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A method for obtaining the exchange scattering amplitude for electron-impact ionization of atomic
hydrogen in the eikonal approximation is developed. The expression for the eikonal amplitude in the
present case turns out to be a two-dimensional integral which can be evaluated numerically with con-
venience. This exchange amplitude can be combined with the corresponding direct amplitude to calcu-
late both differential and total cross sections for electron-impact ionization of hydrogen atoms. We
present numerical results for triply differential cross sections (TDCS) for the H(e,2e)H™ process for in-
cident energies of 150 and 250 eV. A comparison is made of the present TDCS with the corresponding

results of other calculations and experiment.

PACS number(s): 34.80.Dp

I. INTRODUCTION

During the past and the present decade, the eikonal
and Glauber approximations have been useful theoretical
tools for studying a wide variety of atomic collision pro-
cesses [1]. In particular, these approximations have been
successful in intermediate- and high-energy collision pro-
cesses.

In 1972 Byron and Joachain [2] first applied the eikon-
al approximation (EA) to calculate the e -H exchange
amplitude for elastic scattering. They used a straightfor-
ward Monte Carlo integration technique to compute the
six-dimensional integral occurring in the expression for
the amplitude. Later on, Foster and Williamson [3] re-
duced this integral to a two-dimensional one. However,
the numerical evaluation of this integral involves compu-
tational difficulties and requires extreme care. Recently,
Onaga, Tsuji, and Narumi [4] have developed a useful
method for calculating the eikonal exchange amplitude
for e “-H scattering without the difficulty related to nu-
merical convergence and found agreement with the exact
results of Franco and Halpern [5] and Gien [6]. The
method was, however, applied to elastic scattering.

In 1980 Sekimura and Narumi [7] applied the EA to
obtain the exchange amplitude for electron-impact ion-
ization for atomic hydrogen. They succeeded in reducing
the six-dimensional exchange amplitude to a three-
dimensional form. The method, however, was based on a
partial-wave decomposition of the scattering amplitude
and the final expression for the amplitude involved sum-
mations over the orbital angular momentum / and the
projection quantum number m of the ejected electron.

This paper reports a calculation of the exchange
scattering amplitude in the EA for electron-impact ion-
ization of atomic hydrogen. In order to evaluate the am-
plitude, we have avoided the use of partial-wave decom-
position since these procedures require substantial com-
puter time where many partial waves are involved. Our
procedure, which is an extension of the method of Onaga,
Tsuji,and Narumi [4], leads to a two-dimensional integral
for the exchange amplitude for the H (e, 2¢e)H* process,
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which can be computed numerically with convenience.
As an illustration of the exchange effects, we calculate tri-
ply differential cross sections (TDCS’s) [8] by combining
this exchange amplitude with the direct amplitude previ-
ously obtained by us in the Glauber approximation (GA)
[9]. We have also incorporated in the present calculation
the effect of post-collision interaction (PCI) using the
method of Klar et al. [10] and compared our results with
the absolute data of Ehrhardt et al. [11], who made ex-
tensive measurements of TDCS’s in the case of asym-
metric geometry, where one of the two emitting electrons
has a much smaller energy than the other.

The plan of this paper is as follows: Section II gives
the theoretical formulation of obtaining the TDCS’s for
electron-impact ionization of hydrogen. In Sec. Il A we
describe the reduction of the eikonal exchange amplitude
for H(e,2e)H™ reactions to a two-dimensional integral.
Section II B gives the method of obtaining TDCS’s. In
Sec. III we present the results of our numerical calcula-
tion of the TDCS’s and compare them with the corre-
sponding results of other theoretical calculations and ex-
periment. Section IV contains the conclusions. Atomic
units are used throughout unless otherwise indicated.

II. THEORY

A. Exchange amplitude

In this section we derive the exchange scattering am-
plitude for e " -H ionization in the eikonal approximation.
Although the exchange amplitude is considered in both
post and prior forms, we consider the post form; howev-
er, our procedure can be easily applied to the prior form.
Also, we confine our attention to the case of asymmetric
geometry, where one of the emitting particles is fast,
while the other one is slow.

