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Comparative study of four-wave mixing in chaotic and phase-diffusing fields
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We consider the dependence of the four-wave-mixing signal from an ensemble of homogeneously
broadened, two-level atoms on the statistics of the pump field. Two models for the pump field are con-
sidered: the chaotic field and the phase-diffusing field. A Monte Carlo simulation procedure is used to
integrate the equations describing the four-wave-mixing process numerically. This technique allows con-
sideration of arbitrary bandwidths for the pump and incorporates pump-induced saturation effects. Re-
sults are presented for the strength of the four-eave-mixing signal as a function of the pump intensity for
both resonant and off-resonant cases. It is shown that the four-wave-mixing signal is sensitive to the
statistics of the pump, particularly for strong fields.

PACS number(s): 42.50.Md

I. INTRODUCTION

Four-wave mixing in fluctuating fields continues to be
the subject of extensive investigations in spite of the fact
that a large body of literature on this subject already ex-
ists [1—10]. This is because of the complex nature of the
underlying equations which render analytic solutions
only in some simple cases. Saxena and Agarwal [1] con-
sidered the phase-conjugate geometry and studied the
effects of a chaotic pump (probe being monochromatic}
on the phase-conjugate reflectivities. They, ho~ever, as-
sumed that the bandwidth of the pump, I', was much
smaller than the atomic width, y. Cooper and co-
workers [4,5,8] studied the case of degenerate four-wave
mixing (DFWM) in the regime when I » y. In this limit
they were able to use the decorrelation approximation
and predicted several features of the four-wave-mixing
signal, e.g., the increase in the pump intensity that was
required to saturate the DFWM signals with increasing
bandwidths. Kaczrnarek and co-workers further general-
ized the theory to study the DFWM signals produced by
pulsed fields [8,9]. Meacher et al. reported measure-
ments of signals as a function of pump intensity [8].
Kaczmarek, Meacher, and Ewart also presented experi-
mental results [9] on the temporal evolution of DFWM
signals generated by broadband pulsed lasers. The theory
was not able to treat the case when I & y and when the
probe could be correlated with the pump (this could hap-
pen when the pump and probe fields are derived from a
single source}. However, Agarwal [6] within the frame-
work of the third-order perturbation theory showed how
one can account for pump-probe correlations as well as
for arbitrary bandwidths. This theory was, however, val-
id for weak fields and could not incorporate pump-
induced saturation effects. Correlated pump-probe fields
are important in many applications, for example, in re-
laxation studies with time-delayed [10—18] pump and

probe fields. Recently, calculations involving time-
delayed pump and probe fields have been generalized to
account for saturation effects [13,14,17] under various
conditions on the pump bandwidth. In particular,
Tchenio and co-workers [13], using diagrammatic tech-
niques, calculated the signals produced by time-delayed
pulses, when one of the pulses was strong and the other
weak. These workers included the effects of inhomogene-
ous broadening but neglected effects of homogeneous
broadening. They assumed that the correlation time of
the field was short so that the decorrelation approxirna-
tion could be used. With use of the decorrelation approxi-
mation Finkelstein and Berman [14] were able to obtain
analytical results for four-wave-mixing signals for the
case of three broadband pulses of which two were over-

lapping and the third one was well separated. They also
examined the signals for the case when the sample is irra-
diated by two broadband pulses and both pulses are
strong enough to cause saturation. They could also in-
clude Doppler effect in their analysis. The works men-
tioned above, while dealing with strong fields, could not
incorporate the condition of the Rabi frequency of the
pump being larger than the bandwidth of the field.
Vemuri et al. [17] used Monte Carlo methods to obtain
coherent signals and thus could avoid the use of the
decorrelation approximation, at the same time being able
to study arbitrary bandwidths and pump intensities.

