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Above-threshold-dissociation dynamics of H2 with short intense laser pulses
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A rigorous time-dependent wave-operator method within the Bloch formalism is presented and ap-

plied to the calculation of the photodissociation rate of H2+ in intense pulsed laser fields. The wave

packet is simultaneously propagated on the radiatively coupled ground and electronically excited
potential-energy surfaces of the ion, combining a Lanczos reduction technique at low orders and recur-
sive time-dependent Bloch operators. Dissociation rates are extracted from an asymptotic-flow analysis

in the momentum space. The energy distributions of the protons, resulting from multiphoton absorption
above the dissociation threshold, consist of a sequence of peaks spaced by half of the photon energy.
The distribution of higher-energy peaks decreases with increasing intensity, due to stimulated emission

from dissociating fragments. Time-resolved dynamics reached by ultrashort intense pulses (=20-fs dura-

tion and peak intensity varying in the range from 3.5 X 10' to 3.5 X 10' W/cm ) leads to a thorough in-

terpretation of photon-exchange mechanisms between the field and the ion during the excitation and

fragmentation steps.

PACS number(s): 33.80.Gj, 33.80.Eh

I. INTRODUCTION

%ith the advent of intense lasers, an increased amount
of attention has recently been directed to the study of
photodissociation dynamics both from experimental and
theoretical viewpoints. It is now a well-known fact that
atoms irradiated by intense laser light exhibit some singu-
lar behaviors such as above-threshold ionization (ATI) by
absorbing more photons than the minimum needed to
ionize [1]. Similar nonlinear phenomena have also been
observed in molecules [2-4] with an experimental signa-
ture being the appearance of successive peaks separated
by one quantum of photon energy in the kinetic-energy
distribution of the ejected photoelectrons. Their addi-
tional interatomic degrees of freedom make the study of
molecules even more challenging. Very complicated be-
haviors may be observed even with simple diatomic mole-
cules, including multiphoton above-threshold dissocia-
tion (ATD), which can be evidenced by the observation of
peaks in the kinetic-energy spectrum of the atomic pho-
tofragments [4] spaced as in the ionization case by one
quantum of photon energy.

Many photons are absorbed by free-state —free-state
transitions once the molecule is already in the dissocia-
tion continuum. During the process of falling apart,
most of the absorbed energy is returned to the elec-
tromagnetic field via stimulated emissions, which cause a
slowing down of the fragments. The possibility of this
new phenomenon has recently been examined by refer-
ring to time-dependent scattering calculations [5] and ex-
perimentally confirmed by studying multiphoton dissoci-
ation of H2+ in laser fields with strengths comparable to
the internuclear binding energies (i.e., =50 TW/cm ) [4]:

H2 (1sog, v)+nA'co~H2+(2po „)~H++H(ls)+s(n) .

The ion-dissociation spectra have multiple peaks caused
by multiphoton transitions during dissociation of H2+.
Theory predicts a similar behavior by finding that multi-
photon absorption can easily lead [even in modest fields
=10 W/cm ) to dissociation pathways involving more
photons than the minimum number required (ATD)].

Experimental data suggest that the molecule might de-
form due to its rnultiphoton coupling with the laser field,
leading to "bond softening, "which results in dissociation
at laser intensities over 50 TW/cm . Some theoretical
works seem to confirm such a possibility [5—13].

Even more surprising is the distribution of higher-
energy peaks in the photofragment spectrum, which de-
creases with increasing intensity due to stimulated free-
state-free-state emission of the dissociating fragments
[5,12,13]. Apart from above-threshold dissociation and
bond softening, a vibrational trapping mechanism leading
to an important decrease in the dissociation rate at some
energies has also been predicted [14] and very recently
calculated [15].

A proper theoretical description of. such molecular
processes induced by intense fields, where Rabi frequen-
cies (co+ =pE/fi, with p the transition moment, and E
the electric-field amplitude) are comparable with vibra-
tional spacings, should be nonperturbative to take into
account highly nonresonant transitions that compete
with resonant ones. The dressed-molecule concept [16] is
one possible approach dealing with molecular electronic
potential-energy surfaces adiabatically modified by the
laser field. A molecule-field coupled-channel formalism is
used to treat simultaneously radiative and nonradiative
interactions. Laser-induced resonances, which obviously
are beyond the scope of perturbative techniques, can be
predicted. Their interpretation is attempted in terms of
Feshbach resonances in a diabatic picture involving all
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photon-number states introduced through the Floquet
analysis, or in terms of shape resonances in an adiabatic
representation [6,17,18]. Time-independent quantum
close-coupled formulations that have so far been
developed either refer to a full-collision [5,12,13,19] or a
half-collision process [6,17,18]. Artificial channels
[12,13] or complex rotation of the nuclear coordinate
[6,17,18] are some variants of these methods, yielding not
only the total broadening, resultant dissociation rate, and
associated ac Stark shift of the initial bound state, but
also branching ratios into specific open channels corre-
sponding to varying amounts of absorbed photons.
Time-dependent approaches have only recently been ad-
dressed and are in the developing state. In particular,
wave-packet calculations of multiphoton dissociation by
infrared lasers have already demonstrated the possibility
of ADT for a single electronic state [7].

