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We provide a model for a two-photon system that possesses quantum-group symmetry. The
quadrature-phase amplitudes of the model are defined in terms of deformed oscillator operators. We em-
phasize the investigation of the most general minimum-uncertainty states, i.e., coherent states and
squeezed states, for the quadrature-phase amplitudes a; and a,. We show that the squeezed states of the
two-photon quantum optics are simultaneous eigenvectors of the operators 4, and 4 _ with eigenval-
ues @ and a _, respectively. For an important subset of the squeezed states, the expectation values and

variances of relevant operators are given explicitly.

PACS number(s): 42.50.Dv, 11.30.—j, 03.65.—w

I. INTRODUCTION

Squeezing is the noise reduction that can occur in a
quantum field theory when the quantum fluctuation in
one of the field quadrature phases is reduced below the
usual vacuum level. Since the reinvention of squeezed
states in 1970 by Stoler [1] for the realm of quantized
fields, it was not certain whether they can be realized for
the actual electromagnetic field, or if this is just an in-
teresting theoretical idea. But with successful observa-
tions of squeezed states of the electromagnetic field at the
AT&T Bell Laboratories and other laboratories [2-5], a
wide range of applications have been suggested, from
gravitational-wave detection to low-noise optical com-
munication. And intensive investigations upon the
squeezed light have been made. Recent interesting pro-
gress in the topic is the implications of quantum-group
symmetry. Quantum group [6] with respect to its Lie
counterpart introduces independent parameter g, so it
can play an important role in many quantum systems.
Chaichian, Ellinas, and Kulish [7] introduced quantum
group into the field of quantum optics. They discussed
the generalized Jaynes-Cummings model which possesses
quantum-group dynamical symmetry. Celeghini, Rasetti,
and Vitiello [8] showed that the quantum-group coherent
states are related with squeezing for complex q. The
modified version of the Biedenharn-Macfarlane states is
given by them based on the discussion of the quantum su-
peralgebra oqu(1|2). They defined the quantum analog
of position (Q,) and momentum (P, ) operators as
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With respect to the quantum-group coherent states
{la;qYa,q EC}, Celeghini, Rasetti, and Vitiello showed
that the squeezing in P, [{(AP,)?) <(1[{#,)])] or Q,
[€((AQ,)?) <(L|{#,)])] appeared.

Because examples of two-photon devices such as four-
wave mixers and parametric amplifiers can produce the
squeezed mode of the electromagnetic field, a lot of atten-
tion has been paid to two-photon quantum optics [9].
The key property of the one-photon device is that its out-
put consists of independent excited modes with time-
stationary (TS) noise. The natural quantum-mechanical
operator for the mode of one-photon optics is its annihi-
lation operator and natural quantum states for the mode
are coherent states. The coherent states are eigenstates of
the annihilation operator, thus they have the sharpest
complex amplitude permitted by quantum mechanics.
The formalism of one-photon optics is founded firmly on
the annihilation operator as the fundamental operator
and on the coherent states as the fundamental quantum
states. The natural quantum-mechanical operators for
the modes of the two-photon optics are the quadrature-
phase amplitudes a,(¢) and a,(¢). The natural quantum
states are the two-mode squeezed states—the states gen-
erated by an ideal two-photon device. So it is important
to discuss the generalized squeezed states which are relat-
ed with quantum-group symmetry in two-photon quan-
tum optics.

In this paper, we investigate the most general
minimum-uncertainty states for the two-photon systems
which possess quantum-group symmetry. We show that
the squeezed states of the two-photon optics are simul-
taneous eigenvectors of a pair of transformed operators
A, and A_. For an important subset of the minimal-
uncertainty states, the expectation values and variances
of relevant operators are given explicitly. This paper is
organized as follows. In Sec. II we review some concepts
of quantum group. In Sec. IIl the two-photon system
which possesses quantum-group symmetry is demonstrat-
ed. Section IV is devoted to the investigations of the
minimum-uncertainty states of two-photon system. We
summarize in Sec. V the results of this paper.
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II. QUANTUM-GROUP SYMMETRY