The effects of phase fluctuations on degenerate as well
as nondegenerate four-wave mixing have been studied us-

ing third-order perturbation theory [2,3]. Such studies
for correlated pump and probe fields led to the existence
of fluctuation-induced resonances. It is desirable to find
the signals when the pump-induced saturation is impor-
tant. Moreover, it mould be interesting to examine addi-
tional features of the four-wave-mixing (FWM) signals
due to the non-Lorentzian nature of the pump line
shapes.
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From the foregoing it is clear what the open questions
that need addressing are. We need to develop a theory of
DFWM which accounts for saturation effects, pump-
probe correlations, and arbitrary bandwidth of the pump,
without resorting to a decorrelation approximation. The
results are expected to be sensitive to whether we consid-
er phase fluctuations or amplitude fluctuations.

In a series of recent papers, Zoller and co-workers [19]
have demonstrated the sensitivity of atomic response to
field statistics. In particular, for two statistically different
field models with identical second-order correlation func-
tions, atomic observables which are dependent on higher
than second-order field correlation functions showed
dramatic differences from mode1 to model. Four-wave
mixing is dependent on the sixth-order correlations of the
electric field and hence should display similar sensitivity
to field statistics. This serves as an additional impetus for
us to undertake a comparative study of four-wave mixing
in chaotic and phase-diffusing fields.

In this paper we will use Monte Carlo simulations to
study the above-mentioned effects. Both chaotic and
phase-diffusing fields with Lorentzian spectra are con-
sidered and for the phase-diffusion case the spectrum can
also be non-Lorentzian. We consider the forward
geometry for FWM and restrict our study to stationary
two-level atoms and hence neglect Doppler effects.

II. BASIC EQUATIONS AND
MONTE CARLO SIMULATIONS

—ip (t)
or a multimode laser .The probe field ez(t)e ~ =X~(t)
can either be monochromatic or it can be derived from
the pump laser itself, as in Ref. [17]. In the latter case it
is fully correlated with the pump and can be written as

z (t) =gz, (t) (2.3)

where g «1. In what follows, the probe will be treated
perturbatively while the pump will be treated to a11 or-
ders and thus pump-induced saturation effects are ac-
counted for.

B. Phase-difFusing fields

We now assume that there are no amplitude fluctua-
tions but the phase P) fiuctuates such that dP) ldt =)M is
a Gaussian random process with the properties

((M(t)) =0 and (p(t)p(t')) =bPe @' ' ', (2.4)

where b is the strength of the frequency fluctuations and
1/P is the time scale of the frequency fluctuations. For
values of P »b, the field line shape is a Lorentzian with a
FWHM of 2b, while for P&(b it is a Gaussian with a
FWHM related to (bP)' The p.robe is taken to be ei-
ther monochromatic or fully correlated with the pump
phase In th. e correlated case we set (() (t) =P)(t).

In the frame rotating with the frequency of the pump,
co&, the Bloch equations for the atomic polarization

1i,=p», g, =p», »d the inversion p, =-,'(p„—p»} c»
be written as

We consider the interaction of an ensemble of two-level
atoms of frequency coo with an electromagnetic field of
frequency co&. The electromagnetic field consists of two
parts: (i} pump propagating in the direction k, and (ii)

probe in the direction k, The total field can be written
in the form

dt
=M/+I,

where

—1/T2+i b,

0

0 2ix '(t)—
—1/T2 i b, 2ix (t—)

(2.5)

(2.6)

E(r t)=e, (t}e ' e

iP (t) ik r —ice(t
(2 1) and

ix (t)— ix'(t) —1/TI

The amplitudes and phases are in general fluctuating
quantities. We will consider the following models for
fluctuating fields.

A. Chaotic fields

—icolt+Ikl r~=0)0 0)) tp) =e

I) =Iz =0, I3 = —1/2T),

x(t)=(d e/R)[e)(t)+e ' ' s (t)] .