More recently, wave-packet propagations by repeated
application of short-time propagators in the split-
operator form [8] have been performed on intense-field
photodissociation of Hz+ [9,10]. These calculations aim
to compare time-dependent and -independent results, and
are thus basically referring to cw lasers or continuous
lasers that are switched following a smooth adiabatic
pathway.

This paper presents a time-dependent wave-operator
theory within Bloch formalism to study the multiphoton
dissociation of Hz, stressing the sensitivity of the result-
ing kinetic-energy distributions with respect to the pulse
shape and intensity of the electromagnetic field. The
propagation technique, which is well adapted to the fast
changes of the Geld, appears to be very effective in the
present context. The time-dependent description, apart
from giving a physically appealing dynamical picture, al-
lows the possibility, through the use of ultrashort laser
pulses, of probing the photodissociation process during
and after the excitation, while the products fall apart.
An additional advantage, at least in the case of H2+, is
that difficulties related to the use of the length or velocity
gauges [5] can simply be relaxed by the use of pulsed
lasers. Using the dipole approximation, the molecule-
field coupling in the length (electric field) gauge pE
asymptotically diverges for the 1so. ~2po „ transition in
H2+ [20], which causes the violation of the requirement
that in a proper scattering theory the channel states must
be uncoupled at infinite separation. This is why in time-
independent approaches one has either to consider the
velocity (radiative field) gauge A p [5] or to use some
mathematical artifacts such as the complex rotation of
the nuclear coordinate [6]. Gauge invariance can be as-
sured only if a complete set of electronic states is con-
sidered. The results are actually highly sensitive to the
choice of gauge when expanding the wave function on
solely two electronic states [11]. With pulsed lasers,
clearly no asymptotic divergence can be obtained due to
the finite duration of the radiative coupling. Contrary to
previous time-dependent calculations [9,10], where the
purpose is to demonstrate the agreement with time-
dependent results using cw lasers, we proceed with the
length gauge that is more appropriate.

Section II presents briefly the essential features of the

time-dependent propagation technique by emphasizing
the following steps: (i) the so-called discrete-variable rep-
resentation (DVR) of the Hamiltonian; (ii) the wave-

packet propagation simultaneously on the two radiatively
coupled potential-energy surfaces ( iso and 2pcr„) using
Lanczos technique at low orders to initiate the recursive
time-dependent Bloch-operators method; (iii) the analysis
of quantum fluxes in momentum space. Section III is a
general discussion of the time-resolved dynamics, as a
function of the field intensity, starting from early excita-
tion events, where the laser pulse monitors the prepara-
tion step with an excited-state population oscillating in
phase with the field, to final dissociation probabilities
after absorption of a net amount of one, two, or three
photons. The way in which the radiative field and the
molecule adiabatically exchange photons is examined.
As in previous works, it seems that the initial decay of
the resonance is catalyzed by energy borrowed from the
radiation field in terms of absorbed photons, which are
subsequently returned to the field via stimulated emis-
sions. Considering the adiabatic nature of these ex-
changes, it appears that higher-energy peaks correspond-
ing to fast protons are less likely with increasing field in-
tensity.

II. THEORY

The aim of this section is to give an overall comprehen-
sive view of the theory and deals with the time evolution
of a wave function %(R, t) under the action of a time-
dependent Hamiltonian H(t). The Schrodinger equation
governing this evolution is

where R designates the dissociative nuclear coordinate.
The Hamiltonian itself, in the Born-Oppenheimer ap-
proximation, involves two electronic states (i.e., the
ground g and excited u states) that are radiatively cou-
pled:

1 d +V (R) —p (R)E(t)
2 dR gQ

H(t)=
—p„(R)E(t) 1 d + V„(R)

2 dg2

(2)

Vg(R ) and V„(R) are the corresponding potential ener-
gies and p „(R) the electronic transition dipole moment.
In the absence of any field, the ion is supposed to be at
the U=O vibrational level of its ground state g. The
electromagnetic-field amplitude E (t) is given as the prod-
uct of a time-dependent shape function e(t) by a real
cosine form, with peak frequency ~:

E(t ) =E(t )cosset . (3)

A. Discrete-variable representation of the Hamiltonian

The implementation of the so-called discrete-variable
representation requires (i) a basis set [P„(R), n =1 N]—
in which to expand the wave function of a system, and (ii)
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a Gauss quadrature rule with a set of quadrature points
[R„, n =1—N] and weights [w„, n =1—N J to compute
matrix elements in this basis [21]. When these conditions
are fulfilled, there exists an isomorphism between the
finite basis representation (FBR} in terms of [P„] and a
basis of coordinate eigenfunctions [u. ] satisfying the
Kronecker-5 property [22]:

u, ( R), ) =51), .

d2
2 Q„(R)

dR

N 2J 2~2

m'kj . m.njXsin sin /+1
(12)

We follow here the derivation given by Muckerman [23],
taking as the original basis [g„] the properly normalized
particle-in-a-box eigenfunctions:

1/2
2 . R R min

P„(R)= sin n m.