Recently more and more physicists and mathemati-
cians are paying attention to the study of quantum group
which was introduced by Drinfel’d and Jimbo [6]. Con-
ventionally, quantum group is the Hopf algebra which is
neither commutative nor cocommutative. Given an asso-
ciative algebra A with unity, we say that 4 is a Hopf
algebra if we can define three operations A, S, and € on
A; A: A— A® A is the comultiplication; S: 4— A4 is
the antipodal map; and e: 4 —C is the counit. C is the
field over which A is an algebra. The operators A and €
are  algebra  homomorphisms  A(ab)=A(a)A(b),
e(ab)=e€(a)e(b), whereas S is an antihomomorphism,
S(ab)=S(b)S(a). These three operations must satisfy
the following axioms:

a,be A, (id®A)A(a)=(A®id)Ala),
m(id® S)A(a)=m(S®id)A(a)=€(a)l , (3)
(e®id)A(a)=(id®€)A(a)=a ,

where m is the multiplication in the algebra; m:
AR A— A, m(a®b)=ab. If 0: A® A— AR A is the
permutation map o(a®b)=b®a, it is easy to check that
A'=gpo A is another comultiplication in 4 with antipode
S'=S"1. A Hopf algebra is a quantum group if the
comultiplication A and A’ are related by conjugation

o-A(@)=RA(a)R™', REA®A, 4
and the following conditions are satisfied:

(id® A)R)=R;3R,, ,

(A®id)(R)=R3R,; , (3)

(S®id)(R)=R™'.

The motivation for these axioms came originally from the
theory of integrable models.

In general, there are two kinds of quantum groups [10]:
one is U, ;_,o(a) realized in classical systems, the another
one is U, ;(a) realized in quantum systems. After canon-
ical quantizations, the classical systems become quantum
ones, and then U, ; ,o(a) becomes U, 4(a). So quantum
groups with respect to their Lie counterparts introduce
independent parameters q.

The simplest example of the quantum group is the
quantum version of Weyl-Heisenberg algebra H,(4),

[, 1=[N +1]1—[N],

[N,b,]=—b,, [N,b]]1=b],
where N=b'b is the photon number operator,
[x]=(¢g*—q *)/(g—q~") (throughout this paper, we
limit ourselves to the case of ¢ €ER), and the deformed

operators b“r and b; are connected with the usual opera-
tors b and b ' in the following form:

b,=V[N]/Nb, bi=b"[N]/N . %)

(6)

The Hopf operations comultiplication, antipode, and co-
unit can be defined explicitly [11]. In the following sec-
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tions we show that the quantum group H,(4) plays an
important role in the two-photon system.
III. THE GENERALIZED TWO-PHOTON SYSTEM

Let us begin with writing down the free Hamiltonian
for the generalized two-photon system

Hy=(Q+eb', b, ,+(Q—eb’ b
=Hp+Hy (SP), (8)

—9q

where we have used the notations
Hg=Qb', b, ,+b" b ) (SP),
Hy=eb' b, ,—b" b_ ) (SP), ®
and SP denotes Schrddinger picture. It is not difficult to
check that Hy and H,, are commutative, i.e.,
[Hg,Hy]1=0. (10

Here the annihilation operators for the two mode in the
Schrodinger picture are denoted by b, ,and b_ , they
satisfy the quantum Weyl-Heisenberg group

[by b 1=[b" b! 1=0,
[by,bL  J=[NL+1]—[N.],
[Narblg1=bs,y [Nisby,1=—b,, .

(11)

The modulation picture (MP) is an interaction picture in
which the free time dependence at the carrier frequency
Q is transferred from the states to the operators, the
states retaining free time dependence at modulation fre-
quency €. Operators in the MP are related with these in
the interaction picture (IP) and SP by

—iHpt _ iHpt

~iH,, T
Rgpe =e MRpe M .

(12)

In the SP the quadrature-phase amplitudes are explicitly
time-dependent operators defined by

Q-+ 172
= € iQ
al(t)— 20 b+,qe !
Q 172
+ 5G| blee (5P,
ate |2 (13)
— . € i
a(n=—i| = b, ,e'
Q 172
+i| S5 | bl e (sp).

In the MP the quadrature-phase amplitudes are constant
and are denoted by
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a= o HIR! a,(t)e —iHg! where e is an arbitrary phase factor. Then we have
_ (|Aa,*)=((Aa})?) +{(Aa})?) ,
=a,(0) , (19
[+ 172 L [o= I/Zb‘r (JAa, ) =((Aa))?) +((Aa})?) ,
20 +a 20 e where the notation
‘ ; 14
ay=e MRl (1)e ! (14 lAal?*=(AaAal), = L(AaAa’+AaTAa) (20)
=a,(0) has been used. Using Eq. (17), one can derive the follow-
ing commutators:
O+ 12 Q—¢ 172 1 1] [ 2 2] 1 'l.[ T] ik[ t D
- € - t [apa]=[af,a5]=3(e " Ma,a)]+e a],a
= b_ . a2 a2 »ay ),
ey by g ti 20 .9 % . 1 1 1)
1 21— 1,2 411=L(,—ir t1_ jirp ot
Introducing the symbols [y, 03] [, @2 4(e [a, 2] =€ ana,]) -
= Q+¢ 12 (15) Introduce the notation
+= ) ‘ .
Q r=((aa)?)' 220, s;=((Aa)??)?20,
we can rewrite Egs. (14) in the following compact form: j=12. (2

alz‘—/l?(k+b+,q+l_bt,q),
(16)

azz-‘/l—i(—ik+b+,q+il_bf_,q) .

