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Electronic energy loss for helium channeling in silicon
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We present an analysis of the stopping power for helium in silicon taking into account the contribu-
tions due to different charge states. Our calculations include effects due to the nonuniformity of the tar-

get valence-electron density along specific crystallographic directions as well as the electron density of
the projectile. In the present work attention is restricted to projectile velocities greater than or equal to
the Bohr velocity in order to compare with existing experimental data. The method employs a
dielectric-response formalism taken in the random-phase approximation coupled with energy-dependent

population factors for the different charge states. It is demonstrated that the total stopping power ob-
tained in the present work shows reasonable agreement with experiment.

PACS number(s): 34.50.Bw, 61.80.Mk

I. INTRODUCTION

The theory of electronic stopping of ions in solids has
been a topic of interest for many decades. The problem is
handled adequately at high energies by the Bethe [1] and
Bloch [2] theories, where the particle is fully ionized. At
lower energies the effects of the polarization charge of the
particle become important. Various calculations, which
have been quite successful, have been made for low-
velocity ions (e.g. , see [3,4,5]). The calculation of stop-
ping power has been traditionally most difficult in the
"intermediate"-energy region where it displays a max-
imum. There have been some calculations done, but gen-
erally good agreement with experiment is more difficult
to obtain.

One important aspect of the intermediate-energy stop-
ping power is its dependence on charge-state effects. It is
primarily in this region where the greatest range of ion-
ization states will exist. Azziz and co-workers [6] have
performed calculations that have included the projectile
charge density and demonstrated its importance on the
stopping power for keV-range boron ions channeling in
silicon. The issue of charge-state effects may also be ad-
dressed using the concept of effective charge. In particu-
lar, Brandt and Kitagawa [7] have defined an effective
charge in terms of the ratio of the stopping powers for
partially and fully ionized particles. This type of ac-
counting for the charge distribution has been used in
modeling low-energy boron implantation in silicon [8]. It
should be pointed out, however, that the approach is
based on the mean value of the ionization state. It does
not give information on the relative contribution to the
stopping power due to the different charge states. Fur-
thermore, it is only with simplifying assumptions that the
model can be applied, e.g., using the Thomas-Fermi mod-
el for the charge density accompanied with certain
analytical approximations. This type of approximation is
questionable for low-Z, ions.

The problem of charge-state effects has been addressed
to various degrees in previous literature. Kaneko [9] re-

ported calculations of stopping power for a helium beam
in Al and also a H beam in Li (which can support the
neutral H state). After calculating the stopping-power
contributions from the various charge states, the results
were superimposed using an empirical formula depending
on the projectile energy. In doing so, reasonable agree-
ment with experiment was observed with the best results
occurring at energies ) 1 MeV/nucleon. More recently,
Arnau et al. [10] performed a first-principles calculation
showing the resulting stopping power for He in Al in-
cluding the contributions from the individual charge-
state species and also charge-changing events. Their re-
sults demonstrated good agreement with experiment with
the region near the stopping-power maximum showing
the largest discrepancy.

The present work deals with the case of helium chan-
neling in silicon as an example. Since the available exper-
imental data correspond to velocities at and above the
Bohr velocity, we restrict our attention to velocities in
that range. Additionally, our treatment of the problem
includes effects due to the nonuniformity of the target
valence-electron density, thus allowing for computation
of stopping power along different crystallographic direc-
tions. In what follows, both the (111)and (110) axial
directions in silicon are considered, for which comparison
with experimental data is possible.

In order to calculate the stopping power for a specified
charge state a dielectric-response formalism is used. The
latter is taken in the random-phase approximation
(RPA). There have been several previous treatments
where energy loss has been determined using dielectric-
response theory [11—16]. In the present work, however,
the stopping power is obtained from direct integrations of
the imaginary inverse dielectric function over frequency
and wave vector without further approximations. The
problem is defined in much the same way as by Buren-
kov, Komarov, and Kumakhov (BKK) [11],but the ex-
plicit evaluation of the relevant integrals permits an ex-
tension of the theory to lower energies. Also, our work
takes into account the contributions due to the individual
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charge states of the projectile to the total stopping power,
whereas the work of BKK includes such eS'ects indirectly
through an efFective-charge approximation [17].

Inside the material an electron will interact with the
channeling helium nucleus through a screened Coulomb
potential. Rogers, Graboske, and Harwood [18] have

performed calculations of the number of bound states
that exist with this interaction potential. Using this,
Kaneko [9] has pointed out that helium cannot bind two
electrons in a medium having r, (4.92 (here r, represents
the radial distance occupied by one electron in atomic
units). For Si this condition is easily met and therefore
we shall consider only the singly and doubly charged
states of helium in Si.

