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Rotational spectrum of HD perturbed by He or Ar gases: The efFects of rotationally inelastic
collisions on the interference between allowed and collisionally induced components
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The spectral line shapes for the HD rotational spectra perturbed by He and Ar gases, which show in-

terference between allowed and collisionally induced dipole transitions, are calculated including the
effects of inelastic rotational collisions. The general parametrization of the line shape, including inelastic
collisions, requires six independent real parameters as opposed to four in the theory of Herman, Tipping,
and Poll [Phys. Rev. A 20, 2006 (1979)]. Semiclassical calculations based on classical trajectories indi-

cate the importance of the inelastic effects and show qualitative agreement with the experimental param-
eters. However, it is clear that a fu11 explanation of experimental data will eventua11y require a full quan-
tum treatment.

PACS number(s): 32.70.Jz, 32.80.Pj, 34.50.Rk

I. INTRODUCTION

It is now well known that collision-induced transitions
can interfere with allowed transitions to give a line shape
that is different from the normal Lorentzian line shape.
This interference would, of course, be insignificant if the
allowed dipole moment were to dominate. The transi-
tions that are suitable for the study of such interference
effects are therefore those with a very small allowed di-
pole moment. This criterion is met nicely by the rota-
tional spectra of diatomic molecules composed of
different isotopes of the same atom. The permanent di-
pole moments of these molecules arise only from nonadi-
abatic coupling effects, and are therefore very small.
Considerable experimental work has been done with the
HD molecule where the interference effects have been ob-
served over a wide range of perturber density and tem-
perature [1—6].

The theoretical understanding of this interference
phenomenon was first developed by Herman, Tipping,
and Poll [7]. Their theory (referred to hereafter as the
HTP theory) explains the main features of the experimen-
tal spectrum. Namely, it explains the existence of a
dispersion term in the expression for the spectral line
shape and accounts for the perturber-density dependence
of the integrated absorption. However, detailed compar-
ison with experiment has not been successful [3—5]. It is
the hypothesis underlying the work to be reported here
that the difficulty lies in the fact that the HTP theory
completely ignores I- and J- changing collisions. Both
m- and J- changing collisions are known to be crucial in
determining the width of molecular rotational spectra [8].
One can expect that they would also play a role in the
determination of other collision-related quantities such as
the interference parameters. A theory of the interference
that includes the role of both m- and J-changing col-

lisions has recently been developed [9]. The exploration
of its implications and consequences is the goal of this pa-
per.

The semiclassical calculation of the spectral parame-
ters for both HD-He and HD-Ar systems given here
shows much better qualitative agreement with the experi-
ment than that obtained from a HTP-type theory. It also
indicates that a complete explanation of HD data will re-
quire a full quantum treatment, as to be expected from
the large energy spacing of the HD rotational levels and
from the comparison of our semiclassical widths with
those of a quantal calculation [10]. We have to restrict
ourselves to the semiclassical calculation because details
of a full quantum calculation of interference parameters
are yet to be developed. However, our semiclassical
theory should give much better quantitative results for
heavier diatomic molecules. Those calculations can be
carried out when experimental interest arises, and when
data on the collisonally induced dipole of these diatomic
molecules, similar to that given by Borysow, Frommhold,
and Meyer [11]for HD-He and HD-Ar systems, become
available.

The paper is organized as follows. In Sec. II, we give
the general parametrization of the line shape including
the effects of interference between allowed and collision-
induced dipoles. Some general features of this line shape
and the effects of inelastic collisions on its parametriza-
tion are discussed. We point out that the general para-
rnetrization of the spectrum requires six independent real
parameters as opposed to four in the HTP theory. Sec-
tion III gives the theoretical basis for the semiclassical
calculation of the line-shape parameters. In Sec. IV, re-
sults of such a calculation for the pure rotational spec-
trum of HD perturbed by He and Ar gases are presented
and compared with both the experimental data and the
results of an HTP-type calculation. Conclusions are
drawn in Sec. V.
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H. PARAMKTRIZATION OF THE LINK SHAPE

The absorption coefficient a(co) derived in Ref. [9] for a
transition from the ground state J to the excited state J,
can be written in a more transparent form than given in
Eq. (67) of Ref. [9],namely,

a(co)=nil (1—e ~" )P(J )3'