Let r; be the position vector of the incident electron
and r, the position vector of the electron initially bound
to the proton. Let k, k;, and k, denote, respectively, the
momenta of the incident, scattered (fast), and ejected
(slow) electrons. The exchange-transition matrix element
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is given by [12] (1), @ is given by
ik,
o @ (rpr)=e 2 (r)) , 2)
Ty <¢f Sl ria Z vi (1’2)> ’ M Shere #,(r) represents the wave function of the ejected

(slow) electron and is taken to be the Coulomb wave func-
where i and f denote the initial and final states. In Eq. tion

6, (1)=(2m) 272 (1+iy)e 2" [Fy(—iy,1,—i(kr +ky 1)) 3)

with y =1/k,, where |F, is the confluent hypergeometric function.
In the eikonal approximation, the wave function ¥}’ is given approximately by

1/)i~+)(r1,r2)=¢,~(r2)exp N (4)

ik-rl—if_l dz} V(b,+2/2,1,)

where r; has been decomposed into vectors parallel and perpendicular to the path of integration, which is along a vec-
tor Z. In the present case of post interation, Z is along the direction of the incident beam k. In Eq. (4), ¢, represent the
initial state of the target atom and is given by

¢,»(r)=77_”2exp(—ar) R (5)
with a=1, and the integral for the eikonal phase is given by
24 ' A , rl rl z
f Vi(b,+z12,r,)dz] =In — (6)
e rp—Ipz
Using Egs. (2), (4), and (6), Eq. (1) can be written as
A i’l’]
—ik,r 1 1 ik-r ry) T2
T,= [drdre %) |——— | "4,(r,) , %)
= [drdr, ¢yir) |- 4l | S —
where n=1/k.
We may write the amplitude (7) as a sum of two terms:
Ty=tglr]+tslr,], (8)

where 4,[ry,] and t;[r,] are the terms in Eq. (7) corresponding to the electron-electron and electron-nucleus parts of
the interaction potential, respectively.
Let us first consider ¢, [r,,]. From the definition of the I" function, we have the relation

- *® z*l —at
@ 1"(z )t at, ©)

for Re(a) >0, Re(z) > 0. Utilizing (9), t;;[r,] can be expressed as

1

—_—t,, 10
ITGin)|? A 10

trlrp)=

where

f dr '~ lf dss™ ™ lfdrldrzd)f r,) exp(—ik;- rz)exp(—rlt) ¢ (ry)exp{i(k—itZ)-r;} exp{ —(ry, —zy,)s} ,

(11)
with z;, =r1,-2.
Replacing ;' exp[ —s(r,, —z,,)] by its Fourier transform
- exp[ip-(r,—1,)]
ra'expl—s(r,—z —_— (12)
12 12 12 2 2 f (p+l-s/z\)2_+_s2

and then using Eqgs. (3) and (5), we have
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o i i 1
t,.=c' dt tin1 dss ' | dp——M8MM——
4 fo fo f p(p+isi)2+s2
xfdrlei(q'_kz).rl—trl lFl(i‘}/,l,i(kzrl+k2'l’l))fdl'2€—ik.rznarz_ip.rz i (13)

where
¢'=273"2g 742N (1—iy)
and
q=p+k—irz .
We next introduce the following integral representation of the confluent hypergeometric function [13]:

. 1 - i —iX,w
lFl(zx,l,w)=5;i-§rdtt Ltix(p —1)izgat | (14)

where I’ indicates a closed contour encircling each of the two points 0 and 1 once counterclockwise. On using Eq. (14)
in Eq. (13) and performing integrations over r, and r,, we get