The two-mode quadrature-phase amplitudes obey the fol-
lowing commutation relations:

[apall=[aya]]=1{(A3 ([N, +1]—[N, ]
—Az_([N_ +1]=[N_D},
[a,a,]=0, (17)

(e afl=[a},a;)= S (AN, +1]=[N, )

+AL([N_+1]—[N_]} .

IV. THE MOST GENERAL
MINIMUM-UNCERTAINTY STATES

Now we are in a position to discuss the uncertainty
principles for the quadrature-phase amplitudes a; and a,.
The most important uncertainty principle places a lower
limit on the product of the root-mean-square uncertain-
ties in a; and a,. Introduce the Hermitian real and imag-
inary parts of a; and a,e™, i.e.,

a,=al+ia?,

The commutators (21) enforce the following uncertainty
principles:

rysy=Lte|sin(8—1) ,

r252 2 %‘Cl Sin(s_)b” Py

ris; = 1c|cos(8—1) , @
rys, = te| cos(8—1)| ,
where we define
(lapaf]y=ce®, c=|[a,a])]. (24)
Hence the problem is to minimize
(a2 Clay ) =(r2 +rd) (s +53)
=|(r +iry)s,+is,)|?, (25)

subject to the constraints (23). It is not difficult to check
that the following formulas are satisfied:

(1A Y (Aa,|?) =(rys; — 75,2+ (r s, + 7,8, )?
>1lc?cos(8—A), (26)

(JAa ) (Aa,|?) =(ris; 47,5, P +(r s, — s, )
>1le?sin®(5—2) . (27)

. (18)  If we choose A=58 (A=8—m/2), then Eq. (26) [Eq. (27)]
a,=e Mal+ial), implies the uncertainty principle
|
(18,12 |Aqy )22 L [ay,e]) |
=1({AL([N; +1]=[NL D+AL(N_+1]—[N_D}) . (28)

For A=8—m/2, Eq. (27) shows that the equality in Eq.
(28) imposes very restrictive conditions on the state [1),
the equality holds in Eq. (28) if and only if

(Aaj+iyAad)|y)=0, (29)

[
(Ac2+iyAad)|y)=0, (30)
where ¥ =(|Aa,|?)!/2/{|Aa,|?*)!/2. By taking appropri-

ate linear combinations of Egs. (29) and (30), one can
show that equality holds in (28) if and only if
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Aal . Aa2 )_
(JAa, )72 +l(|Aa2|2)”2 ly)=o0,
(31)
Aa} ) Aa} _
(lAa,?)'7 +i (lAa,?)'7 ly)=0.

In the general case, i.e., {|Aa,|?)#(|Aa,|?), we intro-
duce the following notations:

=l
K=

1 + 1
(lAa,|2)1/2 (IAa2|2)l/2

X{AL(INL +H1]—=[NL D+AL(N_+1]—[N_]),

_1 1 . 1
v 4 (IAal|2>l/2 (|Aa2'2>1/2 ’
X{AL(INL +H1]—= [N D+AL(N_+1]—[N_]),
(32)
1 (al) <a2)
= — 1 ,
a4 2v? (lAa1|2>1/2 (lAazlz)l/z
1 (al) 4 (a})
_= i
a 2v2 | (Jaa, )72 " (JAa,?) 7
Then Eq. (31) can be rewritten into the following form:
t —
(Appby ,+A_vbl DY)=a,ly), 33

(Ayvb A pb_ DY) =a_ly) .

The above formulas define the minimum-uncertainty
state as a simultaneous eigenvector of the operators

A + E)\.+ﬂb+,q+}\,_vb‘r_’q 9
A_=hovbl +A_pb_ . (34)

As may be easily verified by a direct computation, the
coefficients u and v satisfy

lul?—v*=1. (35)

We may parametrize p and v by means of hyperbolic
functions and, after an irrelevant phase transformation,
rewrite Eq. (34) as

A=A, coshrb, ,+A_e¥¥sinhrb!

26 o + (36)
A_=A e ®sinhrb), ,+A_coshrb_ , .