XRe[i(h+iy) (ptt+nppi)(Ittt+npiJ2)],

where P= 1/kti T; co is the frequency of the incident light;
co, is the molecular transition frequency; 5=co—co,g is
the detuning; and P(J) is the Boltzmann distribution
function normalized according to QJ(21+ i)P(J)=1. It
is related to X used in Ref. [9] by XII=(2J+1)P(J). y
is the complex line broadening coefficient given by

y=n
m, q, m

I Im, m

J, 1 Jg
—m,

'
q mg

1 J
& J,m,'ISIJ, m, &&J,m,'ISIJ, m, &"—m, g mg

(2)

where S is the S matrix for the collision between the radiator (HD in this case) and the perturber (He or Ar atom).

v =&J, II@ IIJ, & (3)

is the reduced matrix element for the allowed radiator dipole, which can always be taken as real. The number densities
nz and n are those of the radiator and perturber, respectively. The dipole moments p, and p2 are given in terms of
collision-induced dipole operator p,, by

J, 1 Jg
p~= g (

—1) ' ' f dtoe 'g
[&J,m, l

U (to, —oo)[p, (to)] U (to, —oo)IJ m & ], (4)
m, q, m

and
—P(E,. —E )

P2 yP2
J,.

where

m, q, m, m.
(
—1) ' J, 1 Jg

—m, q m

X f dtoe " '[&J,m, IU (oo, to)[p, (to)]~U (to, — o)oIJm;&& J m ISIJm; &"], . (6)

U (t, t') is the time evolution operator (in the Hilbert
space) for the radiator-perturber collision (see Sec. III).
P, (t) is the collision-induced dipole operator of the radia-
tor in the interaction picture, i.e.,

(7)

where H„ is the Hamiltonian associated with the internal
degrees of freedom of the radiator (HD) and R is the ra-
dial vector connecting the radiator to the perturber.

In Eqs. (2), (4), and (6), the subscript a denotes the
average over impact parameter s and velocity U. An an-
gle average has been performed and is represented by the
3-j symbols in Eqs. (2), (4), and (6). Specifically,

[ ' ' ],=f dv4vrv w(v)f ds2vrs . , (8)
0 0

where w(v) is the Maxwell-Boltzmann velocity distribu-
tion function for the relative motion between the radiator
and the perturber. The integration over time of closest
approach to, as implied in Eq. (67) of Ref. [9], has been
written out explicitly in Eqs. (4) and (6).

The dipole moments p, and p2, just like y, are general-

I

ly complex numbers. Defining real parameters
y i y i y2 y2 according to

y=n (B+iS),
y&+'y&

v2=y2+~y2'

(9)

(10)

BnI lm.
(1+an +bn )

(b Sn ) +(Bn )—P P

(b Sn~ ) ln. —
(cn +dn )

(b, Sn ) +(Bn )—P P

with real parameters a, b, e, d defined by

a=(K+»)li ~,

(12)

(13)

we obtain the following general parametrization for the
absorption coefficient:

a(co)=n~ (1 e" )P(Jg)lpgl—
4K QP

3'
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b=(3 iv2
—
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c =(V I'+V 2 ) ~P'R
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(14)

(15)

(16)

&
J'm'l U (t', t)lJm & =5J.J5 ~ exp —i f Vg (t)dt

t

«o}2.(to)

(20}

The line shape is therefore characterized in general by six
real parameters (B,S,a, b, c,d), which are independent of
the perturber density. 8 is the usual broadening
coefficient (half-width per unit density). S is the frequen-
cy shift per unit density. Unlike the usual absorption
profiles obtained without the collision-induced dipoles,
the profile given by Eq. (12) has a dispersion term whose
importance is determined by parameters c and d. Fur-
thermore, the integrated absorption coeScient now de-
pends on the perturber density n in contrast to the usual
absorption profile. More specifically, we have

fdc@a( ot)leo= constX(1+anz+bnz) . (17)

This equation shows clearly how the parameters a and b
can be determined experimentally.