max min

N

H; =f h; (R }d.R = g urkh; (Rk) (ij =1—N),
k=1

where

(13)

is clearly nondiagonal.
The representation of the Hamiltonian Eq. (2) in the

DVR basis can be obtained by calculating the matrix ele-
ments of K;~ using Gauss quadratures, i.e.,

This choice together with equally spaced quadrature
points on the radial axis, given by h;, =u (R ) ——,+ V d(R) u, (R)

1 d
2 dR

(14a)

R„=R;„+n(R,„—R;„)i(N+1) (n =1 N)—
and adjusted equal weights

(t)„=(R,„—R;„)i{N+1) (n = 1 —N )

(6)
on the diagonal block of Eq. (2) or

(14b)h; =u (R )[ It, d(R )E—(t)]uj(R )

on the off-diagonal block of Eq. (2}.
The (2N X2N) Hamiltonian matrix that results is very

sparse as in all DVR methods. It can simply be calculat-
ed analytically (without any inaccuracy) combining Eqs.
(10)—(12), and its general form is schematically indicated
in Fig. 1. The two (N XN) diagonal blocks describe the
ground- (g) and excited- (tt) state Hamiltonians with ma-
trix elements given by

r

N

u„(R)=w„g g (R)P*(R„) (n=l —N) . (8)

Equation (8) is the central result of the DVR approach
and defines an analytically computable basis satisfying
the Kronecker property [Eq. (4)].

The time-dependent wave function ql(R, t ) is expanded
in the orthogonal (but not normalized) DVR basis:

N

q'(R, t)= g %(R„,t)u„(R) . (9)

d Qj
(R)

2 dR2

R max R min

%+1
Kg(u)

1J

+ Vs(„)(R; )5~) (1Sa)

lead through the above-mentioned isomorphism, which is
nothing but a discrete real sine Fourier transform, to the
DVR basis set

n=1

%e note that in a time-independent calculation of energy
eigenvalues and eigenfunctions the use of the orthonor-
mal basis [w„'~ u„(R)I would be more convenient.
Equation (9) presents in time-dependent problems the ad-
vantage that the expansion coefficients are the values of
the wave function at the grid points. The application of a
coordinate operator V(R) followed by an evaluation at a
grid point is straightforward and yields a diagonal repre-
sentation,

N

V(R ) P(R, t } = g P(R„,t) V(R„)u„(R„)
n=1

where the values taken by the electronic potential ener-
gies ( Vs or V„) at the grid points only contribute as diag-
onal terms. As for the two (NXN) off-diagonal blocks
describing the radiative coupling, the only nonzero con-

= V(Rk )%(R~ ),
when use is made of Eq. (4).

As for the kinetic-energy operator, one has

d2 N d'
%(R, t} = g %(R„,t) 2u„(R)R=R

1

" dR2 R =Rk

(10)

FIG. 1. Schematic representation of the Hamiltonian in the
DVR basis.
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tributions are U(r +) r 'H)=Q(r +) r )POU(r +) r 'H ff)P() (18)

Hg"=—
fj

~ max ~ min

N+1 (us„(R; )E(t )5; . . (15b) Po=(g')(u'( and Qo= 1 Po—are the projectors asso-
ciated with So and its complementary subspace. The
wave operator can be partitioned as

8. %ave-packet propagation Q(t„+„t„)=P()+X{t„+),t„),
with

(19a)

The time-dependent Bloch wave-operator theory that
has been presented elsewhere [24] requires the wave
packet to lie at initial time to, in a small subspace So of
the original Hilbert space where the total Hamiltonian
induces the dynamics. It is clear that, when considering
long propagation times, the initial wave packet spreads
out on a large part of the coordinate space with an in-
creasing number of non-negligible components on the or-
thogonal basis {taken here as an external sum u eu„,
j=1—N, n=1 —N of the vectors spanning the g and u

states). This indeed is inconsistent with keeping So small.
A way to overcome the difficulty is to introduce an evolu-
tive nonorthogonal basis ',

(
u'] at each time step t„by par-

ticularizing a vector u presenting the largest overlap
modulus (( u~()p(t„}) ( with the wave function of the sys-
tem at time t„:

X(t„+„t„)=Q()0( t„+„t„)P 0, (19b)

H, ff =POHQ, (2O)

and is associated with the time-evolution operator
U( r r H ff ), which (owing to the fact that So is precisely
of dimension 1}can simply be written as

U(t, t„;H,ff)=exp ——f (H,ff) dt' (21)

where the first term Po is nothing but the identity over
So, and the second term X (also called the reduced wave
operator) controls transitions towards the complementary
subspace So .

The effective Hamiltonian that drives the internal dy-
namics inside So is related to the wave operator through

Bj, JAP
t

j n )p(r ) j=p
(16a)

(16b)
Finally, the reduced wave operator X satisfies a non-

linear differential equation [24]:

In this new representation, the solution at time t =t„be-
longs to a one-dimensional space So spanned by the vec-
tor uz.