In addition to being able to calculate the stopping
power for a specified charge state, one must also know
the relative populations of the charge states for the pro-
jectile. For this a simple statistical model is proposed us-

ing a Bohr electron-stripping criteria. For the case of
helium, with only two charge states contributing, the rel-
ative proportion of each charge state is resolved and is
used to superimpose the energy-loss results in a physical-
ly reasonable way.

The organization of the paper is as follows. In Sec. II
some details of the theory are discussed. Section III con-
tains some applications and comparisons with experimen-
tal results. Finally, in Sec. IV conclusions are presented.

II. THEORY

In this section a brief description of the theoretical
framework is given. Much of the material describing the
basic stopping-power formalism for fully ionized particles
has been given by BKK [11] and various references
therein. The interested reader is referred to that work for
greater detail.

Consider a particle with nuclear charge Z& and N
bound electrons traveling in the solid at a velocity v. The
projectile charge density as a function of position and
time is given by

p„,(r, t) =Z, 5(r —vt) —p, (r—vt),

where p, denotes the electron charge density of the ion,
I

the latter being normalized to N. It is straightforward to
show that the stopping power S for a particle having a
charge density given by (1) in a uniform electron gas is

X f dcocoIm . (2)
0 E q, co

The function p„,(q) is the Fourier transform of the elec-
tron density given by Eq. (1) and e(q, c0) is the dielectric-
response function depending on the wave vector q and
frequency to. The response function e(q, co) describes the
screening effects of the media on the field of the external
charge and gives a dispersion relation for the collective
excitations. The reader is referred to the book by Pines
[19]for more information.

In the case where the medium has a nonuniform elec-
tronic structure, the stopping power for a fully ionized
particle is given in [16]. When the latter is modified to
include the electron density of the projectile, we have the
result

X eG, G" 'q )+G", G'(q ~} 5G, G'
Gll

(4)

In the weak-binding limit a simple relation exists between
the components of Ko G and Eo G as shown by Falk [20]:

~P, G
+G,O 5G, Q ( 1 5G, O}

&o,p

The ep p in the above represents the usual response func-
tion defined for a uniform electron gas. For the dielectric
matrix elements we use the results from the RPA [11],

(r}=,f, Ip.,(q)l'
m. v q

X fdcoco g 1m[KG o(q, co)]
G

Xe' '5(co —q v},
where the EG o(q, co) are the inverse dielectric matrix ele-
ments [16,20], which satisfy the relation

4~e
&G G.=5G G

—~, g MG(k+q, l';k, l)MG(k+q, l';k, l)

Xe(k~ —k) . 1 1
(6)

EI (k } EI.(k+ q } fico+—i Aa E&.(k—+ q }—EI(k) —A'co+i%'a

which correspond to the response of the system in the
zero-temperature limit. The factor M(k, 1;q, 1')
represents the matrix element for the charge-density Auc-
tuation given by

MG(k+q, 1'k, 1}=(k+q, l'~e'q+ "~k, l ) . (7)

The normal processes correspond to G=O, whereas the
umklapp processes correspond to Vx+0.

Following Penn [21] and the subsequent work of other

I

authors [11,15], it is assumed that the response function
is insensitive to the k variation in the matrix elements
shown in Eq. (7). Under these circumstances one may
consider the latter to be replaced by their averages over k
and hence they may be factored out of the integral. One
may then deduce a simple relationship between the 0,0
and O,Cs components of the dielectric matrix. The values
of these matrix elements as a function of q may then be
determined from the sum rule [22]
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f dcoro lmeG 0= —
—,'mo f (G)e(q) e(q+G), (8)

0

where e(q) is a unit vector in the direction of q. The

f (G}are the Fourier components of the electron density
in the crystal normalized to the uniform gas density [i.e.,
f (0)=1]. Using (8) it can be shown after some manipu-
lations that the calculation of the stopping power may be
reduced to the evaluation of the following formula:

where

dE (r)=g S(G)e'
dX G

(9a)

X f deva)Im f(G)
0 zoo q, co

X f e(q} e(q+G}dg,
0

(9b)

subject to the condition q v =co.