The parametrization given by Eq. (12) is completely
general and independent of the semiclassical approxima-
tion. Its validity relies only on the binary-collision ap-
proximation and the approximation of isolated lines [9].
It applies also to atomic spectra, if a heavy radiator ap-
proximation is made [12]. It is obvious from their
definitions that the parameters a, b, c,d depend (as do B
and S) on both the temperature and on the initial and
final states. Such dependence is quite evident in the ex-
perimental data on the HD rotational spectrum [5,6].
Our calculations will show that m- and J-mixing is cru-
cial in explaining the dependence of these parameters on
the initial and final states.

It can be shown from the unitarity of the U and S ma-
trices that we have the following identity:

(18}

This means we have only to calculate the p2 (J; ) to ob-
tain both p, and p2. It is clear from Eqs. (4), (5), and (6)
that p, and p2 differ from each other in general. The ex-
ception occurs either if inelastic collisions are not impor-
tant, i.e., when

lp
X exp i—f [VJ' (t) —VJ' (t)]dt

(21)

where

}Lt,(to)= g (
—1) '

m, q, m

J, 1 Jg
—m, g mg

(22)

III. SEMICLASSICAL TREATMENT
OF HD- RARE-GAS COLLISIONS

For a linear molecule treated as a rigid rotor, its in-

teraction potential with an atom depends on only two
variables R and 8, where R is the magnitude of R, the ra-
dial vector connecting the center of mass of the molecule
to the atom; 8 is the angle between R and the molecular
axis. We can always expand this potential as

V(R,e)= y V'"'(Z)P„(cose) .
k=0

(23)

This collisional interaction is treated semiclassically in
the same spirit as in, for example, Refs. [8] and [13].
Namely, the spherically symmetric part of the potential
V' '(R), which does not couple difFerent rotational states
of the molecule, is used to determine the classical trajec-
tories of the relative motion of the atom and molecule.
The time-evolution operator U (t, t') is then determined
using the anisotropic part of the potential

This is our version of the theory of Herman, Tipping, and
Poll [7].Calculations based on this HTP-type theory will

be carried out as a benchmark for the full semiclassical
calculation, which includes both m and J couplings. The
choice for the effective potential V' is discussed in the
next section, along with other implications of this HTP
approximation.

or if

kg T ))5E,

V'=—V —V' '= g V'"'(R)Pk( cose)
k=1

through the equation

(24)

&
J'm'l V' (R(t))lJm &=5J.J5 VJ' (R(t)},

a11 formulas become much simplified. We have

(19)

where hE is a typical energy spacing. In both of these
cases we obtain p& =p2. The number of independent pa-
rameters is then only four, and the parametrization given
in Eq. (12) becomes equivalent to that of Herman, Tip-
ping, and Poll [7], even though the definitions of the pa-
rameters are in fact different in the two treatments [9].

If an effective potential V' is taken that is diagonal in
both J and m, i.e.,

i' U'(t, t')= V"(R(—t))U'(t, t'),
dt

where

(25)

V'(R(t))=e ' V'(R(t))e

and R(t) is defined by the classical trajectory.
For the HD molecule in its ground electronic state, the

rotational wave functions
l
Jm & are simply the spherical

harmonics YJ . The matrix elements of V' between
these rotational states are obtained from the spherical-
harmonic addition theorem
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& J'm'I V'(t)IJm ) =(—1) [(2J'+1)(2J+1)]'~ 20-

k J
Pl ill fg Pl

' 1/2

X
J' k J

2k+ 1
L

~ ((9(r),p) V'"'(R (i) ) (27)

O
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I
I

I.I. . . I

V(k) (R)
(2k+1) V„(R,x ' )P„(x)dx, (28)

R &t& 8&t( ), 8(t), and P are the coordinates that describe the
classical trajectory in a space-fix d f . S'e rame. ince the tra-
jectories are determined from a spherically symmetric po-
tential, we can always set /=0 t d fi h

lanp ane. The matrix element of V'(t) will then always be
real.

One usually has available only the potentials for

simpler than those for HD since the symmetry b t ey e ween
restricts the summation in Eq. (23) to even-k

terms only. It is straightforward, however, to obtain the
HD —rare-gas potentials from those for H2-rare-gas sys-

tems. With nonadiabatic couplings ignored, these two
potentials are simply related by a shift of ori in
center of mamass of H2 to the center of mass of HD. It is
straightforward to show

R (A)

FIG. 2. HHD-He potential. Solid line: V' '(R); dashed line:
V"'(R); dash-dot line: V' '(R).