The wave-operator method focuses on the propagation
of the solution over the time interval [t„,t„+)],

q)(t„+ ) ) = U(t„+„t„;H )up,

driven by an evolution operator U expressed in terms of
the so-called wave operator 0 and the time-dependent
effective Hamiltonian H, ff [24]:

i A X(r ) =—Q, [1—X(r ) ]H [1+X(r) ]P, , (22)

which is the basic relation of the time-dependent wave-
operator formulation and is well adapted to an iterative
treatment. The method, although nonunitary, can be
considered as numerically exact in the sense that the er-
ror may be lowered by reducing the time step and/or by
resolving Eq. (22) at an arbitrarily high perturbation or-
der. The search for an iterative scheme as a solution for
Eq. (22) yields the following set of relations [24]:

X= lim X' ',
M~ oo

(23a)

X' '(t, t„)= g (u') ( u'( ——f H' 'dt'exp —f H' 'dt'

J+P

H(M) —(1 X(M —1))H(1+X(M—1)) g X(M —1)'
at

(M&1), (23b)

(23c)

This scheme is initiated using the lowest-order reduced
operator X'" obtained from a Lanczos reduced unitary
propagator [25] UL™(t,t„;H ) at mth order [26]:

(u'(U' '(t, t„;H)(u' &

j ' ' (u,'(U™(tt„;H)(u,' &

(24)
The inaccuracies resulting from a pure Lanczos itera-

tion scheme due to the neglect of slow variations of the

Hamiltonian H(t) over the time interval [t„+),t„], are
adequately lowered by the use of the Block wave-operator
formalism. This appears to be crucial when referring to a
fast time dependence (ultrashort or intense pulses, for in-
stance).

C. Flow analysis in the momentum space

As in all wave-packet calculations, the results that are
obtained from asymptotic behaviors correspond to an
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average energy. If the observables that are referred to are
rate coeScients, this may be an advantage. On the con-
trary, if the energy dependence of the probabilities is
looked for, a deconvolution of the wave packet is neces-
sary. Several treatments have been proposed in the litera-
ture [24,27,28], some of them based on temporal Fourier
analysis of the asymptotic wave packet [28], others on a
spatial Fourier analysis of the associated flux [24]. It is
this last technique, with an analysis carried out at some
large separation where the potential vanishes and before
the wave packet is absorbed (by an optical potential, for
instance), which is the one retained in this work.

If Ro denotes an asymptotic point along the radial axis
where both interaction and optical potentials have negli-
gible values,

2M{j—1}
M(R,„—R m;„)

With an initial wave packet normalized to unity,

"P =f ["F+{t)]~dt

(31)

gives the probability that the laser excitation leads to dis-
sociation in channel (c), with fragments momentum k be-
longing to an interval [k —b,k /2, kj. +5k /2], where

6k= 2~
(R max R min )

(33)

verified to be negligible [29]. [F),+(t)]z represents the
J 0

part of the flux that leaves, at time t, the interaction re-
gion with a discretized velocity:

R() =R;„+(i()—1)
R max R min

(25) The total dissociation probability in channel (c) is sim-

ply given by

the energy dependence of the probabilities can be de-
duced from an analysis in the momentum space of the
outgoing Aux calculated at Ro..

N/2
(c)p ~ (c)p

k. ~

j=1
(34a)

(}"4R t
["F+(t)] =R — "q('(R t )

R0

(26)

or equivalently by

(c)P J + [(c)F+{t)]
00 0

(34b)

k =2' /(R, „—R;„), N /2+ 1 ~j—~ N /2 . (27)

When this is combined with the discrete Fourier expan-
sion of %(Ro, t),

N/2

%(R,, t)=
j= —N/2+1

ql(k;, t )exP[2ivr( j—1)(io—1)/N ],
(28)

Eq. (26) can be rewritten as

N/2
[(c)F+(t)] —g [(c)F+(t )]

j=1

with

(29)

['"F„(t ) ] =Re "q)*(R,t }M(R,„—R;„)

Xexp[2im (j—1)(io—1)/N ]

XC(k, , t) (30)

The outgoing flux imposes only positive values of j in
Eq. (29}; the negative components of F are numerically

where M is the reduced mass and the index (c}designates
the continuum channel associated with either the ground

g or the excited u state. A complex exponential discrete
Fourier transform applied to the N equally spaced sam-
pling points on the interval [R;„,R,„] of the R axis
[Eq. (25)] gives access to a discrete momentum represen-
tation of the sampling points, equally spaced in the k
space:

III. APPLICATION TO Hg+

MULTIPHOTON DISSOCIATION

The methodology so far developed is applied to the
photodissociation of the (v =0,j=1) rovibrational level
of the H2+ ground state submitted to short electromag-
netic pulses with strengths bridging intermediate- to
strong-field limits. The ground and dissociative states
that have been referred to correspond to (isos) 'X+ and
(2p(r „)'X„+, respectively. They are represented by
Morse-type potentials. Their explicit form, and the R-
dependent expression for the transition dipole moment
((ts„(R) with the values of corresponding parameters, are
taken from Ref. [30]. The laser pulse of =20-fs duration
is given a symmetric Gaussian shape centered at
to=1000 a.u. (25 fs),

T '2
t tp

(35)e(t)=eoexp

with ~=333.3 a.u. The maximum amplitude co is varied
between 10 a.u. and 10 ' a.u. , which roughly corre-
sponds to a peak intensity varying from 3.5 X 10' W/cm
(intermediate-coupling regime with the electronic Rabi
frequency co& =fi 'pea of the same order of magnitude as
the lowest vibrational frequency of Hz+, co„=2000 cm ')
to 3.5 X 10' W/cm (strong-coupling regime, with
co„))co„).The laser wavelength A, =329.7 nm is chosen
to introduce an energetically favorable vertical three-
photon transition from the bound (iso, v=O, j=1) to
the continuum (2po „)state.