In the case of (|Aa,|?)=(|Aq,|?), i.e.,, v=0, and conse-

quently, r =0, the general minimum-uncertainty state

|#) reduces to the deformed two-mode coherent state

| con; Plugging in the definitions (16) of a, and a,, one

finds that Eqs. (33) reduce to

Ab, ly)=0, 37

as it should be. The two-mode coherent states can be
constructed by

I¢)cohED(b+,q:#+)D(b_'q,‘u_)!0)

_ n-12 o Pt
(exp,lp4?) "5;‘,0 VT In)
X [(exp I,u_lz)_l/zi ,u?_'ﬁ Im)|, (38)
é m=0 [m]'

where the g analog of the exponential is defined as
exp,(x)= ¥ *_,x"/[n]! and the Glauber displacement
operators D(b ,,p)and D(b_ ,,pu) are of the form

N.o+1
_y'ib Ti,q [

Dibsgopis)=exp [

. No+1

-”i[_&i—‘H_Tb+’q (39)

Using the fact that |¢),, is an eigenstate of b, , and
b_,q, we can show, first, that the expectation values of
the annihilation operator and the quadrature-phase am-
plitudes are given by

<bj:,q)=.u'j: ’
1 *
(a1>=§1zﬁ(k+#++k—#—) , (40)

<a2)=gZEVL§(—M+,¢++M_y:) :

and, second, that |}, has TS noise
((Aby ) =(Ab, ,AbL Y=(Ab, Ab_ )=0,
(41)
with
(laby 1) =1((NL+1]=[N.])) . (42)
Turn now to the general case of Egs. (33), i.e., the two-
mode squeezed states. An important subset of the two-

mode squeezed states consists of those with ¢=0. For
this subset, we obtain that

bi’q=t(Aicoshr—Athinhr) )

1 43)
blﬁr (Al coshr— A ¢ sinhr) .
+

Using these formulas, we can calculate the following ex-
pectation values for the subset of the two-mode squeezed
states:

(by,)= —L(aicoshr —a%sinhr) ,
TR

1 .
(a1)=‘/—§( coshr — sinhr)(a, +a* ), (44)
(a2)=;—-;( coshr + sinhr )(a, —a*) .

In addition, we can also show that |¢) has the time-
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stationary quadrature-phase (TSQP) noise (in terms of
creation and annihilation operators), i.e.,

((Aby )?)=0, (Ab, AbT )=0, (45)
with
(lAaby ,I*)=Lcosh(2r){[NL+1]—[N.]),

(Ab, ,Ab_ )= — sinh(2r)

_—1
2 A

(46)
X {A%(cosh’r ([N, +1]—[N,])

—AL(sinh?r){([N_+1]—[N_])} .

We can also write down the variances of the quadrature-
phase amplitudes explicitly,

(JAay |y =1e (A ([N, +1]—[N,])
+AZ{([N_+1]—[N_1])),
47)
(lAay|?) =4 M3 ([N L +1]— [N, ])
+AZ([N_+1]—=[N_])).

It is apparent that the minimum-uncertainty state |¢) is
squeezed state, the variance of a, is below the zero-point
level, and the variance of a, is above the zero-point level
in the general case of r=0.

In addition to the uncertainty principle (28), there is a
separate uncertainty principle for each quadrature-phase
amplitude

(lAa, 1) =L [ama, D], m=12. (48)

Equality holds in Eq. (48) if and only if the state vector
|) is an eigenstate of @,,,, i.e.,
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Aa,,|$)=0. (49)

SInce € =, it is immediately apparent from Eq. (28) that
it is impossible to find a state |¢) for which both
(|Aa|*) and (|Aa,|?) have minimum values. This
means that there are not simultaneous eigenstates of a,
and a,.

V. CONCLUSION

We have provided a generalization of the two-photon
system which possesses quantum-group symmetry. Start-
ing from the analysis of the output of the two-photon sys-
tem, we have introduced the natural quantum-
mechanical operators a; and a, which are defined in
terms of deformed oscillator operators. The commuta-
tion relations satisfied by the quadrature-phase ampli-
tudes have been calculated, and we have discussed the
uncertainty principles for the quadrature-phase ampli-
tudes. The most general minimum-uncertainty states of
the system are simultaneously eigenstates of operators
A, and A _ with eigenvalues a, and a_, respectively.
We have reparametrized the most general minimum-
uncertainty states by means of hyperbolic functions. The
properties of the minimum-uncertainty states are demon-
strated. For an important subset of the minimum-
uncertainty states, we have shown that they are squeezed.
The coherent states of the two-photon quantum optics
have been constructed explicitly by the Glauber displace-
ment operators.
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