Recall that in deriving the expressions f«rI iI2 [91
an angle average has been performed. As
E s. (2) (4

e . s a consequence,
qs. , j, and (6) are invariant under rot t'

8 ecificall
r ro a ion.

be ch
p

'
a y, different (space-fixed) quantizatioza ion axes can

e c osen for different impact parameters, with no need

them
o any operations at the end of the calculat' t

em all in a single space-fixed frame. We can take the

fixed z
full advantage of this property b h

'
hy c oosing t e space-

xed z axis, according to which the t t d 8m s a e an (r) are
e ne, to point always to the point of closest approach.

We may also take t =0 to refer to the oint ofpo o o p
c . e ave then for all impact parameters

R'=(R2+ fi2+2Rgx ))'2

x'=(Rx +i)(R 2+Qi+2R Qx )

(29)

(30)

where I' &x&
'

& is the Legendre polynomial and R' and x'
are given in terms of R and x b

V'( r) = V'(-t) .

As a consequence we have

U'( —r, r')=[U'(—r, r')]' .

(31)

(32)

where 5=r, /6 with r, =0.7666393 A bein the
uc ear distance of the H2 molecule. In Fig. 1 we

plot the HD-He potentials V'"'(R) f k =0,
ed frome from the H2-He potential of Mulder, Avoird, and
Wormer [14]. The less important k =3 and k = com-
ponents are shown in Fig. 2 along with V' '(R) for com-
parison. In all ofn a o our calculations, we have found that it
is sufficient to include terms only up to k =3. Other
terms are too small in the classically allowed r
make any significant contributions (see Fig. 2).

All the information about the collision can now be ob-
tained by integrating the equation

i' U(r, O) = V—"(t)U'(r, O),I (33)

S=U (~ 0)U (0 —~)=U (~ 0)[U ( 0)] (34)

All the U mmatrices needed can be constructed from
Ui( ao, O) and U (t, O), where t )0. For exampleor example,

from r =0 to r = ~ with the initial condition U(0, 0)=I,
which we carry out using the fourth-order Runge-Kutta
method [15]. The S matrix is given by

20-
U'( r, — )=[U'(t,—O)]'[U'(, 0)] (35)

00
C
(1)

c) 10

—20 I

4
R (A)

FIG. 1. HD-H-He potential. Solid line: V' '(R)' dashe
V"'(R); dash-dot »ne: V"'(R).

as ed line:

The effective potential that we use in the HTP-t eyp
t"e adiabatic potential averaged

over m states

VJ' (R)=(2J+1)
m, m', JWJ

I& Jm I
V'(R)IJ'm')

I

EJ—EJ

(36)

For a diatomic molecule in a X state, the reduced di ole

& J'll)"~ IIJ &
= ( —1) v'J', vJ & (37)
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where D, J. J is the allowed dipole in the molecular
frame and J& is the greater one of J' and J. For the pure
rotational spectrum of HD in its ground electronic and
vibrational state, we will take DQJ QJ to be independent of
J,J' with the value —8.3 D as calculated by Ford and
Browne [16]. The minus sign is a result of choosing the

molecular z axis to point from H to D. This convention
has to be maintained throughout the calculation.

The induced dipole we use is that of Borysow, Fromm-
hold, and Meyer [11). For molecule-atom interactions,
their more general expression for the induced dipole [see
also Ref. (17)] becomes

[P,(R)] =4' g B"'(L;R) g( —1)'
A, L

1 A L

q q
—m m Aq —m Lm(Q)Y (8 ~&) (38)

where 0 is the orientation of the molecule, and (8,$}specifies the orientation of R. For HD in its ground vibrational
state, v=v'=0. The values of BA (L;R) have been given by Borysow, Frommhold, and Meyer [11] in a parametric
form as

BA (L;R)= A exp[B(R —Ro}+C(R —Ro) ]+C„R "+C„+,R
In obtaining Eq. (38) we have also used the fact that due to parity considerations, A+L must be odd [11,17]. The ma-
trix element of [P, ] between rotational states of HD is then