tA=—32i1rac’§rdt,t,‘1+"7(t,—1)""’f0°°dt t""“‘t’fomdss"""1

dep(p+is'li)2+s2 [(q"—k2>2+t'2]l2[(k,+p)2+a2]2 ’ 1)
where
q"'=ptk+t,k,—itz
and
t'=t —ik,t, .
We express Eq. (15) as
t, =—8iwc’¢rdt1t,“‘+"7(t,—1)“'7f0°°dt t""“fowdss“"’“—a?—, ga;
1
xfdp[(p+is’i)2+s2][(q"—k2)2+t’2][(k1+p)2+a2] '
(16)
Making use of the Feynman identity
fol [ax +b:l—x)]2dx=$ ’ .
‘Eq. (16) can be written as
r,,=8mc'5ﬁrdt1t,—‘+"7(t1—1)"’7f0°°dt t""—‘f""dss"'"—‘—a—, ~a—f'dxizfdp 12 . - —
0 at'" da Yo  9Jp (p—QP+p? [(p—itZ)*+1?]
(18)
where
p?=(a®+k?)x —[k,x +is2(1—x)]? (19)
and
Q=k+k,(t;,—1)—k,—(x —1k;—isZ(1—x) . (20)
Using the Feynman’s identity (17) again, the p integral in Eq. (18) can be expressed as
fdp(p—Ql)2+p2 [(p—itil)2+t’2] =f0]dyfdpm ’ D

where

A=(iQ+2t)y2+[p?—(iQ+%t > — 1ty +12 . (22)
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The p integral in Eq. (21) can be easily performed. Equation (18) then can be written as

i iy %, 1@ (1, 3
—_— Qi3 1+ _ 1
t=8imc' Prde 17 (1, —1) 'on dss ™11 fodxapzM, (23)
where
— [ % 4in—1_0_ 1 1
M= [dren fodyAm . (24)

In order to evaluate the M integral, we first carry out the differentiation with respect to ¢’ and then perform the y and
t integrals. Consequently, we have

==2[(p—ik,t;*+ Q" [2p—ik,t,—iQ,)] "Blin,1—in) , (25)
where B(x,y) represents the beta function [14]. Using (25) in (23), we have
0 0

4= 16imc2""Blin,1~i) [ “ds s_i"_lfoldx % 37T 26)
where
T=Q rdt t 7177 (1) — 1)~ (p—ikyt, —iQ,) "M (p—ikyt, 2+ Q771 . (27)
The T integral can be performed utilizing the result
I= rdr 171 +ia( — 1) 710t +p) (g Hy) ]
—ia
=2mip "y ! l+—‘l,- .F, ia;in;l;ﬁ . (28)
A derivation of the aforesaid result is given in the Appendix. Equation (26) then becomes
t, =321r4c'2_”’§3(i17,1——i'r])fowdss_i"_‘fowdx—é% %A_”’B"’—IM_”’V""'I l+% yzF, i?’;i‘fl;l;;% ,
(29)
where
A=—ilk,+k,Z), (30)
u=A Yp+i{(—k+k,+k,)2+is(1—x)}], 31
B =2[k,- {k—kx —is2(1—x)} —k3—ik,p], (32)
and
v=B [(a®+k?)x +(k—k,)?—2(k—k,) {k;x +is2(1—x)}] . (33)

Using (29) in (10), we can obtain the contribution of the amplitude corresponding to the electron-electron part of the
interaction potential. A similar analysis may be performed to obtain t,[r, ], i.e., the amplitude due to electron-nucleus
part. The results may be combined to yield for T; the expression

= —1/2=in ;0\ 372, YT/ — i ® g e—in—1 1
Tj==2"""in)a’ %" *L(1—iy) [ “ds s [ dxF(s,x) , (34)
where
2 1 —iy
=y —1(1_ —ingin—1,—in,in—1 2 .
F(s,x)=x"'[a—x " (1—x)s] ™5 ATTBITT T 1+ " oF zy,m,l,;(Eﬁ_l—) ] . (35)
I
The exchange scattering amplitude g/, can then be calcu-  ratures after performing the parametric differentiation
lated from the relation twice with respect to a?.
1 The integration over s in (34) with an arbitrary small
8i=—%5-Tp, (36)  value of € is well defined analytically in principle, but in

practice it is hardly possible to evaluate it numerically.
where T; is computed numerically using Gaussian quad-  To make the integration numerically tractable for small s,
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we have adopted the method of Onaga, Tsuji,and Narumi
[4]. We rewrite Eq. (36) as

gf,-=cfo°°dss—""—11(s> , 37
where

J(5)= [ 'dxF(s,x) (38)
and

o= L’_’LZS/z-mas/zem/zF( 1—iy).
o

In order to avoid the numerical difficulty stemming from
the integrand in (37) for small values of s, we have put
Eq. (37) into the following form by adding to the ampli-
tude and then subtracting from it the same term:

= ! —in—1 1 —in—1 —
gr=c|J(0 [ dss™+ [ lds s I ()= T (0))
® —in—1
+ [ TdssTs) | (39)