(2.7)

Here the complex amplitude c.,e '=E& is a Gaussian
random process with the properties

As mentioned earlier, the probe is weak and so we ex-
pand the Bloch vector g in powers of the probe field

where

y(0)+y(()+. . . (2.g)

(2.9)

where D is the strength of the fluctuations and 1/I is the
time scale of the fluctuations. The product DI is the
variance of the Gaussian random process and is identified
with the intensity of the field. The chaotic field model as
described by (2.2) has a Lorentzian spectral profile with a
full width at half maximum (FWHM) of 2I and is an ac-
curate representation of the field from a thermal source

y ).( i )
M(0)y(0)+M(1)y(0)

dt
(2.10)

and where M' ' is obtained from (2.6) by setting s~ =0 in
x(t) [Eq. (2.7)]. The matrix M"' is obtained from (2.6)
by letting 1/T2, b, , and f)~0. The solution for P' ' can
be written in the form



COMPARATIVE STUDY OF FOUR-WAVE MIXING IN CHAOTIC. . . 5881

P"'= exp[i(k —k, ) r]A+ exp[ —i(k~ —k, ).r]F,
(2.11)

where F is the solution of

—2q',"(t)
dF/dt =M' 'F +ig (d e/i')s'(t) 0

~(o)( t )

(2.12)

where ( ) denotes stochastic averaging over the Quctua-
tions of the pump and the probe. The stochastic averag-
ing is done for different models of pump and probe fluc-
tuations by Monte Carlo techniques. We adopt the
Monte Carlo technique in the form developed by Fox
et al. [20] and as used by Vemuri et al. [17] for calculat-
ing signals involving time-delayed pump-probe fields. Us-
ing this technique we can calculate the FWM signals for
a very wide range of pump intensities and bandwidths.

III. NUMERICAL RESULTS

In this section we present the results obtained by
Monte Carlo simulation methods.

A. Chaotic Selds

We consider the case when the probe is monochromat-
ic. We assume that both the pump and probe are on res-
onance with atomic transition. All frequencies are mea-
sured in units of the atomic linewidths 1/T2. We also as-
sume radiative relaxation, i.e., T2/T, =2. Figure 1

shows the variation of the signal with the pump intensity
DI [Eq. (2.2)] for different values of the pump band-
width. The case of I =100 is the extreme broadband
case and can be compared with the work of Cooper et al.
[5]. [It should be noted that Ref. [5] deals with FWM
signals with counterpropagating pump fields in a medium
of finite length (like a vapor cell) and hence effects due to
a standing wave in the medium are important, while our
work assumes a forward geometry and a thin medium
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FIG. 1. F%M signal vs pump intensity for chaotic fields.
Circles are for field bandwidth, I =100; squares for I =10; and
triangles for I =1.

Here g' '(t) is given by (2.9). Note that both (2.12) and
(2.9) are Langevin equations as the fields si and Z~ are
fluctuating. The steady-state four-wave-mixing signal is
obtained from

S = lim (Fz (t)F2(t!),
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FIG. 2. F%'M signal vs pump intensity for chaotic fields and
fixed detuning, 5 of pump from atomic transition frequency.
I =1 and the triangles are for 6=0, circles for 6=5, and
squares for 6=10.

(like an atomic beam) and hence we neglect any effects
due to a standing wave. ] For this case, we find that below
saturation the FWM signal increases as Ip (I~ is pump in-

tensity). This is precisely the behavior predicted in Ref.
[5], which further predicted for very high intensities a de-
crease as I (which is modified to I ~ when standing-
wave effects are included). For pump intensities higher
than the saturation intensity, it is diScult to estimate a
power law from our data. To get an estimate of the power
law here one has to calculate the signal for higher values
of I&, but the CPU time for these was prohibitive. Figure
1 also clearly demonstrates the increase in the pump in-
tensity needed to reach saturation with increasing band-
widths. Once again, this result is consistent with that of
Ref. [5], which predicts below the saturation intensity an
increase proportional to the square of the bandwidth. On
comparing the signal for pump intensities of 10 and
10 for I of 100 and 10, we find similar qualitative be-
havior.