(J'm'i[P, (R)] iJm ) =( —1) +' [(2J'+1)(2J+1)]'
J' A J A L 1

X g[(2L +1)(2 A+I))' BA (L;R)
AL

A J
—m' m' —m m

4n
2L+1

' 1/2

Yl q+ (8,0), (40)

in which we have once again taken the collision plane to
have /=0. We note that even though P, is itself a dipole
(for the combined system of HD plus an atom), it con-
tains many different multipole components related to
HD. All these components can contribute to the interfer-
ence effects (through induced dipole moments p& and pz)
if J mixing is retained in the collision dynamics. This sit-
uation should be compared to an HTP-type theory in
which only the A= 1 component in Eq. (38) contributes.
More specifically, we have then

p, (R)=QJ,B, (0;R), (41)

where lM, is defined by Eq. (22), and J, =Jg+1. Thus in a
HTP-type theory only the (A=1,L =0) component con-
tributes to the induced dipole moment [Eq. (21)].

Finally, the energy-level constants of HD are taken to
be the same as those used by Green in his calculations
[10],i.e,

I

(J,„+1) =64. The impact parameter is integrated over
21 points from 0 to 8.5 A. The agreement between the
two calculations is excellent.

To check the validity of the semiclassical approxima-
tion, we compare in Table II the semiclassical HD-He
broadening cross section calculated using the Hz-He po-
tential [MSV(GH)1] of Shafer and Gordon [18] with the
full quantum results of Green [10] using the same poten-
tial. We see that for small collision energies, the semi-
classical calculation gives poor results for the 0~1 tran-
sition (primarily because of its overestimation of the in-

elastic rates at these energies). However, the semiclassi-
cal result is quite reasonable for the 1~2 transition, and
the overall agreement with quantum calculation improves
as one goes to higher collision energies. We therefore ex-
pect our semiclassical calculation to give reasonable re-
sults for 1~2 and 2~3 transitions, especially at high
temperatures.

EJ =BoJ(J+1) DoJ (J+1)—
with BQ =44.6586 cm ', and DQ =0.025 691 cm

IV. RESULTS AND DISCUSSIONS

(42)

o 2
TABLE I. Broadening cross section (A ) of HCl perturbed by

Ar at E=398 K.

To check the computational procedure, we first calcu-
lated the broadening cross sections for the rotational
spectrum of HC1 perturbed by Ar gas. The results for
E=398 K are presented in Table I along with those for a
similar calculation by Neilsen and Gordon [8]. The
highest J state included in our calculation is J,„=7.
The total number of states included is therefore

Transition

R (0)
R(1)
R (2)
R(3)
R (4)

Neilson and
Gordon [8]

79.88
57.44
45.16
37.38
30.63

Present

74.71
59.56
47.97
37.14
28.59
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0 2
TABLE II. Broadening cross section (A ) of HD perturbed

by He.
TABLE V. Interference parameter a (10 ' amagat ') of HD

perturbed by He.

Transition

R (0)
R (1)

R (0)
R(1)

R (0)
R(1)

R (0)
R(1)

Green [10]

E=100 cm
1.15
1.60

E=200 cm
2.32
2.21

E=400 cm
4.47
3.90

E=600 cm
6.06
5.42

Present

2.36
1.37

3.81
2.76

5.81
4.92

7.05
6.32

Transition

R (0)
R(1)
R (2)

R (0)
R (1)
R (2)

R (0)
R(1)
R (2)

Experimental [6]

T=77 K
6.0(16)
6.2(7)
4.4(15)

T=195 K
—11.4(38)
—0.4(9)

2.34(92)

T=295 K

5.7(9)
3.9(8)

HTP

4.33
4.34
4.34

5.84
6.06
6.06

6.58
7.22
7.22

Semiclassical

2.99
4.26
6.47

2.97
4.83
6.45

2.82
4.91
6.86

Transition Experimental [6] HTP Semiclassical

R (0)
R(1)
R (2)

0.15
0.20
0.12

T=77 K
3.7x10-'
4.2x10 '
6.5x 10-'

0.31
0.19
0.09

R (0)
R (1)
R (2)

0.52
0.51
0.41

T=195 K
0.46

7.4x10-'
1.2X 10

0.93
0.71
0.48

R (0)
R(1)
R (2)

1.1
0.68

T=295 K
1.2

2.7X 10
4.3 X 10

1.4
1.2
0.90

TABLE III. Broadening coefficient B (10 cm 'amagat ')

of HD perturbed by He.