In order to proceed further one must evaluate the real
and imaginary components of the response function ap-
pearing in Eq. (9b). This requires that the energy wave-
vector relation E&(k) be specified. In the present work a
simplified electronic structure for semiconducting materi-
al is used following the work of Brandt and Reinheimer
[15]. The model essentially consists of an electron gas
supplemented with an energy gap Eg The Fermi surface
is considered to be located halfway in the forbidden gap,
across which the single-particle excitations occur. Thus
the energy wave-vector relationship is written as

EI(k)= '

Ak
k &kF

2m

Ak
+Eg, k &kF .

2m

(loa)

(lob)

Since this model represents a drastic simplification of the
actual band structure, the "band gap" E is most proper-
ly thought of as an adjustable parameter. It is chosen
such that the value of the static dielectric constant is
correct for the material in question. In the present work
the value is set equal to 4.8 eV for Si as in Ref. [11],
which uses the same approximations. Having prescribed
E(k) one may readily evaluate the imaginary component
of E'0 p. The real component may then be obtained from
the appropriate Kramers-Kronig relation. The resulting
expressions are algebraically complicated and it is not in-
structive for them to be displayed here.

Let us now consider some simplifications that become
possible when applying these results to high-energy cases,
where the particle is fully ionized. It was shown by BKK
[11] that under these conditions (along with some addi-
tional simplifying assumptions} the above formulas for
stopping power may be reduced to simple analytic ex-
pressions. They have reported that for velocities v such
that v &&vF, where vF is the Fermi velocity of the target

Z le Q)p
S(G)= f (G}ln

v
(12)

where m is the electron mass, co~ =4me n lm is the plas-

ma frequency, and n is the electron density. These for-
mulas have displayed good agreement with experiment
for low-Z, ions at very high energies [11]. In the follow-

ing section, results obtained from the above formulas are
compared with the present work for velocities v ~vF.
Comparisons in the low end of this velocity range must
be judged cautiously, however, since these formulas are
not expected to be valid in that region.

We now turn to the question of evaluating the propor-
tion of the different charge-state species for ions traveling
through matter. Our starting point for this is a Bohr
electron-stripping criterion [23—25]. Using this model
one postulates that for the bound electrons the smallest
orbital velocity is proportional to the relative velocity of
the ion and the Fermi velocity of the electrons in the
medium. Formally, if the orbital velocity v„b of an elec-
tron is such that v„b ~bv„, , then that electron is con-
sidered to be unbound. The parameter b is referred to as
the stripping parameter and its value is known to be of
order unity [25]. The expressions for the relative velocity
of the traveling ion and the target electron Fermi velocity
have been given by Kreussler, Varelas, and Brandt [26].

As mentioned above, in the present work we are con-
cerned with the average equilibrium charge state of the
helium ion in Si due to the singly and doubly ionized
states. For simplicity charge-changing events are not in-
cluded. In the case of singly ionized helium in the
ground state the bound electron is described by a 1s-type
wave function. The orbital angular momentum of this
electron is quantized according to mv„br =A, where r is
the radial coordinate of the electron in the spherically
symmetric 1s state. From this one has a simple means to
relate the orbital radius with its velocity. Therefore, if
one requires that v„b & bv„& in order for the electron to
be bound to the nucleus then one may determine a criti-
cal distance r,„„over which the orbital must be confined,
viz. ,

rent =
mbv„l

(13)

Thus any 1s electron for which r )r„;, is considered to be
unbound and hence a simple energy-dependent ionization
criterion is obtained.

Having established a critical distance in the manner
described above, a statistical estimate of the ionization
state may be obtained. As mentioned above, the polar-
ization of the media screens the field of the moving ion.
An electron therefore interacts with the ion nucleus
through a screened Coulomb potential. Consequently,

electron distribution, the stopping power may be deter-
mined from

Zle co& 2mv
222 ' 2'

S(0)= z
ln

v i6cop

and
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the electron orbital radius is expanded somewhat relative
to its value in a vacuum. Starting with a hydrogenic 1s
wave function, Ferrell and Ritchie [27] and Kaneko [9]
have used variational methods to describe the effect. For
simplicity, in the present work this screening effect on the
He+ state is not included. Thus the electron density for
He+ in the ground state may be written as ~g„z 2(r}~,
where g„z 2(r) is the electron wave function in a vacu-
um. Under the assumptions outlined above the fractional
charge C(v, b) that remains bound is given by

C(v, b)=4m J ~1(„z 2(r)~ r dr .
0

(14)

The ionization state Q (v, b) of the helium ion is therefore

Q(v, b)=2 —C(v, b) . (15)

