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The collision dynamics in the H* +H system is considered at low relative velocities within the con-
cept of hidden adiabatic energy crossings in the complex plane of internuclear distance. Detailed infor-
mation is provided on the topology of all series of hidden crossings in this system which are involved in
the transitions between the states with principal quantum numbers n <4 and in the promotion of these
states into the continuum. This information is used to perform cross-section calculations for the
Is—nl (n=2-4), n=2—n=3,4, and n =3—n =4 excitation transitions and for ionization from the

n=1, 2, and 3 levels in the adiabatic energy region.
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I. INTRODUCTION

The usual expansion method based on quasimolecular
states for description of slow heavy-particle collisions
[1,2], even in its semiclassical version, contains conceptu-
al difficulties associated with the Galilean invariance of
the coupled equations for the rearrangement channels, or
else, with the compatibility of adiabatic approximation
with the physical boundary conditions [3,4]. Removal of
these difficulties through formulation of the scattering
problem in the Jacobi coordinates and introduction of an
appropriate scale transformation of the internuclear dis-
tance [5] leads to transformation of the adiabatic basis
into a dynamical one, for which the solution of both the
eigenvalue problem and the corresponding coupled equa-
tions imposes formidable numerical (computer-time) re-
quirements. For instance, due to the appearance of
velocity-dependent terms in the instantaneous Hamiltoni-
an, the variables in the simplest one-electron two-
Coulomb-center eigenvalue problem are no longer separ-
able.

Another approach to the dynamics of heavy-particle
collisions at very low collision energies is to resort to the
exact asymptotic solution of the dynamical coupled equa-
tions [4], which requires solution of the velocity-
independent eigenvalue problem in the complex plane of
internuclear distance R. The transitions between adia-
batic states of the system are then entirely defined by the
singularities of the analytically continued eigenenergies in
the complex R plane [6-8], and the corresponding transi-
tion probabilities are given in terms of the well-known
Landau contour integral [9]. This approach relies on the
R analyticity of the electron-nucleus Coulomb interaction
and the R analyticity of the entire electronic Hamiltonian
H(R) of the system in the adiabatic approximation. It
appears that the singularities of the adiabatic eigenener-
gies in the complex R plane are square-root branch points
connecting eigenstates with the same symmetry [6,7].
This is a consequence of the fact that off the real R axis,
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the Hamiltonian is no longer Hermitian and in a two-
state degenerate subspace it assumes a Jordan rather than
a diagonal form [4]. The branch point connecting two
eigenenergy surfaces in the complex R plane (“hidden”
crossing [6]) is seen as an “avoided crossing” of the corre-
sponding potential-energy curves on the real R axis.

A prominent feature of the asymptotic method with
Landau contour integration is that the calculation of a
two-state transition probability requires only the
knowledge of the eigenenergies in the complex R plane of
corresponding adiabatic states. This is to be contrasted
with the ordinary eigenstate expansion method using a
real R basis where, apart from solving the set of coupled
equations, knowledge of both the state energies
(potential-energy curves) and the nondiagonal coupling
matrix elements is required.

The asymptotic adiabatic method has so far been ap-
plied [7,10,11] to collision processes in the one-electron
two-Coulomb-center system (Z,,e,Z,) (Z,, being the
nuclear charges), for which the necessary numerical
codes for exact solution of the eigenvalue problem in the
complex R plane, identification of energy singularities,
and calculation of corresponding Landau contour in-
tegrals have been developed [6]. The processes con-
sidered in the previous applications of the method in-
clude the following: ionization in the H* +H(1s) [7,11],
He?* +H(1s) [10], and H* +He™ (1s) [10] systems; the
electron capture reaction He? ™ +H(1s)—He™ [10]; and
the H*+He'(1s)>H'T+He™ (n=2) [10] excitation.
Despite the fact that only a limited number of “hidden”
crossings (or series of such crossings in the case of ioniza-
tion) were included in these calculations, they have
demonstrated the potential of the asymptotic adiabatic
method for describing the collision dynamics in the adia-
batic energy region and its competitiveness with the
large-size coupled-channel calculations in predicting the
inelastic cross sections.