Table III gives the broadening coefficients of HD per-
turbed by He gas at T=77 K, T=195 K, and T=295 K.
Results of both a semiclassical and a HTP-type calcula-
tion using the potential of Mulder, Avoird, and Wormer
[14] are compared with the experimental data [6]. Simi-
lar results for the broadening coefficients of HD per-
turbed by Ar gas are presented in Table IV. Here the
HD-Ar potential of LeRoy and Hutson [19] is used (the
potential for v=0,j=1 in their Table X). For each tem-
perature, the velocity average is carried out by a four-
point Gaussian-type quadrature [20]. For each velocity,
21 impact parameters are integrated over for HD-He and
31 for HD-Ar. In the semiclassical calculation, all states
up to J=4 are included. These parameters are chosen so
that all of the results converge well. Clearly the semiclas-
sical results for both HD-He and HD-Ar systems show
good agreement with the experitnent except for R(0)
transitions. The HTP-type calculation fails completely in
giving the correct broadening coefficients for both the
R (1) and R (2) transitions: an indication of the impor-
tance of m-and J-mixing effects. It gives reasonable re-
sults, in fact better than the semiclassical calculation, for

TABLE IV. Broadening coefficient B (10 cm 'amagat ')
of HD perturbed by Ar.

TABLE VI. Interference parameter a (10 ' amagat ') of
HD perturbed by Ar.

Transition Experimental [6]

T=77 K

HTP Semiclassical Transition Experimental [6]

T=77 K

HTP Semiclassical

R (0)
R (1)
R (2)

0.22
1.2X 10
1.8 x10-'

1.3
0.72
0.29

R (0)
R (1)
R (2)

6.20
6.28
6.28

2.03
5.43

15.8

R (0)
R (1)
R (2)

1.4
1.0
0.86

T=195 K
1.3

1.3 x10-'
2.0X 10

2.2
1.6
0.96

R (0)
R(1)
R (2)

T= 195 K
1.08(97)

—3.93(72)
9.5(67)

7.18
7.84
7.84

2.20
4.03
8.40

R (0)
R(1)
R (2)

1.5
1.1

T=295 K
2.5

4.4X 10
6.8 x 10-'

2.9
2.3
1.6

R (0)
R(1)
R (2)

T=295 K

1.8(3)
6.1(2)

7.48
8.92
8.92

2.46
3.22
7.80
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TABLE VII. HTP and semiclassical results for the interference parameters c (amagat ') at T=195

HD perturbed by He HD perturbed by Ar

Transition

R (0)
R(1)
R (2)

HTP

—6.7x 10
—2.6x10-'
—1 OX10

Semiclassical

—1.5x 10-'
—1.3X10
—3.1x10-'

HTP

—1.4X 10
—4.4x10 '
—1 7X10

Semiclassical

1.1x10 '
—2. 1x10 '

1.3x10 '

R(0) transitions only because the ground J =0 state has
no m degeneracy. This helps to confirm our earlier as-
sessment that the semiclassical calculation can overesti-
mate the inelastic rates.

Results for the interference parameter a for HD-He
and HD-Ar systems are presented in Table V and Table
VI, respectively. The HTP results agree with calcula-
tions based on the original HTP theory [5,6]. It should
be observed, however, that at a fixed temperature, the
HTP-type calculation give virtually identical results for
all transitions except R(0). This is a consequence of
U =1 for these transitions. The experimental data [6],
on the other hand, are strongly transition dependent.
This dependence shows up clearly in the semiclassical
calculations. For example, for the HD-Ar system at 295
K, the experimental parameter a changes from 1.8 X 10
amagat ' for R (1) to 6. 1X10 amagat ' for R (2), and
the semiclassical result changes from 3.22 X 10
amagat ' to 7.8X10 amagat '. However, it cannot
be said that there is any truly quantitative agreement be-
tween theory and experiment for the interference param-
eters. The calculations that use our stated potentials do
not give negative a, which are observed for some transi-
tions. Such destructive interference is indeed allowed in
our theoretical framework. By making suitable adjust-
ments to the potentials it is straightforward to obtain
negative a values. For our present calculations, however,
negative a can be obtained only if we make significant
changes to the potential.