B. Evaluation of TDCS’s

For the case where the incident beam and hydrogenic
target are unpolarized and no attempt is made to distin-
guish between the final spin states, the TDCS’s for the
H(e,2e)H™" process is given by

d’o _ kik,
dk dk,dE, Kk

[L1f+gl*+2lf—gl], @0

where f and g represent, respectively, the direct and ex-
change scattering amplitudes. In Eq. (40), dk, and dk,
denote, respectively, the elements of solid angles for the
scattered and ejected electrons and dE, represents the en-
ergy interval of the ejected electron. In the present calcu-
lation, we have adopted for g the expression (39) of Sec.
IT A, whereas for f we have used the two-dimensional ex-
pression for the Glauber amplitude obtained by Roy,
Das, and Sil [9].

The GA does not take into account the correlation be-
tween the two emitting electrons in the final state. This
correlation manifests itself by a conspicuous PCI effect.
The salient feature of the PCI effect is that the electron-
electron interaction allows for exchange of angular
momentum and energy between the two continuum elec-
trons during their travel from the reaction zone to the
detectors. Consequently, the emitting electrons undergo
both trajectory deflections and energy shifts. These devi-
ations have been calculated recently within the frame-
work of classical mechanics [10],

9,»(0)=0,~—sin(x)fowdtr,r1r1_23fmdt’[r,-(t’)]_2 ,
t
i=1,2, (1)

1 ©
E\(0)=E,+—| -— tFrp(r —
1 I fo dt Fyryp (ry—rycosy) ,

(42)
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E2(0)=E2—fowdt Foriy(ry—ry cosy) , (43)

where y=6,+6,. 6,(0) and E;(0) are the respective
scattering angles and energies at the boundary of the re-
action volume. The reaction volume was determined
empirically by Klar et al [10]. It depends on two arbi-
trary parameters ry, and rg,, which represent the initial
positions of the two emitting electrons. Klar et al. ar-
rived at the values of the aforesaid parameters after a sys-
tematic search for good values of these parameters,
which depend only on the incident energy, but not on the
energy of the ejected electron and the angle of scattering.
We have adopted exactly the same values of ry; and rg,
as those in the calculation of Klar et al. The values of
ro; and rg, for different incident energies have been given
in Sec. III. The initial values for 6,(0) and E;(0) are,
however, determined numerically from Egs. (41)-(43). In
the present case, we approximate the integrals (41)-(43)
using straight-line trajectories obtained from the equa-
tions

with initial values r,(0)=rq; and r,(0)=rq,.

This classical treatment of the PCI effect may then be
incorporated in the Glauber approximation including ex-
change correction (GA-EC-PCI). The quantities 6,(0)
and E;(0) were taken from our Glauber-exchange calcu-
lation, and Egs. (41)-(43) were used to incorporate a clas-
sical PCI effect to obtain E; and 6;, which we compare
with experiment.

ITI. NUMERICAL RESULTS AND DISCUSSION

TDCS’s for the H(e,2e)H™ process have been mea-
sured by Ehrhardt et al. [11] in a coplanar geometry; i.e.,
the three vectors k, k;, and k, are in a plane. They de-
crease strongly with increasing momentum transfer. So

TABLE I. Magnitude of binary maxima (in a.u.) for
electron-impact ionization of atomic hydrogen.

E (eV) E, (eV) 6, (deg) GA® GA-EC®

150 3 4 11.83 11.58
10 3.17 3.01

16 0.87 0.77

5 4 8.53 8.30

10 3.08 291

16 1.09 0.96

10 4 3.69 3.53

10 2.14 2.00

16 1.26 1.10

250 5 3 10.85 10.74
8 3.41 3.31

“Present Glauber approximation.
®Present exchange-corrected Glauber approximation.
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attention was paid to the so-called asymmetric kinemat-
ics, i.e., to small scattering angles 8,, and E, <<E,. In
the present work, we have calculated TDCS’s at incident
enrgies of 150 and 250 eV in the case of asymmetric kine-
matics and compared our results with the absolute mea-

TDCS (au.)