Figure 1 also shows that the saturation curve is much
broader for pump bandwidths of the order of the atomic
transition width. This is the regime where the decorrela-
tion approximation is no longer valid and hence we ex-
pect different behavior. While the signal does increase as
I for I less than the saturation intensity, the behavior
of the signal for pump intensities greater than the satura-
tion intensity is drastically different from that predicted
by the decorrelation theory. This is evident from the
different slopes for the curves and bandwidths of 100 and
1 for intersities larger than the saturation intensity.

Figure 2 gives the saturation curves for the case of
I T2=1 but for different values of the detuning parame-
ter h. Larger 6 requires higher values of the pump inten-
sity to yield maximum signal. This is to be expected,
since it is much harder to saturate the transition with
off-resonant excitation. Figure 3 shows a scan of the sig-
nal as a function of 5, for small pump bandwidth and
large pump intensity. We find that signal first decreases
with 6, but then shows a revival before decreasing again.
It should be borne in mind that the line shape of the
pump remains Lorentzian for all values of I, a property
of the chaotic field.
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FIG. 3. FWM signal vs pump detuning, 5 for chaotic fields

with I = 1 and D = 100.

B. Phase-difT'using Selds

We first consider the case when the probe is mono-
chromatic and hence is not correlated with the pump.
Figure 4 shows the behavior of the FWM signal as a
function of the pump intensity. Clearly the saturation be-
havior depends on the strength of the frequency fluctua-
tions. For b =1 and P=10, the pump line shape is a
Lorentzian to a good approximation. As mentioned ear-
lier, it is a characteristic of the phase-diffusion model that
for P»b the line shape is a Lorentzian while for P ((b it
is Gaussian, with intermediate values of b and P giving
Voigt profiles. In Fig. 4, the laser bandwidth is moderate
compared to the atomic linewidth. Once again we find
that with an increase in the pump bandwidth there is an
increase in the saturation intensity. We find, however,
that the behavior of the FWM signal is not very sensitive
to the P parameter for fixed value of b (not shown).

While the decorrelation approximation as used in Ref.
[5] is not valid for moderate to small bandwidths in the
case of the chaotic fields, it is valid for arbitrary band-
widths in the case of phase-diffusing fields, provided P is
much larger than any other rate in the problem. Hence
we expect the results of Ref. [5] to apply to our results
here if this condition is satisfied. In fact, we find that for
P=10 and b of 1 and 3, the FWM signal increases as the
square of the pump intensity for intensities below the sat-
uration intensity. In Fig. 4, the decorrelation approxima-
tion can be used to obtain the curves with P=10, b =1
and P=10, b =3.
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FIG. 5. FWM signal vs pump intensity as obtained from the
analytic work of Ref. 2. The solid curve is for b =0, the dash-
dotted curve for b =10, the dashed curve for b =100, and the
dotted curve for b =500. Pump and probe are on resonance
with atomic transition.

For the pure phase-diffusion model, i.e., when P~ oo

and the line shapes become Lorentzian, it is more con-
venient to use the theory of multiplicative processes to
obtain the DFWM signals. This theory is discussed at
length in Ref. [2]. The theory enables one to obtain
deterministic equations for single- and two-atom aver-
ages. The two-level results can be obtained as a special
case of the three-level system. The off-resonant signal is
calculated in Ref. [2], i.e., the case when both the pump
and probe are far off resonance, whereas in what follows
we look at resonant signals. The saturation behavior of
the signals obtained in this manner is shown in Figs. 5
and 6 for different bandwidths of the pump. Figure 5
shows the signals when the pump is on resonance with
the atomic transition, while Fig. 6 is the case when
5=20. Note that the parameter b now gives the
linewidth of the pump.

It is usually diScult to quantitatively compare the sig-
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FIG. 4. FWM signal vs pump intensity for phase diffusing
fields. For all three curves P=10 and circles are for b =1,
squares for b =3, and triangles for b = 10.
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FIG. 6. FWM signal vs pump intensity as obtained from Ref.
[5] for pump detuning, 5=20. The solid curve is for b =0, the
dash-dotted curve for b = 10, the dashed curve for b =100, and
the dotted curve for b =500.
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FIG. 7. Comparison of FWM signal vs pump intensity for
chaotic and phase diffusing fields with identical bandwidths and
band shapes. For the phase-diffusing field, P=10 and b = 1 and
for the chaotic field I =1.

the signals are more pronounced at higher pump intensi-
ties.