One may notice immediately that Eq. (15) has the physi-
cally correct upper and lower limits with respect to
energy for He+ incident on Si, namely,
lim„„Q(v«&, b)=2 and lim„pQ(v«&, b)=1. Since

Drel rel

only the two charge-state species are considered, He+
and He +, the relative proportion of each may be deter-
mined uniquely from a knowledge of Q(v, b). The stop-
ping power for either the single or double plus charge
state may be obtained from Eq. (9) with the appropriate
charge-density function p„,(q). Thus by knowing the rel-
ative charge-state populations and the associated stop-
ping powers of each, the total stopping power as a func-
tion of energy is obtained from a linear combination.

III. RESULTS

%e turn now to application of the methodology out-
lined in Sec. II. To illustrate the method, our results are
compared with the experimental work of Eisen et al.
[28]. Before proceeding to this comparison some details
of the calculations are discussed.

Regarding the evaluation of S(G), multiple Gaussian
quadratures are used to evaluate the necessary triple in-
tegrals. The integrand appearing in Eq. (9) is well
behaved except where @00=0. The latter is the well-
known condition for the existence of collective oscillation
modes, the details of which have been discussed exten-
sively in the literature (e.g. , Ref. [19]),so it is mentioned
only briefly here. Such effects exist only over a limited
range of wave vectors (generally, q ~ q,„,-co~ lvF). For
a collective mode Re(ep p) =1m(ep p) =0 and to first order
one finds

1
Irn

&oo
, plasmon d Ree00

dco kCO —
CO

5(co—cok }, (16)

where cok is such that

happ(q,

&ok)=0 for q &q„;,. In
evaluating the stopping power from Eq. (9) the plasmon
contribution to the wave-vector integral can be dominant
in some cases. This can be seen directly through a calcu-
lation of the plasmon contribution to the standard f-sum
rule

e'p p( q, co )
(17)
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CD

1.0—
07
o 0.8—
C:o

0.6—

~o 04
o
~ 0.2—
6$

CL

0.0
0.0 0.2 0.4

q/2 k p

0.6 0.8

FIG. 1. The contribution to the sum rule Eq. (17) due to the
plasmon modes.

which is shown in Fig. 1 [both the above sum rule and its
counterpart obtained from (8) are discussed in detail in
Ref. [19]]. Below the threshold wave vector q„;, the con-
tribution is evidently large. For q &q,„„on the other
hand, the collective modes are damped out and only the
single-particle excitations occur. Hence in Fig. 1 the rel-
ative plasmon contribution vanishes in this case. This in-
formation is useful in understanding the behavior of the
wave-vector integrand in Eq. (9) and illuminates the un-

derlying physics. It is also of interest to note that the
sum rule requires the plasmon pole cok(q) to be accurate-
ly specified. A simple estimate of cok ——co is not sufficient
and leads to a strong violation of Eq. (17). For the energy
loss the magnitude of the threshold frequency qu deter-
mines the energy at which the plasmons contribute to the
stopping power. In the v —+DO limit the sum rule (17) is
instrumental in arriving at the analytic formulas [11]
given in Eqs. (11) and (12). Examples of plasmon contri-
bution to the total energy loss as a function of energy
have been given elsewhere, for example, in Refs. [14,27].

Once having obtained the stopping-power Fourier
components from Eq. (9), the application to the case of
ions traveling in a well-defined crystallographic direction
is considered. The necessary structure factors for Si that
we use are obtained from the work of Vinsome and Jaros
[29]. The S(G) are evaluated for particles traveling
down the midaxial positions, which are the so-called best
channeled ions. %e shall return to this point later when
discussing the comparison of our results with experimen-
tal data.

Proceeding in the manner described above, the stop-
ping power is evaluated for both the singly and doubly
charged helium ions channeling in various directions. In
order to calculate the net stopping power, however, one
must determine the populations of the two charge states.
This is calculated from the value of Q(v, b) as given in
Eq. (15). Figure 2 shows a plot of the ionization-state
function Q(v, b) for helium as a function of energy for
several choices of the electron-stripping parameter b.
Clearly, the high- and low-energy limits are 2 (i.e., full



5758 L. R. LOGAN, C. S. MURTHY, AND G. R. SRINIVASAN

1.8

10 I I I ' I I 1
I

Si (111) ~ experiment

1.6

1.4

1.2—

1.0
1 0-1

I I I I I I I I

10'
E (MeV)

)Z

10'

E

10

I

1P'
10'

He'

total

BKK
I I I I

10'
E (MeV)

101

FIG. 2. The ionization function Q(v, b) given by Eq. (15) as a

function of energy and yZ calculated from Eq. (18).

ionization) and 1, respectively, for any choice of b. In
essence, the value of b is related to the effectiveness with
which the medium removes a bound electron from a He
ion having energy E. Later, the effect of b on the calcula-
tion of total stopping power is displayed. For now it is
suScient to comment that there is no rigorous choice for
its value but that satisfactory results are obtained as long
as b is chosen to be near to unity, as suggested in Ref.
[25].