6, (deg)

— - —

|
|
GAEC |
--—- CPAEC |

T0CS (au.)

surements of Ehrhardt et al. At E =150 eV we have
studied the distribution of the ejected electrons for
E,=3,5, and 10 eV and 8,=4°, 10°, and 16°, whereas at
E =250 eV we have examined TDCS’s for E, =5eV and
6,=3° and 8. In order to obtain TDCS’s we have adopt-

N 1

E=150 eV
E;=3eV
0,-16° |

0.8

0.6

3
8
B os
a
—
0.2
0 - _
0 60 120 180 2460 300 3
8, (deg)
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|' !l' EL=SZV
l! ‘|[ 8,=16'
2 e s GA
’ o <memee CPA
it —_GAEC
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5
o
w
O
a
—
0 60 120 80 70 0 360
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FIG. 1. TDCS vs the angle of ejection, 6, for the H(e,2¢)H™* reaction at an incident energy of 150 eV and energy of ejection, 3 eV,
(a) 6,=4° and (b) 6, =16"; energy of ejection, 5 eV, (c) ;=4° and (d) §,=16"; and energy of ejection, 10 eV, (e) 6,=4and () 6,=16".
Curves: Glauber cross sections including exchange (solid curve), Glauber cross sections omitting exchange (dashed curve), coupled-
pseudostate cross sections including exchange (dot-dashed curve), and coupled-pseudostate cross sections omitting exchange (double-

dot-dashed curve).
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ed the numerical procedure of Ref. [9] to calculate the
direct amplitude, whereas the exchange amplitude given
by (39) is evaluated using Gauss-Legendre quadratures
for performing the x integration of Eq. (38) and Gauss-
Laguerre quadratures for s integrals occurring in Eq. (39).
Combining the exchange amplitude with the direct one
by means of Eq. (40), we obtain the exchange-corrected
Glauber cross sections.

At asymmetric kinematics, TDCS’s obtained in the
GA for the direct process are cylindrically symmetric
around the momentum-transfer direction q. These
theoretical cross sections show local maxima in the direc-
tion of the momentum-transfer vector q (binary peak)
and —q (recoil peak). The binary peak is more pro-
nounced than the recoil peak. Table I presents the mag-
nitude of binary peaks obtained in the GA and the
exchange-corrected Glauber approximation (GA-EC).
Although the GA and the GA-EC predictions for the
binary-peak positions are almost the same (not differing
by more than 1°), the magnitudes of the binary peaks ob-
tained in these methods differ. The GA-EC peak values
are seen to be below the corresponding value of the GA
peaks in all the cases considered in this work. Further-
more, we note that for fixed scattering angles the effect of
exchange increases with increasing ejection energies,
while the effect decreases with decreasing scattering an-
gles for a fixed energy of ejection. More specifically, we
note that at the fixed incident energy of 150 eV and fixed
scattering angle of 4°, the TDCS decreases by 2% for
E,=3 eV, whereas it decreases by 4% when E, is in-
creased to an energy of 10 eV. On the other hand, we
find that for the same fixed incident energy of 150 eV and
fixed ejection energy of 3 eV, the TDCS decreases by
about 12% at 0,=16° as against 2% at 6,=4°. The ex-
change effect is seen to be less pronounced at higher in-

300 360

FIG. 1.
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cident energies.

Figure 1 shows our GA and GA-EC results for the dis-
tribution of ejected electrons at the incident energy
E =150 eV, ejection energy E,=3, 5, and 10 eV, and
scattering angles 4° and 16°. In that figure we illustrate
the importance of exchange. As expected, the exchange
effect is seen to be relatively more important with de-
creasing incident energy, increasing scattering angle, and
increasing ejection energy. In Figs. 1(c) and 1(d), we have
also displayed the results obtained in the coupled-
pseudostate approximation (CPA) [15] with and without
exchange. It should be noted that although the exchange
in the CPA is considered through the proper antisym-
metrization of the wave function, the exchange term in
the coupled integro-differential equations has been
neglected in the actual calculation. We note that our
cross sections are in qualitative agreement with the corre-
sponding results of CPA calculations. The cross sections
are affected mainly in the vicinity of the binary peak and
most consipicuously in the case where E,=10 eV and
6,=16".