A curious fact here is that our broadening coeScients
for HD-He agree better with experiment than those for

HD-Ar. Yet the opposite seems to be true for the in-
terference parameter a. Is this an indication that the in-
duced dipole moment we used for HD-Ar [11]is more ac-
curate than that for HD-He [11]? Or should we attribute
all disagreements to quantum-mechanical effects? In this
regard we note that the a parameter is quite sensitive to
the region around the turning point of the trajectory (the
point of closest approach) where the induced dipole is
greatest. This is precisely the region where a classical
description is the least valid. We hope to be able to
answer some of these questions in the future.

As mentioned earlier, in the HTP theory U =1 for all
transitions except R(0), and as a consequence the in-
terference parameter a is basically the same for all these
transitions. Another consequence is that the induced di-
pole moment [Eq. (21)] is almost real for these transi-
tions, giving rise to very small asymmetry parameters c
and d (compared to a and b, respectively). Table VII
compares the HTP and semiclassical results for the asym-
metry parameter c at T=195 K, which shows that for
transitions R (1) and R (2) the HTP results are orders of
magnitude smaller than the semiclassical results. Even
though it is somewhat premature at this point to compare
these results with experimental data that need to be
reanalyzed within the present theoretical framework to
extract the parameters b, c, and d, preliminary analysis
[5,21] clearly indicates that the HTP results are much too
small. The same conclusion can also be drawn at other
temperatures.

Similar statements can be made for the parameter d
which differs even more dramatically in two theories.

TABLE VIII. Semiclassical results for the interference pa-
rameters c, b, and d of HD perturbed by He.

TABLE IX. Semiclassical results for the interference param-
eters c, b, and d of HD perturbed by Ar.

Transition c (amagat ') b (amagat ') d (amagat') Transition c (amagat ') b (amagat ') d (amagat ')

R (0)
R(1)
R (2)

T=77 K
—1 ~

2x10-' 2.3 x10-'
5.4x10-' 4.5 x10-'
2.6x10-' 9.2x10-'

—2.0X 10
1 ~ 2x 10
5.5x10 '

R (0)
R(1)
R (2)

T=77 K
—3.3 x10-' 2.9x10-'

1.5X10 7.0x10
1.3x10 ' 3.8x10-'

—1.5x10 '
3.8X10
4.2X 10

R (0)
R(1)
R (2)

T=195 K
—1.5x10 2.3x10
—1.3x10-' 6.0x10 '
—3.1x10-' 1.0x 10-'

—3.3x10 '
—3.3 x10-'
—8.2x10-'

R (0)
R (1)
R (2)

T=195 K
1.1X10-' 2.0x10-'

—2. 1x10-' 4. 5 x10-'
1.3x10-' 1.7x10-'

—8.4x 10-'
—8.6x 10-'

5 1x10

R (0)
R(1)
R (2)

T=—295 K
—1.5 x10-' 1.8 x10-'
—1.9X10 6.3 X 10
—1.1x10-' 1.2x10-'

—3.8X10
—5. 1X10
—3.5X10

R (0)
R(1)
R (2)

T=295 K
1.9x10 ' 1.1x10-'

—8.9x 10-' 3.4x10-'
5.3x10 ' 1.5x10-'

—2. 8 x10-'
—1.2 x10-'

2.3X 10
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However, it is easy to see from Tables VIII and IX in
which we summarize our semiclassical results for param-
eters b, c, and d, that parameters d and b are of little im-

portance at low density.

V. CONCLUSIONS

A general parametrization for a spectrum with in-
terference between allowed and collisional-induced tran-
sitions is presented. Both a HTP-type (no m and J mix-
ing) calculation and a semiclassical calculation including
m- and J-mixing effects are carried out for the relevant
parameters for HD-He and HD-Ar systems. Comparison

of both sets of results with experimental data shows clear-
ly the importance of m- and J-mixing effects. There
remain, however, features in the experimental data that
are not fully explained by the present calculation. We
hope that a full quantal theory can be developed in the
future that will further clarify this situation.
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