Finally, we consider the effect of cross correlations be-
tween the phase fluctuations of the pump and probe
fields. Figure 8 shows a comparison of the saturation be-
havior for correlated and uncorrelated pump and probe
fields for two different field bandwidths. The noisy probe
is less efFective at low pump intensities but becomes more
effective at higher pump intensities. Further, the increase
in the FWM signal with pump intensity for intensities
below the saturation intensity scales faster than a square
law while the decrease in the signal above the saturation
intensity scales slower than the corresponding mono-
chromatic probe signal.

IV. DISCUSSION
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FIG. 8. Comparison of FWM signal vs pump intensity for
monochromatic and nonmonochromatic probe. The squares
are for P=10 and b =1 while the circles are for @=10and
b =3. The solid markers are for monochromatic probe while
the open markers are for the probe correlated with the pump.

naia obtained from chaotic fields and phase-diffusing
fields except for some special paratneter values. The
chaotic field has two independent parameters, the band-
width I' and the strength of the noise D with the product
I'D specifying the pump intensity. The line shape is al-
ways Lorentzian for all values of I and D. The phase-
diffusing field on the other hand has three independent
parameters, the spectral density of the frequency fluctua-
tions b, the time scale of fluctuations, 1 jp, and the Rabi
frequency of the field, 0 (square root of the intensity).
Here the line shapes can be Lorentzian, Gaussian, or in-
termediate between the two, depending on the relative
values of b and p. The only situation in which a fair com-
parison of the saturation behavior for the two models can
be made is when p)) b for the frequency fluctuations. In
Fig. 7, we show a comparison of the FWM signals as a
function of the pump intensity for the two models, when
the laser line shape is Lorentzian for both models and is
of the order of the atomic linewidth. Thus for chaotic
field we choose I =1 and for the phase-diffusing field we
choose b =1 and P=10. We find that the difFerences in

We have studied the effect of the pump field statistics
on the saturation behavior of four-wave-mixing signals
produced by an ensemble of homogeneously broadened
two-level atoms. A comparison of the signal generated
by chaotic fields with the signals generated by phase-
diffusing fields is presented. We also present results for
the chaotic fields with bandwidths comparable to the
atomic linewidths, a regime where the decorrelation ap-
proximation is not valid. These results, as might be ex-
pected, are significantly different from those obtained for
broadband fields (as in Ref. [5]).

For the phase-diffusing fields, our results display the
need for increasing pump intensities to achieve saturation
of the FWM signal as the pump bandwidth increases.
The results are in agreement with the decorrelation
theory of Ref. [5] since this approximation is valid for
phase-diffusing fields. A direct comparison of the signals
produced by an ensemble of two-level atoms interacting
with chaotic or phase-diffusing fields is also presented.
The saturation behavior is dramatically different for the
two field models, even thought hey have identical band-
widths and band shapes and hence identical second-order
field correlation functions. This result is not surprising in
view of the recent works of Zoller and co-workers [19]
demonstrating that atomic observables which depend on
higher-order field correlations can be very sensitive to
differences in the field statistics. Since FWM depends on
sixth-order field correlations, it falls into that category.

The Monte Carlo methods used in this work also allow
us to incorporate the effects of correlated pump and
probe fields with arbitrary bandwidths. As an illustration
we have presented the saturation behavior of the FWM
signal when the pump and probe have correlated phase
fluctuations. We find the saturation behavior for corre-
lated pump and probe is quite different from the behavior
with a monochromatic probe. In the context of phase
fluctuations, our numerical methods are complementary
to the analytic methods developed by Gheri, Marte, and
Zoller [18] where they study the case of p~ ao. Further,
our numerical methods can be easily applied to study
correlated pump and probe fields for the chaotic field
model, as shown in Ref. [17].
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