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Generation of squeezing for a charged oscillator and for a charged
particle in a time-dependent electromagnetic field
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Recent papers [A. Bechler, Phys. Lett. A 130, 481 (1988); M. S. Abdalla, Phys. Rev. A 44, 2040 (1991)]
investigate the generation of squeezing for a charged oscillator in a constant and uniform magnetic field.

Here we pursue further this line by investigating the extended system of a charged particle oscillating in

a uniform and arbitrary time-dependent magnetic field. Since we do not particularize the functional

time dependence, our expressions for the variances of quadratures are quite general, so the possible oc-
currence and amount of squeezing will depend on that specification. The corresponding results men-

tioned above become a particularization of ours.

PACS number(s): 42.50.Dv, 84.30.Ng, 03.65.—w

I. INTRODUCTION

Squeezed states of the electromagnetic field and of har-
monic oscillators (HO's) have received increasing theoret-
ical [1] and experimental [2] attention in recent years. In
this context, recent papers by Bechler [3] and Abdalla [4]
investigate the time evolution and statistical properties of
two-dimensional charged HO's in the presence of a con-
stant magnetic field. It has been shown that [3,4] in such
a situation the HO exhibits squeezing effects in a similar
way as one finds for the radiation field interacting with
some suitable nonlinear media [1].

In this paper we will pursue further this line by investi-
gating the extended system of a charged HO, and of a
charged particle, in the presence of a time-dependent
(TD) electromagnetic field. As in the case of the charged
HO in the presence of a constant magnetic field, the more
general system of a charged HO in the presence of a TD
electromagnetic field is a standard textbook problem.
However, to our knowledge it has not been considered
from the point of view of squeezing properties.

The present paper is arranged as follows. In Sec. II we
define the system Hamiltonian. In Sec. III we quantize
the system and obtain the Heisenberg equations of
motion in terms of the ladder operators 1 and & for the
HO. In Sec. IV we solve the Heisenberg equations of
motion for our system and calculate the fluctuations of
the quadrature phase amplitudes. Section V contains
comments and the conclusion.

II. CHARGED PARTICLE IN A TIME-
DEPENDENT ELECTROMAGNETIC FIELD

AND TIME-DEPENDENT HARMONIC OSCILLATOR

Let us consider [5] a particle, which may be an isotro-
pic oscillator, of charge c and mass M moving in an axial-
ly symmetric magnetic field defined by the vector poten-
tial

A =
—,'8 (t)k X r

and a scalar potential

1 e
rl(t)r

2 Mc2

(2.1)

(2.2)

where

+P»)+ Sl (t)(x +~ )
—,'co, (t)I—

2

(2.4)

where (2.1) is valid if 8 (t) is uniform. k is a unit vector
along the symmetry axis; r =x +y, x and y are the two
Cartesian components perpendicular to the symmetry
axis. 8(t) and q(t) are arbitrary piecewise-continuous
functions of time and c is the speed of light.

The Hamiltonian for the present system is given by [5]
2

+'+=&i+&ii (2.3)
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2MPz (2.5)
extension of the system investigated by Bechler [3] and
Abdalla [4].

where L, is the z component of the angular momentum:
L, =(r Xp), =xp —yp„, and

III. QUANTIZATION AND HEISENBERG
EQUATIONS FOR THE SYSTEM

II(t) =(e/Mc) [[B(t) l2]'+ii(t)] '",
co, (t)=eB(t)IMc .

(2.6a)

(2.6b)

Next, we introduce the ladder operators &;,a,. (with

q; =x,y, p; =p„,p ) through the usual canonical transfor-
mation

Note that A'~~ in the Eq. (2.5) exhibits the axial motion
of a particle in this field that is trivial, and we will ignore
it by treating only the motion which is perpendicular to
the symmetry axis. Note also that [8~,Pi ]=0,
[8, , L, ] =0, where

' 1/2

2M')p

1/2

p =i —Mei 2 0

&;+a; (3.1a)

(3.1b)

(P„+P» )+ 0 (t)(x +y ) .1 2 2 M-2
(2.7)

As is well known, B„and L, form a complete set of
commuting observables [6].

Since P„comm utes with L, we may set a transforma-

tion ~tP(t) & ~ ~Pi (t) &
= U(t)~f(t) & =e '~t/i(t) &, with

P t)= ,' J ocr, (t'—)dt', to obtain the Schrodinger equation whereas, for later application in this paper,

,'to, (t)E—, =—fi[ifz(t)(&„&—&„& )],
where

(3.3)

with [d, ,8 ]=5,, [&, , it, ]=0=[it, , &, ].
The substitution of Eqs. (3.1) in Eq. (2.8) gives

(it, &, t) =iri[f, (t)(it„&„+—,
' )+fz(t)(o„+&„)]

+fi[fi(t)(8~~& + —,')+fz(t)(& +it )]
(3 2)

which, in the Larrnor frame, is

u, ~q (t) &
=l'iri —~ib (t) &,

(2.8)

(2.9)

f, (t) =
—,'coo

fz(t) = ,'coo—

A(t)
C00

C00

'2

(3.4a)