The maximum spatial extension retained for the wave
packet is [R;„=0a.u. ,R,„=34 a.u. ], which is con-
sidered to be large enough when compared to the Morse
potential well situated at R =2 a.u. and reaching its



5850 G. JOLICARD AND O. ATABEK 46

asymptotic value for R =-8 a.u. The number of quadra-
ture points on this radial axis is taken to be N =512, such
that the basis set on which the DVR Hamiltonian of Eq.
(15) is displayed contains 2N=1024 vectors. Moreover,
this allows the scanning of fragment momenta (i.e., veloc-
ities) in the range k C [

—47 a.u. , +47 a.u.] [Eq. (27)] cor-
responding to a maximum translational energy
E,„=1.23 a.u. , which is approximately nine times the
photon peak frequency (E,„=8.88 fico). Multiphoton
processes resulting into a final amount of three absorbed
photons via virtual transitions involving five or six pho-
tons exchanged can thus be accurately described with
such a basis.

For practical calculations, the outgoing flux is taken at
Ra =20 a.u. [cf. Eq. (25)] and the outgoing wave packet is
absorbed above R =27 a.u. using an exponential attenua-
tion factor (which plays the role of an optical potential).

A. Results

IO-'

ll .

10 ~

IX
V

JII
IROO 1400 1404 I (a.a.)

000 1000 IGLOO IGLOO 1004 1 (a a ) IOOO

FIG. 3. Same as in Fig. 2 for a field intensity of
I=2.84X10' %/em (no enlargement is needed in the asymp-
totic region).

The outcome of the calculation, before proceeding to
any flux analysis, is the time-dependent behavior of the
wave packet. This is illustrated in Figs. 2 and 3 for two
different peak intensities taken as 1.4 X 10' and
2.8X 10' W/cm (representative of the intermediate and
strong matter-field coupling regimes).

The upper parts display the square moduli of the
wave-packet components ( lip„ ll and

ll gs ll ) in the con-
tinua of the excited 2pcr „and the ground Iscrs states (the
projections on the bound levels of the g state are not tak-
en into consideration). The lower parts show on the same
time scale the trajectories followed by the center-of-mass
motion ( (R )s or (R )„)of the g or u components.

During the rise of the laser pulse (early excitation step:
t & 1000 a.u. ), similar overall behaviors, but with different
amplitudes, are observed for the two intensities; i.e., an

-3.10 3

~ ? 10

J&

h

I

14

A 1~

V

400 400 1000 I200 I400 1400 I (a.a. )

FIG. 2. Upper panel: square moduli of the wave-packet
components (~P„[( and 10 ((@ (( in the continua of the u and g
states as a function of time for a field intensity of I=1.4X10'
W/cm (for t ) 1400a.u. , ~~1(. ~~

is enlarged by a factor 10 ). The
pulse shape is indicated, in arbitrary units, by the dotted line.
Lower panel: center-of-mass mean value motion for the two
components (R )„and (R ),„.

increase in lip„ ll
driven by the pulse and following its

time characteristics (shape and oscillations). Only a
negligible amount of the wave packet is developed in the
continuum of the ground state (i.e., llPz ll

« lip„ ll ).
This initial phase of the excitation leads to quasi sta-

tionary wave packets: the center-of-mass mean values of
the g and u components remain practically unchanged.
More precisely, they correspond to (R )„=2.20 a.u.
(Figs. 2 and 3) close to the equilibrium position of the
field-free H2+ ion, and (R )s =4 and 3.6 a.u. (Figs. 2 and
3). This last value is roughly the abscissa of the crossing
point between the dressed g and u channels, where the
probability for a photon emission is enhanced (the energy
gap 3.706 eV between g and u states at R =3.6 a.u. is
close to the peak energy (frequency) 3.761 eV, of the
laser).

Completely different behaviors are obtained during the
falloff of the laser pulse for the two intensities. In the
intermediate-coupling regime (Fig. 2), the excited-state
component of the wave packet llew(„ll follows the driven
electromagnetic field such that asymptotically (for
t =2000 a.u. , where (R„) reaches 20 a.u. ) only a very
small fraction ( =10 ) of the early (t =1000 a.u. ) wave
packet ends up in channel u. The ground-state continu-
um component llew( ll

increases smoothly and reaches a
comparable asymptotic value (at t =1300 a.u. ). An in-
spection of the center-of-mass motions ( R ) or ( R )„,
shows that the u component starts to move towards the
end of the pulse (at t =1400 a.u.), reflecting a post-pulse
dissociating motion of the u-state population. A smooth
trajectory is observed for the g component with a rather
constant slope after t = 1200 a.u.