Figure 2 displays the present TDCS’s obtained in the
GA and GA-EC at the higher incident energy E =250
eV, ejection energy E,=5 eV, and scattering angles
0,=3° and 8°. The exchange effect is seen to be almost
unimportant. Its contribution to the cross section does
not exceed 2% and 4% at any angle in Figs. 2(a) and 2(b),
respectively.

Figures 3 and 4 show a comparison of the present
GA-EC and GA-EC-PCI calculations and the measured
TDCS’s of Ehrhardt et al. [11]. The error bars on the
measured data indicate the quoted normalization error of
15%. Also shown in the figures are the CPA results of
Curran and Walters [15], the unitarized eikonal Born

(f)

E =150eV
E,= 10 ev !
6, -16° !

—————— GA

—— GAEC

|
[
|
1
—]
120 180 240 300 360

g,deq)

(Continued).
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series (UEBS) [16] cross sections of Joachain et al., and
the eikonal Born series results of Byron, Joachain, and
Piraux [17]. The UEBS method consists in amalgamating
the second Born and the Wallace approximation.
Whereas the CPA takes care of exchange through the an-
tisymmetrization of the final-state wave function, UEBS

N
(a)
10 E =250eV
E,=5€V
9,=3°
------ GA
GAEC
8
6
3
o
)
O
o
—
4
2
o _ |
0 60 120 180 240 300 360
ez(deg)
(b)
E=250eV
4 Ey=5€v
6-8°
----- GA
—— GAEC

TDCS (au)

120 240 300 360

180
8,deg)

FIG. 2. Coplanar TDCS vs the angle of ejection, 6,, for the
H(e,2e)H™ reaction at an incident energy of 250 eV, energy of
ejection, 5 eV, and angle of scattering (a) 6,=3° and (b) 6,=8".
Curves: Glauber cross sections including exchange (solid curve)
and Glauber cross sections omitting exchange (dashed curve).

5721

cross sections take into account exchange effects via the
Ochkur-exchange amplitude. The EBS method adds the
Glauber approximation to the third Born term to the first
and second terms of the Born series. Exchange is includ-
ed in the EBS calculation of Byron, Joachain, and Piraux
through the Ochkur approximation. We see from Figs. 3
and 4 that the ab initio calculations, namely, the EBS,
UEBS, CPA, and GA-EC, yield cross sections which
have nearly similar features. However, the magnitudes of
the cross sections obtained in these methods differ. At
E =250 eV, the TDCS’s predicted by the CPA and EBS
are within the experimental error bars for both scattering
angles 6,=3° and 8°. On the other hand, the present
GA-EC nearly reproduces the experimental data at
6,=8°. At 6,=3’it is in reasonably good agreement with
experiment, but underestimates the experimental findings
in the recoil-peak region. At the smaller incident energy
E =150 eV, the agreement between the CPA and experi-
ment is not so good as before. At 6,=16° the CPA cross
sections are too large in the neighborhood of the binary
peak. At the scattering angles of 4° and 10°, the UEBS
curves lie below the experimental data in the vicinities of
the recoil and binary peaks, respectively. In the remain-
ing regions, the UEBS cross sections show quite good
agreement with the measured values. The GA-EC cross
sections are in reasonably good agreement with experi-
ment at 6,=16°. This agreement decreases at lower
scattering angles.

The present GA-EC-PCI calculation depends on two
arbitrary parameters ry; and ry,. At the incident energy
of 250 eV, the values chosen for 7, and rj, were, respec-
tively, 3.1 and 0.4, whereas at E =150 eV these values
were 2.4 and 0.4. We find that the inclusion of post-
collision interaction improves the present GA-EC results
considerably.

IV. CONCLUSIONS

We have presented a method of obtaining the exchange
scattering amplitude for electron-impact ionization of
atomic hydrogen. This method reduces the exchange
scattering amplitude to a simple two-dimensional in-
tegral, which can be computed numerically with conveni-
ence.