(3.4b)

with 8„' '=8„. Hence in the Larmor frame we will

employ just the Hamiltonian (2.7).
If ii%0(ii=0) in Eq. (2.6), then the Hamiltonian (2.7)

describes a charged oscillator (charged particle) in the
presence of a TD electromagnetic field. Hence (2.7) is an

I

fz(t) =eB (t) /2Mc = ,'co, (t) . — (3.4c)

The Heisenberg equations of motion can be obtained
from ibid&; Idt = [&;,8„] and i Ad&; Idt = [tI;,8„].
We then find from the Eq. (3.2)

~x

~x

dt ~y

&y

if, (t) —' —2ifz(t)

2ifz(t) if, (t)

0 0 if, (t) —2ifz—(t)

2ifz(t) if, (t)

(3.5)

I

the Heisenberg picture, follow from the calculation of the
evolution operator

U(t)=T exp f M(t')dt' (4.1)
0

(3.6)
namely, for the x subspace one has

bH(t)
= 0' (t) t 0(t),

bH t X

the =arne being valid for the subspace y, with &„~&,
Vx ~&y. (4.2)

which gives, in the subspace x [with M(t)= if, &, —
+2fzd ),

x x
=M(t)

X X

IV. SOLUTION OF HEISENBERG
EQUATIONS: SQUEEZING

Now, considering the dependence on time of the pa-
raineters B and il [cf. Eq. (3.6)], the operators & and &, in

where T stands for the time-ordering operator [6]. How-
ever, the calculation of the evolution operator by Eq.
(4.1) is a difficult task, and in a previous paper [7] we cir-
cumvented such difficulty by solving the Schrodinger
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equation for the Hamiltonian (3.2) by a method that uses,
sequentially, a TD unitary transformation and the diago-
nalization of a TD invariant. From this solution we were
able to obtain the evolution operator [7]

0'(t}=S(j(t))k(Q(t))S (g(0)) (4.3}

v (t)=sinh[r (t)]cosh[r (0}]e'(@"+t'")

—cosh[r(t)sinh[r (0)]e

with

p(t) =f Q(t')dt' .
0

(4.9b)

(4.10)

where [with g=r exp(iP)]

is the squeeze operator and

P(Q(t)) =exp ——f [Q(t') —f, (t')]dt'
2 0

i —f Q(t'}dt' a 8
0

(4.4)

(4.5}

It can be verified that the unitary transformation 0(t)
is also a canonical transformation of the Bogoliubov-
Valatin type, since

~
u

~

—
~
v

~

= 1.
Now we go to the calculation of the fluctuations of the

quadratures defined as

(4.11a)

~2,H 2
(bH bH)

Calling the dynamic fluctuation for these quadrature
operators

is the rotation operator. The parameters r and P are the
solution of the coupled nonlinear differential equations
[7]

r = —2f'2(t} sin[/(t}],

P= —2f i(t) —4f2(t)[coth2r(t)] cosP(t) .

(4.6a}

(4.6b)

It is important to note that the initial conditions r (0}and
$(0) are not necessarily null, which means that
S(g(0))%1. In regard to the other operator P(Q), the
parameter is

Q(t) =f, (t)+2f2(t) tanhr(t) cosP(t), (4.7)

bH = 0 (t)aO(t) = u (t)8+v (t)tt

bH =v'(t)tl+ u '(t)8

where

(4.8a)

(4.8b)

and independently of any initial condition on r, P, fi, and

f2 we have P(Q(0)}=1.
So now we are in a position to calculate algebraically

the operators I and 8 in the Heisenberg picture as

as

(hX'i H ) =—,'[(bbH )+ (b(bH ) )+2(h(bHbH))+1]

=-,'[2 u +v'I'& h(Std) &+(u + v")'& ae'&

and

+(u "+v) (b(t} ) )+iu+v'i ] (4.14a)

& W,' „)=-,'[2~u —v" ~'& b, (1t1 ) ) —(u —v")'(b,&'&

—(u' —v) (b,(a ) )+iu —v'i ] . (4.14b)

In particular if the mean is considered in a (initial)
coherent state, then

(4.12)

i =1,2, we consider the mean in an arbitrary TD state.
So, Eq. (4.12) can be written in terms of the static fluctua-
tions,

(4.13a)

(4.13b)

(4.13c)

and

u (t) =cosh[r(t)] cosh[r(0)]e
—

sinh[r (t)] sinh[r (0)]e'(~ '+~ t' ) (4.9a)

(bX', H ) =-,'~u +v'(',

and a direct calculation shows that

(4.15a)

(4.15b)

~u +v*~ =cosh[2(r ro }]+2sin—h(2r)sinh(2ro)sin P+ +sinh(2r)cosh(2ro)cosg2— 0—
4'o

and

—sinh(2ro)[cosh (r)cos(2P —Po)+sinh (r)cos(2P+2P —Po)] (4.16a)

~
u —v

'
~

=cosh[2(r ro ) ]+2sinh—(2r)sinh(2ro }sin P+ 4—0o —sinh(2r)cosh(2ro )cosP

+sinh(2ro)[cosh (r}cos(2P—Po)+sinh (r}cos(2P+2P—Po)] . (4.16b)
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Now, considering the static situation, when B =B0 and
in Eq. (4.6), r' =0 and ({)=0, this implies