In the present study we undertake a detailed investiga-
tion of the collision dynamics in the HT +H (n) system
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by using the asymptotic adiabatic method and including
all the adiabatic states which correlate with the
separated-atom states having principal quantum numbers
n <4, as well as a large number of additional higher adia-
batic states involved in the promotion of n =4 states to
the continuum. The analysis of the topology of adiabatic
energy surfaces in the complex R plane reveals the ex-
istence of additional series of branching points in the
(Z,,e,Z,) system [12], which introduce a significant
complexity in the collision dynamics and which have not
been considered in the previous applications of the
method [7,10,11]. A detailed account on the topology
and singularities of the adiabatic energy surfaces of the
H™' +H system in the complex R plane will be given in
Sec. II. In Sec. III we briefly describe some basic features
of the applied asymptotic approach to the collision dy-
namics of the H +H system. In Secs. IV and V we pro-
vide details of the cross-section calculations and results
for the H'+H(ls)>H"+H(rn=2,3,4), H"+H*
(n=2,3)>H"+H* (n=4), and H* +H"* (n=1,2,3)
—H*+H"*+e processes in the energy region from
~0.5 to 15-20 keV/amu. The obtained results are com-
pared with the available data from other theoretical and
experimental investigations of these processes. In Sec. VI
we give some concluding remarks regarding the applied
method and obtained results.

We note that apart from providing a further insight in
the collision dynamics of the H* +H system in the adia-
batic energy region and on the applicability of the asymp-
totic adiabatic method, the results of the present study
are of interest in a number of plasma-fusion research
areas in which low-energy cross-section data for collision
processes involving excited hydrogen atoms and protons
are required [13]. Guided partly by the same motiva-
tions, we have undertaken a similar systematic study of
excitation, ionization, and electron capture processes in
the He? " +H (n <4) system, the results of which will be
reported elsewhere [14].

Atomic units (e =m,=#=1) will be used throughout
this work, unless otherwise explicitly indicated.

II. TOPOLOGY OF POTENTIAL ENERGY SURFACES
OF THE H* +H SYSTEM IN THE COMPLEX R PLANE

A. Basic features of the eigenvalue problem
for the (Z,,e,Z, ) system in the complex R plane

The stationary Schrodinger equation of the two-center
Coulomb problem (Z,,e,Z,),

—lA— Z, . z,
2 Ir—R/2| |r+R/2|

®(r,R)

=E(R)®(r,R),
(1)

where R is the internuclear distance and r and
r ,=rxR/2 are the electron position vectors with
respect to the midpoint of the internuclear distance and
the centers 1,2, respectively, allow separation of variables
in the prolate spheroidal coordinates,

5555
rit+r r,—r
= 2, n= ] 2, ¢=arctan(x/y) ,
R R (2)
1Sé<ow, —129=1, 0=¢<27.

Representing ®(r,R ) in the form
&(r,R)=[(E2— 11— ] 2U(£)V(n) explim ) ,

(3)
one obtains from Eq. (1) the following equations for U(§)
and V(n):

_iz___ 2 a§—k+ 1—m2

e p°+ £-1 T e—1y ui)=o0, (4a)
d? bp+A | 1—m? _
= —pi+ = (=n?f Vin)=0, (4b)

where
p=(—2E)?R /2, a=(Z,+Z,)R, b=(Z,—Z,)R,
(5)

and A is the separation constant. For real values of R,
Egs. 4(a) and 4(b) together with the boundary conditions

|U(1)] < oo, Jim U(§)=0, (6a)

[V(+1)| < (6b)

define two boundary-value problems, with the eigenvalues
)»(,,5;,,, (p,a) and 7»‘,,’3’),,, (p,b), respectively. From the gen-
eral theory of Sturm-Liouville problems, it follows that
the quantum numbers Ng, Ny, and m are conserved when
the parameter R varies.