In the strong-field regime (Fig. 3), the excited-state
component keeps on rising even during the falloff of the
laser pulse with decreasing amplitude oscillations to
reach an asymptotic value 2.5 times larger than during
the maximum of the pulse. It is also interesting to note
that this value (related to the dissociation cross section) is
10 times the one that is obtained in the intermediate-field
case. The continuum ground-state component shows an



ABOVE-THRESHOLD-DISSOCIATION DYNAMICS OF Hq+. . . 5851

IO 2 ph

oscillating behavior with a bell-shaped envelope with a
maximum at t = 1350 a.u. Its asymptotic value is approx-
imately —,', that of the u-state component. The (R )„ tra-

jectory shows small-amplitude oscillations (around 2.2 —3
a.u. ) between t =1000 and t =1350 a.u. , followed by a
smooth and constant rise. The (R )g trajectory has a
similar behavior starting at =4 a.u. , with a faster rise
after t =1350a.u.

The asymptotic-flow analysis can be performed in a
time-resolved manner using a sudden perturbation tech-
nique. The laser pulse is suddenly cut at successive times
t; between 600 and 2000 a.u. and the post-pulse wave

packet allowed to propagate in field-free conditions until
the asymptotic region Ro is reached. The results, in
terms of relative dissociation probabilities as a function of
t; and the proton kinetic energy k,

"P„(r,)=f ['"F„+(t;,r)]„dr, (36)
J 00 J

for the two field intensities under consideration are
displayed in Figs. 4 and 5.

The vertical bars mark the resulting proton kinetic en-

ergy following the absorption of n =1, 2, or 3 photons of
3.761 eV. For very short times (t (900 a.u. ), the early
dynamics seems to proceed via a three-photon absorption

in channel u in both intermediate- and strong-field cases.
The main difference between the two intensity regimes is
that the further time evolution leads to two comparable
peaks corresponding to either two- or three-photon ab-
sorption and to dissociation in channels g or u, respec-
tively, for I= l.4 X 10' W/cm, whereas for
I=2.8X 10' %'/cm but one peak is obtained describing
one-photon absorption and dissociation in channel u. A
closer inspection of the dynamical behavior (for
I=1.4X 10' W/cm ) shows how the dissociation proba-
bility in channel g corresponding to an overall two-
photon absorption increases by taking non-negligible
values from t, =1300a.u. and how the stabilization of the
three-photon peak (channel u) occurs at t; =2000 a.u. A
different dynamical picture is observed in Fig. 5 (for
I=2.8X10' W/cm ), where a progressive deformation
of the relative dissociation probability on surface u leads
from a three-photon to a one-photon absorption. A non-
negligible dissociation probability on surface g with an
overall two-photon absorption develops only temporarily
during the fallofF of the pulse.

The time-stabilized dissociation probabilities [cf. Eq.
(32)] as a function of the proton kinetic energy (i.e., the
so-called proton-energy spectra for different field intensi-
ties} are collected in Fig. 6. A closer inspection of the
peaks reveals a Gaussian form (except for very-strong-
field cases}, whereas a Lorentzian behavior was obtained,
in a previous calculation based on a cw laser, from which
the common width for the resonance could be deduced
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[5]. This is to be related with the pulsed character of the
laser, which delivers several frequencies with different in-
tensities. A spectra analysis, assuming absorption cross
sections just equal to the intensity for a given frequency,
leads to a modelization of the peaks with widths in fair
agreement with that depicted in Fig. 5. (The full argu-
ment and derivation will be presented in a forthcoming
paper [31].)

Apart from a considerable increase of dissociation
probabilities with increasing field strengths, one observes
a progressive shift of branching ratios from the three-

photon peak that dominates at intermediate intensities
(below 1.4X10' W/cm ) to the one-photon peak that
prevails over the others at higher intensities (above 10'
W/cm ). Intermediate situations, such that the one
occurring for I=5.6 X 10' W/cm, where the two-
photon peak dominates, are also depicted. We note that
the results are in qualitative agreement with the ones re-
ported in Refs. [5,13].

Finally, the bulk of the information that can be
reached concerns the total dissociation probabilities, re-
gardless of the resulting proton kinetic energy. They are
obtained either by calculating the area under each peak
of Fig. 6 [as indicated by Eq. (34a)] or by direct time in-

tegration of the total outgoing flux [Eq. (34b)] [32]. Table
I gathers the results for all laser intensities under con-
sideration. The total dissociation probability is detailed
into three parts that correspond to the three peaks of Fig.
6. Namely, '"P(

& ] denotes the dissociation probability
in channel c (i.e., g or u) resulting from an overall balance
of m-photon absorption. It is important to note that,
during the excitation step, more than m photons (say n)

may be absorbed. Some of them are returned to the radi-
ation field via stimulated emissions during the dissocia-
tion process itself. m represents the algebraic sum of ab-
sorbed (+ ) and emitted ( —) photons. A qualitative way
to reach n is to evaluate the intensity dependence I" of
the total dissociation probability. A local power law

( o-I") is indicated in Table I.