/=$0=@, tanh(2r0)=2f2/f„and we obtain from Eqs.
(4.15}and (4.16)

2fz —fi(Wf ~) =—cos (Qt)+ sin (Qt)

To conclude this analysis, we emphasize the fact that
the fluctuations are determined once the system of Eq.
(4.6) is solved and r(t) and P(t) are available either by
analytical methods or numerically. Now, if we pass from
the Larmor frame to the laboratory frame, the x and y
components of the operators in the Heisenberg picture
are given by

and

(4.17a) it„~=b„(t)cosF,(t)+b (t)sinF, (t),

&„~=b„(t)cosF3(t)+b (t)sinF3(t),

(4.18a)

(4.18b)

2

(b Pz ~) =—cos (Qt)+1 2 2f2+fi
sin (Qt}

where b„, b„, b, and b are as defined in Eqs. (4.8) but
for operators (&„,fi„) and (8,8 ), respectively. The func-
tion F3(t) is

(4.17b)

with P=Qt and Q=(f'-, 4fz)'~—=Q [cf. Eq. (4.17)].
The results in Eqs. (4.17) may be compared with those
corresponding in Refs. [3] and [4].

F,(r)= f f, (r')dt' .
0

(4.19)

Following the same calculation for the fluctuations of the
x subspace, we now obtain [compare with Eqs. (4.14)]

(W, ~)=
—,'[[2~u+v'~ (b(8„8„))+(u+v")(b&„)+(u'+v) (h(8„) )+ ~u+v'~ ]cos F3

+[2~u+v'~ (b(o~&~))+(u+v') (rM~ )+(u'+v) (b8~ )+ u+v'~ ]sin F3[ {4.20a)

and

(Wz +)=
—,'[[2~u —v'( (b(8 8„))—(u —v') (bl„)—(u' —v) (b(8„) )+~u —v'~ ]cos F3

+[2~u —v'~ (h(8~8~)) —(u —v") (b&~ ) —(u' —v) (h(8~) )+ ~u
—v'~ ]sin F3] . (4.20b)

If we consider the mean in an (initial) coherent state,
(b, (8 &))=(5'd ) =(b,(& ) ) =0 for x and y com-
ponents, we recover the results in Eq. (4.14). From this
we conclude that if the initial state is a coherent state,
then the fluctuations of the quadratures are frame in-
dependent.

V. COMMENTS AND CONCLUSION

In this paper we have calculated the fluctuations in
quadrature-phase amplitudes for a charged HO, and also
for a charged particle, in the presence of a TD elec-
tromagnetic field. The present model constitutes an ex-
tension of a previous one investigated by Bechler [3] and
Abdalla [4], for a charged HO in the presence of a con-
stant magnetic field.

For our extended system, the results for quadrature
fluctuations are obtained in Eq. (4.14) or, equivalently, in
Eqs. (4.20}. To obtain these results we have employed a
method of a previous work [7] that uses, sequentially, a
TD unitary transformation and the diagonalization of a
TD invariant. Since we have assumed throughout this
paper that the TD electromagnetic field is arbitrary, then
our results in Eqs. {4.14) and (4.16), are just formal.

Here particular models will emerge from the

specification of B (t) and r}(t) in Eq. (2.6) that yield a par-
ticular TD Hamiltonian [cf. Eq. (2.4)] with Q(t) and co, (t)
already determined from B(t) and r1(t) [cf. Eq. (2.6}].
Once this is done, our procedure leads one to the solution
of the system (4.6), which is obtained either analytically
or numerically. For the case of a static field [put B =Bc,
g=r}0 in Eq. (2.6)] one recovers the results in the litera-
ture, as we have mentioned below Eq. (4.16).

The application of the present method in the investiga-
tion of squeezing and other statistical properties for some
particular examples of TD electromagnetic fields is in
progress and will be the subject of a future publication.
An interesting example is provided by an external field
where B(t)=Bacoscot, g=r)0. In this case we note that
Eq. (2.3) includes both the rotating and counter-rotating
components of the electromagnetic field, and this may
constitute an appropriate format for the investigation of
the rotating-wave approximation, an up-to-date problem
[8]. Another interesting example is the trapping problem
[9], where the TD Hamiltonian is given by [10]
8(g,p, t)=P /2M+(M/2)8' (t)P, with the frequency
W(t) expressing the time dependence of an externally ap-
plied field. In general, for any example of a TD Hamil-
tonian, the quantum states are not stationary states or en-
ergy eigenstates of any kind. In the words of CHauber
[10], "finding them thus represents somewhat novel prob-
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lems in the context of quantum mechanics, and develop-
ing simple means for doing that possesses a certain
methodological interest in its own right. "

As a final remark, we mention that an alternative ap-
proach for the same system, using the ladder operators
introduced by Rajagopal and Marshall [11],has also been
developed [12). In this case, as in others [10], one is led
to a frame (which could be called the principal frame)

where, to a certain extent [13],the problem can be solved
without specifying the time dependence of the field at all.
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