From the obvious requirement }»(,,i’,,, (p,a )=k£,’;’m (p,b),

one obtains the eigenvalue spectrum

EJR)=E,, n(R,Z1,Z,). )

In the classification of molecular states, the united-atom
spherical quantum numbers (NIm ) are commonly used,
and these are related to n £ Ny and m by

N=n¢+n,+m+1, I=n,+m . (8)

The parabolic quantum numbers [n n, n, m]
(n=n;+n,+m+1), which are used to classify the elec-
tronic states in the separated-atom limit, can also be ex-
pressed in terms of (n ohyp,m ), which together with (8)
gives the correlation of the states in the two limits [2].

Several numerical codes presently exist for solving the
eigenvalue problem (4)-(7) for real values of R in the
discrete spectrum (see, e.g., Ref. [15]). Solov’ev [6] has
used an analogous code for solving the problem in the
complex R plane (For ReR >0), which will also be used
in the present study (with a slight extension in the region
ReR <0). One of the specific features of the eigenvalue
problem (4)—(7) in the complex R plane is the existence of
branching points R. on the surfaces E (R ) which con-
nect them with other surfaces E4(R ) having an appropri-
ate symmetry. In the vicinity of these points the eigenen-
ergy behaves as [4]
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E(R)=E(R,)+constX(R —R,)'? 9)

and the (R —R,)”!/? singularity of its derivative is used
in the code as a signature for determination of the branch
points R.. The connection of two eigenenergies E,(R)
and Eg(R) through a square-root branching point R,
means that E,(R ) and Eg(R) are branches of a single an-
alytic function E(R) defined in the entire complex R
plane. This property, which follows directly from the
non-Hermitian character of H(R) in the complex R
plane and its reduction to a Jordan form in the vicinity of
R, extends also to the corresponding eigenvectors, @,
and ®g [4], i.e., for a given symmetry they also represent
branches of a single eigenvector ®(r,R ). It can be shown
[4], however, that the normalization constant of the
eigenvector ®(r,R) becomes singular when R —R,,
which induces singularities at R =R, in all (except the
normalization) matrix elements calculated with ®, and
®;. For instance, the behavior of (®|d/3R |®,) near
the branch point R, is [6] ~(R—R_,)”!. If ImR, is not
too large, the singularities of matrix elements at R =R,
are seen as bell-shaped curves on the real R axis, while
the branch point manifests itself as an avoided potential
curve crossing. It should be noted that from the analyti-
city of H(R) it follows that the branch points R, always
appear as complex conjugate pairs.

The previous eigenenergy calculations [6,7] for the
(Z,,e,Z,) system in the complex R plane have revealed
that the square-root branching points appear in series
characterized by certain common features. Two different
kinds of series have been identified which connect the
adiabatic energy surfaces of the same symmetry accord-
ing to different ‘“‘selection” rules. These series of branch-
ing points, named S and T series, have characteristic dis-
tributions and typically appear in different regions of R.
The S series appear at smaller values of |R| where the
classification of molecular states in terms of united-atom
quantum numbers (NIm ) is appropriate, and are desig-
nated by Sy;,,. The majority of the branch points of T
series appears at large |R | values and they are designated

by T,,l’,,2,,, and Tnlznzm according to the parabolic states

around the Coulomb center (Z; or Z,) to which the
molecular states correlate.

The branch points of Sy, series connect the states
|INIm ) and |N+k,Im), k=1,2,3,.... With increasing
k, the imaginary part of the branching point Ry, ., in-
creases dramatically, and from the point of view of col-
lisional dynamics (see Sec. III), the branching points with
k =2 are not important. The first terms (k=1) of the
Swim;k series form superseries, S,,,, connecting pairwise
the states |[NIm ) and |N+1,Im) consecutively for all
N z1+1. All the branch points Ry, of this (infinite) su-
perseries are distributed in a small region (};,, in the com-
plex R plane and have a limit point R;,, =limy_, ,Ry,-
The S,,, superseries of branch points have been identified
[8,16] as the physical basis for the Fano-Lichten [17] dia-
batic superpromotion phenomenon and the associated
ionization mechanism in the slow heavy-particle col-
lisions. In what follows, we shall refer to the S,,, super-
series simply as the S,,, series.
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. . z
The branch points of the series T,,ll,;zzm connect the