In studying the transmission of He+ ions through sil-

icon, Williamson, Boujot, and Picard [30] introduced an
effective charge-state parameter Z* =yZ, where

y =tanh[137&(m j2)v/(cZ)] . (18)

For comparison, Fig. 2 shows the effective charge as cal-
culated from Eq. (18) along with those determined from
the Bohr stripping criterion using different values of the
parameter b. The figure indicates a similar trend from
both types of calculation, with the former showing a
slightly faster increase in charge state as a function of en-

ergy. Equation (18) may also be used to resolve the frac-
tion of singly and doubly charged ions at a given energy.
Results for the total stopping power obtained using this
are discussed below.

Figure 3 shows the results of a comparison between the
present work and experimental data taken from Eisen
et al. [28] for the best channeled iona in Si( 111).Exper-
imentally, this corresponds to deducing the stopping
power from the leading edge of the energy spectra for the
transmitted beam. For ( 111), however, there is practi-
cally no difference between results obtained from leading
edge and peak values of the energy spectra [28], since the
channel electron density is only mildly inhomogeneous.
For this calculation we choose to set b = 1. The variation
of this parameter is discussed separately below. Also
shown in Fig. 3 are the resulting stopping powers for
He + and He+ separately as function of energy. The
solid line labeled *'total" represents a superposition of the
two results taken in a proportion determined from the
function Q (v, b). In the high-energy limit the projectile is
expected to become fully ionized and therefore one finds
that the curves for total and He + nearly coincide. In the
opposite limit, toward zero energy, one would expect an

FIG. 3. Stopping power corresponding to the best channeled
He ions in Si( 111). The curve labeled total represents a super-

position of the results for He+ and He'+ (shown separately) as
determined from the function Q(v, 1). The dashed-dotted line

shows the corresponding result obtained using Eqs. {11)and (12)
taken from Ref. [11]. The experimental data are taken from
Ref. [28].

incident He+ ion not to change its charge state. There-
fore, one expects the total to coincide with the singly ion-
ized results under these circumstances. It can be seen
from Fig. 1, however, that even at 100 keV there is a sub-
stantial mixing of the two charge states. Stopping powers
for energies smaller than this value have not been calcu-
lated since there does not exist any data suitable for a
comparison in this energy range. The uppermost curve
in Fig. 3 shows the stopping power obtained from Eqs.
(11) and (12), which corresponds to the doubly ionized
case [11]. Clearly, these equations can be properly used
only past -1 MeV, which corresponds to -3.3vF, where

vz is the Fermi velocity of target electrons.
It was mentioned above that the calculation for the to-

tal stopping power in Fig. 3 was obtained using a strip-
ping parameter of b =1. Figure 4 shows results obtained
using values of b equal to 1 and 0.8, as well as yZ from
Eq. (18). We comment that in each case one obtains re-

10 I 1 t

Si &111& ~ experiment

E

)
~ .10

I

b =0.8
y Z

10'
1P

—1 100
E (MeVj

101

FIG. 4. Variation of the stripping parameter b. The various
curves represent the total stopping power as in Fig. 3, as deter-
mined from the function Q(v, b). The experimental data are
taken from Ref. [28].
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FIG. 5. Stopping power corresponding to the best channeled
He ious in Si(110). The curve labeled total represents a super-
position of the results for He+ and He + (shown separately), as
determined from the function Q(v, 0.7) (see text). The dashed-
dotted line shows the corresponding result obtained using Eqs.
(11) and (12) taken from Ref. [11]. The experimental data are
taken from Ref. [28].

suits that remain in reasonable agreement with experi-
ment. The largest spread in the results obtained from the
two different values of b occurs at 100 keV where the
values are 156 and 134 keV/pm for b =1 and 0.8, respec-
tively. We conclude that the variation b in the neighbor-
hood of unity gives rise to only modest shifts in the re-
sulting curve and that these results are very similar to the
result obtained independently from Eq. (18}. Such uncer-
tainties are inherent to the approach as there is no
rigorous means to determine the value of b. It is
worthwhile to note, however, that the experimental re-
sults themselves show uncertainties (random errors) of
comparable magnitude.