B. Discussion

The previous results offer sufficient information to elu-
cidate the multiphoton exchange mechanisms taking
place during dissociation in the intermediate- and
strong-field coupling regimes. This discussion can con-
veniently be conducted by referring to the field-dressed
diabatic and adiabatic channels of Hz+ already con-
sidered in Ref. [5], which we reproduce in Fig. 1 for com-
pleteness.

1. Ittterrnediate jfeld I=1.4X 10'~ W/em'

According to Table I, the total dissociation probability
obeys, in this regime, an intensity-dependence law in ap-

TABLE I. Dissociation probabilities in channel c =(u or g) resulting from m =1-, 2-, or 3-photon
absorptions for varying field intensities. P, „1 is the total dissociation probability and n indicates the lo-
cal intensity power law {I")that is followed.

I (W/cm )

3.50x10"
1.40x 10"
3. 15X 10'
5.60x10"
8.75 x10"
1.26x10"
1.71 X 10'
2.24X 10'
2.84X 10'
3.50x10"

(M)
P(lint )

0.78 X 10
0.64 x 10-'
0.876x10-'
0.561x 10-4
0. 135X 10
0. 142X 10
0.755X 10

0.235
0.478
0.709

(g) ~~ (2%co)

0.5x 10
0. 110x lo-'
0.203x 10
0.139x10-'
0.569x 10
0. 171X 10
0.418X 10
0.888X 10
0. 170x 10-'
0.307X 10

(u) DP( 3firo)

0.34 x 10-'
0. 145x 10
0.851 x 10-'
0.210X 10
0.325x 10 '
0.365x 10 '
0.326x 10 '
0.249x 10
0. 133x 10 '
0.530x 10-'

ptotal

0.39x 10-'
0.255 x10-'
0.296 x 10-'
0.216X 10
0. 195x 10-'
0.159x 10-'
0.797X 10

0.243
0.495
0.739

3.02
3.02
3.45
4.93
5.75
5.23
4.18
3.03
1.89
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FIG. 7. Potential-energy curves of H&+ dressed with three
photons of wavelength 329.7 nm. The solid lines correspond to
the interacting diabatic channels. The dotted lines represent the
field-dressed adiabatic curves after diagonalizing the radiative
interaction for I=1.4X10"W/cm2 (taken from Ref. [5]).

proximately the third power I, indicating that the main
mechanism is a three-photon absorption from channel

lg, n =0) to channel lu, n =3). But, contrary to what
occurs at lower intensities, the dissociation probability
into channel lg, n =2) is no longer negligible, as can be
seen from Fig. 6. The time evolution of the proton ener-

gy spectrum, displayed in Fig. 4, clearly indicates the way
in which starting from a diffuse probability peak on an in-
itial three-photon process changes the relative probabili-
ties. The probability to dissociate into channel lg, n =2)
takes on non-negligible values just after the pulse max-
imum (t =1200 a.u. ), and stabilized results are obtained
for t =2000 a.u. , with a total dissociation probability in
channel lu, n=3) ("P3& =0.145XIO ), larger by a fac-
tor of 1.32 as compared to the one in channel lg, n =2)
(ePz& =0.110X10 ). A comprehensive view of the dy-
namics is provided by Fig. 2. For the clarity of the dis-
cussion, we are considering three characteristic time
domains: (i) t E [600 a.u. , 1000 a.u.], which corresponds
to the early excitation step where the laser pulse is rising;
(ii) t E [1000a.u. , 1400 a.u.], which corresponds to the late
excitation step where the laser pulse is falling off, and (iii)
t C [1400 a.u. ,2000 a.u.], reflecting the asymptotic motion
of the wave packet in approximate field-free conditions.
During the rise of the pulse, the wave packet is prepared
on the lu, n =3) channel driven by the laser field. Its
corresponding component lip„ ll closely follows the oscil-
lations and the shape of the pulse. Its center of mass is
stationary around the equilibrium value of the ground
state (R )„=2.2. a.u. The population llg~ll in the con-
tinuum of the lg, n =2) channel is negligible. Such a
dynamical picture is consistent with a preparation step
involving a vertical Franck-Condon (FC) jump from
lg, v=O, n=0) induced by a three-photon absorption.
After the pulse maximum, during the second half of the
excitation, the population in channel lu, n =3), always
driven by the field, decreases with it, and the center of
mass of the corresponding wave packet lg„ l

is still sta-
tionary at (R )„=2.2 a.u. , which again is consistent with

the FC vertical-jump model. Simultaneously, a small but
non-negligible population smoothly rises in channel

