co).

To calculate the phase variance (b,P (t') ), we substi-
tute 5(co) from Eq. (26) into Eq. (39). For simplicity, we
neglect the contribution of Fz to the laser spectrum. It

0.0
0

Time (ns)

10

FIG. 5. Phase variance (bp') as a function of time for
several values of ar with a=3. The saturation of (b p ) at loug
times is a consequence of the phase-locking nature of the PCF.
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Sz(to) =Re f exp ——(1—e «') itot dt—
0 y

(42)

where

8, (iaiii +4I' iazti ) R,p (1+a ) .
4& [(r„—y)'+n'„]' 4~

(43)

The last approximation follows from Eq. (28} by noting
that Qz can be approximated by GGNP in most practical
cases and that Qz is much larger than other rates I ~,
I z, I „,and y. In the absence of feedback («=0), y =0.
The integral can then be performed analytically with the
result

SE(to)= (p'+ co')
(44)

time. Indeed, y=0 when «=0, and Eq. (41) shows that
(b,P (t') ) increases linearly with time, as expected. This
linear dependence is preserved when the feedback origi-
nates from a conventional mirror since y=0 remains a
root of the polynomial D (A. ) in Eq. (16). However, y be-
comes nonzero in the case of PCF. Equation (41}shows
that (hP (t')) then saturates to a constant value after a
time such that t ))y '. Physically, saturation of phase
variance is a consequence of phase locking discussed in
Sec. III in the context of the steady-state solutions.

The line shape is calculated by substituting phase vari-
ance (b,P ) into Eq. (36) and evaluating the integral. In
general, a numerical evaluation of this integral is neces-
sary by using the fast-Fourier-transform (FFT) algorithm.
However, physical insight is gained by considering again
the poles of id, i . The dominant contribution to the line
shape comes from the pole i y lying at the imaginary axis.
This pole results in a central peak, while the poles at
—Qz+i I z and Qz+i I z result in satellite peaks locat-
ed at multiples of Qz. Consider first the effect of PCF on
the central peak. For this purpose we substitute (hP )
from Eq. (41) in Eq. (36) and obtain

00

SE(to) =Re
n=o n

'n

f (1—e «') "e "'dt
0

(46)

(47)

If we now use the identity [19]

I (n +1+z)=(n +z)(n —1+z) (1+z)zI (z), (48)

the final result is

Sz(to) =Re (
— /y )"

o (n+}tt/y) . (I+@/y)lu
(49)

This series can be readily summed to obtain the line
shape for given values of P and y. The parameter
p=e+ico is replaced by ice when the limit a~0 is taken.
The spectrum remains well defined for all frequencies ex-
cept near co =0 where a sharp spike exists.

Figure 6 shows the low-frequency portion of the line
shape obtained by using Eq. (49) for several values of y in
the range 10-100 MHz. Such values of y occur for the
case of weak feedback such that ~ is in the range
(10 —10 ) s '. The parameter P=m.b, v, and hv is chosen
to be 20 MHz. In the absence of feedback («=0), the
long-time behavior of (hP ) (since it is linear in time)
leads to a line shape that is Lorentzian at low frequencies
with a F%HM of 20 MHz. This case is shown for com-
parison by a dashed line in Fig. 6. As the PCF increases,
( b P ) saturates at long times causing the Lorentzian
spectrum to narrow and to develop a narrow spike riding
on a pedestal whose width can be larger than hv. The
pedestal is narrower than hv at weak feedback levels

where p=e+ico T.he integral in Eq. (46) can be found in
the tables of integrals [18] and can be written in terms of
a P function as long as y )0. If we express the P function
in terms of the I' functions [19],the result is

—p y 'r(p/y)
y r( +I+p, /y)

As expected, the lineshape is Lorentzian with a full width
at half tnaximum (FWHM) given by

1.25

R,bv= —= (1+a ) .13 ~p 24' (45)
1.00

0.75
This is a well-known expression for the linewidth of a sol-
itary laser.

The evaluation of the integral in Eq. (42) is not
straightforward when y becomes finite because of exter-
nal feedback. It is easy to see that the integral diverges at
co=0, since the integrand does not vanish as t~ 00. This
is a consequence of the saturation of (b,P ) in Fig. 5. It
turns out that the spectrum consists of a sharp spike (re-
lated to the saturation of (hP ) to a constant) superim-
posed on a broad pedestal (related to the short-time be-
havior of (hP ) as in Fig. 5). In order to make the in-
tegral well defined we multiply the inte grand by
exp( et) and ta—ke the limit e~O at the end. Equation
(42}can then be written as

o 0.50
E
0

0.25

0.00
10 15 20 25 30

Frequency (MHz)