We have calculated coplanar TDCS’s for the
Hi(e,2e)H™ process at incident energies of 150 and 250 eV
for a variety of ejected electron energies and scattering
angles in the case of asymmetric geometry, i.e., E, <<E,
and 0, is small. The calculation is performed by combin-
ing the present eikonal amplitude with our previous
Glauber amplitude. The effect of post-collision interac-
tion is also incorporated in the present calculation. We
find that exchange is relatively more important with de-
creasing incident energy, increasing scattering angle, and
increasing ejection energy. These findings are consistent
with those of the coupled-pseudostate work of Curran
and Walters [15]. Exchange is found to cause a decrease
in TDCS cross sections in all the cases studied in this
work. It is found to be most prominent in the vicinity of
the binary peaks. Furthermore, we note that the TDCS’s
obtained in the present PCI-modified exchange-corrected
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Glauber approximation are in reasonably good agreement
with experiment.
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APPENDIX

We consider in this appendix the integral

I=@ de e =1%o — )71 +p) " +v) T, (A

- - - - EBS
GAEGRC

TDCS (awu)

0.8

TDCS (a.u.)

GA-EC-PCL

FIG. 3. Coplanar TDCS vs the angle of ejection for the H(e,2¢)H™ reaction at an incident energy of 150 eV, energy of ejection, 5
eV, and angle of scattering, (a) 8;=4°, (b) 6,=10°, and (c) 6;=16°. Curves: Glauber cross sections including PCI and exchange (solid
curve), Glauber cross sections including exchange (dashed curve), coupled-pseudostate cross sections including exchange (dot-dashed
curve), and UEBS approximation including exchange of Joachain et al. [16] (double-dot-dashed curve). Open circles are the results

of the absolute measurements of Klar et al [10].
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FIG. 4. Coplanar TDCS vs the angle of ejection for the
H(e,2e)H" reaction at an incident energy of 250 eV, energy of
ejection, 5 eV, and angle of scattering, (a) 8,=3° and (b) 6,=8".
Curves: Glauber cross sections including PCI and exchange
(solid curve), Glauber cross sections including exchange (dashed
curve), coupled-pseudostate approximation including exchange
(dot-dashed curve), and EBS approximation including exchange
of Byron, Joachain, and Piraux [17] (double-dot-dashed curve).
Open circles are the results of absolute measurements of Klar
et al. [10].
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where T indicates a closed contour encircling each of the
two points 0 and 1 once counterclockwise.

Assuming
MREN (A2)
and using the expansion
()™ My+e)n~ =y =y
—ngn
X3 (-1 E—in),
ot n!
—lys
syt .
X(—1) n (1—in) ,
(A3)
Eq. (A1) can be written as
I =2¢rdt " +s +ia—1(t -1 )—ia#—invin——l
ns
-n,—Ss
><(—1)”+“unTv'(in),,(l—in)s , (A4)

provided condition (A2) is satisfied for all values of ¢ on
the contour.

Next, we consider the integral representation of the B
function

=_1_._. x—1 — -1
Blx,y) 2sinh(m)¢rdrz (t—1Y"!, Rex>0.
(A5)

Letting x =r +1—i7, where r is positive and y =in, Eq.
(AS5) can be expressed as

1

Blr+1—in,in)= $rde i —1)n1

2 sinh(—my)
(A6)
Now remembering the relations
_T(a+r) _ I'(x)T'(y)
(@, =" adBEI=F T
B(r +1—in,in) can be written as
Blr+1—in,im)= T (A7)
’ i risin(min)
Using (A7) in (A6), we have
) ) 2im(1—in)
$ rar 1 =ine — 1y == (A8)
Utilizing relation (A8), Eq. (A4) can be written as
o (ia), 4 (in),(1—in) "
I=21Tl"u—”’V”’_lz +s\IM n)s __i
oy (1), 44nls! u
.t
v
(A9)

The double summation in (A9) can now be performed
[18]. Equation (A9) then becomes
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I=2mip~ "MW1 1F, (A10)

. . 1 1
ia,in,1—in,1,——,——
u v

The hypergeometric function F, of two variables occur-

ring in Eq. (A10) can be expressed in terms of the Gauss-
ian hypergeometric function ,F, using the relation [19]

a,B;B+8, =2 |.

Fl(a’B’B”B+B’;x,y)=(l—y)_azFl l—y

(A11)
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Consequently, the ingegral I can be written as
—ia
I=2mip~ "Win! 1+l JF, lia,in; 1; —Y .
v u(v+1)
(A12)

Although we obtain the result (A12) under the restriction
(A2), it is valid at other regular points by analytic con-
tinuation.
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