lg, n=2). Its center-of-mass mean value starts to in-
crease at (R )e=4 a.u. , which roughly corresponds to
the crossing distance of the dressed diabatic channels of
Fig. 7. This is an indication that a small amount of the
excited state P„wave packet moves towards the crossing
of lu, n =3) and lg, n =2) channels, where a photon
emission takes place, bringing part of the population in
channel lg, n=2). Such an interpretation has already
been invoked in Ref. [5] when describing an implicit cw
laser experiment [33]. At time t=1400 a.u. , the laser
pulse is almost over, and the remaining post-pulse popu-
lations in channels u, n =3) and lg, n =2) move in ap-
proximately field-free conditions towards dissociation
valleys. Concerning (R )„, there is an important ac-
celeration with a subsequent mean velocity of =0.05 a.u. ,
whereas (R )e shows a monotonic increase with a lower
velocity of =0.02 a.u. It is this slowing down of the pro-
tons by a stimulated emission during the process of frag-
mentation that has been referred to as a dissociative
bremsstrahlung [5]. At t =1600 a.u. , the proton energy
spectrum is almost stabilized (Fig. 4), and the
asymptotic-flow analysis done at R =20 a.u. (reached at
t =2000 a.u.} gives the relative total probabilities indicat-
ed in Table I. In summary, the leading mechanism is a
three-photon FC vertical absorption from the ground
state (intensity dependence law I }, followed by stimulat-
ed photon emission occurring during the process of frag-
mentation (intensity dependence law I ) and breaking the
proton kinetic energy.

2. Strong fiel I=2.84X IO W/cm

A more-complex situation occurs when very intense
fields are considered. Figure 6 indicates a progressive
change in the branching ratios, starting from a dominant
three-photon peak at lower intensities, to a dominant
two-photon peak at intermediate to strong intensities, to
end up with a dominant one-photon peak for very strong
fields. Such a one-photon peak seems unlikely at low in-
tensities. At high intensities, however, two possible
mechanisms can be involved; either (i) a five-photon pro-
cess, Ig n=O&~lu n=3&~lg n=2&~lu n=l&, or
(ii) a one-photon direct process lg, n =0)—+lu, n =1),
which can be competitive if the potential barrier of the
adiabatic dressed curves (of Fig. 7) is lowered such that
tunneling occurs as the leading process. This possibility
has recently been suggested by Bandrauk [12] and dis-
cussed within a close-coupled calculation aiming to mod-
el a cw-laser experiment [13]. The intensity-dependence
law of the total dissociation probability (Table I) indicates
a change between I and I when considering field
strengths ranging from 2X 10' to 4X 10' W/crn, in fair
agreement with the previous expectations. Figure 4 gives
the time evolution of the proton energy spectrum, start-
ing as in the intermediate-field case (the laser intensity at
t =600 a.u. is very moderate) from a diffuse peak mainly
centered on an initial three-photon absorption. The fur-
ther evolution is very fast, and the one-photon peak is
developed and stabilized very soon, after some large-
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amplitude oscillations. A contribution to the two-photon
peak from the ground-state continuum appears at
t = 1000 a.u. but remains very small.

The complete dynamical picture is displayed in Fig. 3.
The early dynamics (r &1000 a.u. , i.e., during the pulse
rise) is roughly dominated by the same events as in the
intermediate-field case. The initial, pulse-driven wave
packet prepared on the excited

~
u, n =3 ) state by a verti-

cal FC jump ((R )„=2.2 a.u. follows the oscillations of
the field and remains stationary. The ~~ps ~~

population is
negligible.

A completely different scenario is valid during the
second period of the excitation (1000& t & 1400 a.u. , i.e.,
during the pulse fallolf}, where the driven excited-state
population ~~f„(~ increases considerably while its center
of mass moves from (R ) =2.2. a.u. (at t =1000 a.u.} to
(R )„=4 (at t =1400 a.u. ). The ground-state continuum
population ~(ps~~ increases in turn and presents a max-
imum value for t =1350 a.u. Its center-of-mass motion
follows closely that of ~~g„~( . The two abave-mentioned
mechanisms are thus competing. At the pulse maximum,
the adiabatic potential barrier between channels

~ g, n =0 ) and
~
u, n = 1 ) is lowered enough to give access

to the
~
u, n =1 ) channel by a direct one-photon absorp-

tion; this explains the important increase of ~~g„~~ after
t =1000 a.u. and its mean localization at (R )„=4a.u.
(the position of the barrier). The part of the population
of the excited state originating from the three-photon ab-
sorption proceeds adiabatically on channel ~g, n =2) by
stimulated emission of a photon at (R )s =4 (the position
of the crossing point). This gives rise to an increasing

and field-driven (~g ~(
. At t =1350a.u. , (R ) and (R )„

have comparable values (4.5 —5 a.u.},while a second pho-
ton is emitted from channel ~g, n =2 ) to channel

~u, n =1), resulting in a decrease of )~t/r (~
to the benefit

of ([@„~~ . Later, field-free dynamics (t ) 1400 a.u.} yields
the asymptotic motions of the wavepacket components.
Again, contrary to the intermediate-coupling regime,
there is a factor of 2 in the relative velocities of the
ground- and excited-state components of the wave pack-
et, but now it is the excited-state component that leads to
less energetic protons, supporting the fact that the one-
photon tunneling or the five-photon mechanism dom-
inates over the three-photon ~g, n =0)~~u, n =3) one.
The final asymptotic flow analysis provides the figures
displayed in Table I, indicating a total probability ( Pr }
that is 28 times larger than (sPz+„}, whereas ("Ps+„}is
negligible. In conclusion, the leading mechanism is a
one-photon absorption (intensity dependence law} which
is partly completed with a three-photon absorption, fol-
lowed by the emission of two photons (intensity depen-
dence law ~I }during the fragmentation.
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