FKjf. 6. Laser line shape in the low-frequency regime as ob-
tained from Eq. (49) for different values of y. Dashed curve
shows the line shape of a solitary laser (y =0 in the absence of
PCF).
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frequency QR and the damping rate of relaxation oscilla-
tion. At a critical value of the feedback level (try=0. 14
for parameter values used here), the relaxation oscilla-
tions become undamped as I z becomes zero. The ampli-
tude of the satellite peaks then becomes comparable to
the central peak. The growth of the satellite peaks im-

plies that the steady state has become unstable, and the
laser output is periodic with a repetition rate governed by
Qz. Satellite peaks in that case correspond to the ampli-
tude modulation sidebands expected for a periodic out-
put.

10-' VI. DISCUSSION AND CONCLUSION

Frequency (GHz)

FIG. 7. Laser line shape evaluated numerically from Eq. (36)
showing the effect of PCF on the laser relaxation oscillations.
Dashed curve corresponds to the case of no feedback (v~=0).

(10-MHz curve in Fig. 6) but becomes broader than b, v at
high feedback levels. In principle, the linewidth due to
spontaneous emission is governed by the width of the
narrow spike and nearly vanishes simply because the
PCF locks the laser phase and saturates the phase vari-
ance. In practice, however, the narrow spike would be
broadened by the presence of additional noise mecha-
nisms (e.g., 1/f noise, pump noise, etc.), which we have
neglected. The linewidth would then be determined by
the width of the broadened spike. Since this width is ex-
pected to be less than the solitary-laser linewidth, the
PCF would lead to line narrowing whose extent is
governed by noise sources other than the spontaneous
emission inside the laser cavity. The ultimate limit on
linewidth reduction would be provided by the linewidth
of the laser used to pump the PCM. An example of line
narrowing (by a factor of 5) was provided in an experi-
ment in which four-wave mixing in a semiconductor pro-
vided the PCF [15]. The effect of feedback on the
linewidth is qualitatively different from the case of con-
ventional feedback where the linewidth may increase or
decrease depending on the round-trip phase shift in the
external cavity.

The PCF is also expected to affect the satellite peaks
occurring at the relaxation oscillation frequency 0&.
Figure 7 shows the spectral line shape by evaluating Eq.
(36) numerically through an FFT algorithm. The param-
eter values used were the same as those used for Fig. 5
and given in Table I. The satellite peak shifts toward
shorter frequencies and its amplitude increases as the
feedback level increases. This is easily understood by
noting that the effect of feedback is to reduce both the

This paper has studied the effect of PCF on the noise
characteristics of semiconductor lasers. By using the rate
equations, we have shown that the laser can achieve the
steady state as long as the feedback level is below a criti-
cal value. The most important aspect of the steady state
is that the average value of the optical phase P is locked
to a constant value governed by the linewidth enhance-
ment factor and the phase shift occurring during
retlection at the phase-conjugate mirror [see Eq. (15)].
Such a phase locking is expected to reduce the laser noise
considerably. The results of Sec. IV show indeed that
both the intensity noise and the frequency noise are con-
siderably reduced at low frequencies. In fact, the fre-
quency noise can nearly vanish at zero frequency (dc
value of the frequency noise) because of the phase locking
occurring in the long-time limit. This is in sharp contrast
with the case of conventional feedback where the fre-
quency noise is nearly uniform in the frequency range
0—1 GHz (white noise), although its magnitude is re-
duced for some values of the feedback parameters. Be-
cause of the nonuniformity of the frequency noise at low
frequencies, the linewidth cannot be related to the dc
value of the frequency noise. In fact, the line shape does
not even remain Lorentzian. Our results show that the
line shape is in the form of a narrow spike riding on a rel-
atively broad pedestal, which contains the satellite peaks
at multiples of the relaxation-oscillation frequency
(enhanced in amplitude because of a reduction in the
damping rate). In practice, additional noise mechanisms
such as the pump noise and the 1/f noise [20] would
determine the width of the narrow spike. In particular,
the pump linewidth would provide the ultimate limit on
the linewidth observed experimentally.
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