In Fig. 5 the same type of comparison as was presented
in Fig. 3 is shown, but for the case of He ion channeling
in Si(110). The experimental data [28] shows the stop-
ping power as inferred from both the peak and the lead-
ing edge of the energy spectra for the transmitted beam.
Since our calculations have been carried out for channel-
ing along the midaxial paths, one would expect them to
correspond to the stopping power inferred from the
leading-edge data. In the case of (110) there is a notice-
able difference between the two sets of experimental data.
For (111),on the other hand, both are nearly the same
and only the leading-edge data was shown in Fig. 3. Re-
garding the choice of b we note that since it is related to
the effectiveness with which electrons are removed from
the traveling ion, one might expect its value to be lower
in (110) than in ( 1 1 1 ), where the electron density is
much higher. In this spirit, we have adjusted the value of
b from 1 (as used in Fig. 3} to 0.7, which produces a
better overall fit to the experimental data. A very similar
result is obtained by using the yZ given by Eq. (18} to
calculate the total stopping power. As in Fig. 3, at
sufficiently high energy the BKK result converges to the
He + stopping-power curve as expected. The result
shown in Fig. 5 is qualitatively similar to that shown in
Fig. 3 but the stopping-power values throughout the
same range in energy are noticeably smaller. The largest

source of discrepancy lies in the positions at which the
stopping-power curve displays a maximum.

It is instructive to compare the results obtained above
for the (

ill�

) and (110) axial channels with the corre-
sponding results for the uniform electron gas. The latter
corresponds to retaining only the S(0}term in Eq. (9}. In
the case of (111)the only non-negligible contribution to
the electron-density nonuniformity comes from the {220]
set of Fourier components. The {220j structure factors
are much smaller then f(0) [29]. Therefore the results
for the uniform gas differ only slightly from those corre-
sponding to (111). This being the case, experimental
stopping-power data for the ( 111) channel is often com-
pared with calculations based on the uniform gas term
S(0}[11]. In the present example, results for total stop-
ping power using just S(0} are found to be larger than
those for (111)by about -4% at 100 keV, -6% at 1

MeV, and -8% at 10 MeV. One would therefore find a
plot of S(0}versus E to be almost coincident with the cor-
responding plot for the ( 111) channel. In contrast, for
the case of (110),many sets of {hkl I terms are effective
in modifying the electron density in the channel. One
can immediately see from a comparison of Figs. 3 and 5
that the difference between the S(0}and (110) results is
substantial. Actual calculations show that the total stop-
ping power calculated from just S(0) is larger than the
(110) case by about -28% at 100 keV, -32% at 1

MeV, and -57% at 10MeV.

IV. CONCLUSION

We have presented calculations for stopping power of
He in Si. Our calculations have explicitly included the
contributions from singly and doubly ionized projectiles.
For the case of He considered here the treatment of the
singly ionized case is simplified through the use of an an-
alytic approximation for the charge-density function. It
is found that these calculations give reasonable agree-
ment with experiment when superimposed using simple
physical arguments for the ionization probabilities. For
ions containing several electrons the corresponding
charge densities can be obtained numerically from
Hartree-Fock calculations.

The present work is a simplified treatment of the prob-
lem in that we have included the target valence-electron
contribution only and restricted attention to channeling
down the midaxial paths. For this reason comparing our
results with experiment is most appropriate in the case
where the latter is determined from the leading edge of
the measured energy spectra. In the case of (111) there
is very little difference between the peak and leading-edge
results so we have shown only those from the leading
edge. In the ( 110) case the difference between the two is
much more pronounced as seen in Fig. 5.

Regarding a comparison between the calculated total
and the experimentally determined stopping power, a few
general comments can be made. The agreement is good
except in the immediate vicinity of the stopping-power
maximum. One notices that the calculated peak in—dE/dx lies somewhat to the left of the experimental
peak. Indeed, this a genera1 feature that has been ob-
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served in most stopping-power calculations (e.g., see
Refs. [10,11,12]). The essential feature remains, however,
that only a superposition of the results for different
charge states is successful in replicating the experiment
through the majority of the energy range considered. In
the present case we demonstrate that even such a super-

position made on simple grounds is reasonably successful
in matching experiment.
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