states |[Nlm ) and |[N+k,l+k,m), k=1,2,3,..., hav-
ing the same “quasiradial” parabolic quantum number n,
(and the same parity in the Z, =Z, case) for all k. The
branch points R,,Z] wam;« for different k values are uniform-
ly distributed on a steep straight line with a mutual inter-
val [6] Im(AR})=~i2m(n,+n,+m+1)/(Z,+Z,). The
branch points of the T series are related with the nonadi-
abatic transitions between the corresponding states at
large real R values. Because of the large increase of

z . . .
ImR,,ll,’,im;k with k, only the first branch points (k =1) in
these series induce transitions with a considerable proba-
o . z . .
bility. The first branch points of the T}, ;”, series having

the same value of n, form superseries T,,ZI 2 which con-
nect the states |[NIm ) and |[N+1,/4+1,m ) pairwise and
. . Z,, .

in succession. The values of ReR,,l,;z,,, increase
significantly with increasing n,.

On the receding stage of the collision, the T,,Z] i, super-
series can also promote the | NIm ) state to the continuum
[7,11]. In the case of a symmetric system, Z,=Z,, the
adiabatic states acquire an additional symmetry (the pari-
ty) which is also conserved when R varies. Only the
states with the same (g or u) parity are connected by the
branch points of the T,,Z1 ;f;',‘,, series. The branch points
RZ%

172

(NIm) and [n n; n, m] quantum numbers in this case is
[2,15]

N=n+n,, 1=2n,+m

alternate. The correspondence between the

(I and m of same parity) , (10a)
N=n+n,+1, I=2n,+m+1
(I and m of different parity) .  (10b)

Because of the (g,u) symmetry, the T superseries in a
symmetric system connect the states |NIm) and
IN+2,14+2,m).

The existence of the S;, series of branch points con-
necting in the complex R plane, pairwise and in succes-
sion, all the eigenenergies of the (Z,,e,Z,) system having
a specified symmetry, indicates that the energies Ey;,,, (R )
are only different branches of a single analytic function
E,, (R) (Riemann surface) defined on the entire complex
R plane. Similarly, the T,,Zl ‘,;im series also define Riemann

surfaces with an infinite number of branches. In the next
section we shall show that each of these Riemann sur-
faces is a multiply (infinite times) connected surface (see
also Ref. [12]), and that, except at the branching points,
each of the Ej,,, (R ) sheets is a smooth surface over the
entire complex R plane, including the region ReR <O0.

B. E,,, (R) Riemann surfaces and S,,, series

Each of the §,,, series of branching points starts from
the state |NIm ) with N=I+1 and includes the sequence
of pairwise connected eigenenergies of the states
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INIm ), ,,—|N+1,Im), ,—|N+2,Im),,
- —=w,im),, (1)

having a given g,u symmetry. For a given m value, the
parity of S,,, series interchanges, the first few series being
S%50s S3pm S4as> etc. The g,u labels can, therefore, be
omitted from the series designation.

The identification of the square-root branch points
RYFiFbIm=R, . of the above series in the complex R
plane for the H' + H system was done by using the algo-
rithm of Solov’ev [6] [the signature being the
(R —R, )~ '/* singular behavior of the Ey;,;,(R) and
Eniit1,m(R) surfaces at R,,, ]. The algorithm is
designed for calculation of Ey,,,(R) and search for
R;;, only for ReR >0, but with minor modifications it
can be also used to identify R;,, for R with negative
values of ReR (except for the vicinity of the real axis). As
an additional check for identification of the branching
point, R, ,, serves the calculation of the contour integral,

ilm

X R
Ay = ‘ Imf
ReR“m

- ’ Im [ _E;, (R)dR

AE,, (R )dR|

, (12)

where the contour C starts from the real R axis where
E,,=E,,,(R), encompasses in the complex R plane the
branch point R;,,, and returns back to the real R axis
where E;, =E; | ;,(R). The value of A} remains the
same if the integration is carried out along the same con-
tour but in the opposite direction. The quantity A’ is re-
lated to the generalized Massey parameter at the zero pa-
rameter (see Sec. III).

It has been shown in Ref. [12] that for (I —m —1)22,
new S series of branching points appear in the complex
plane with ReR >0 connecting the same [N +i,Im ) and
IN+i+1,Im ) states. For a given (I,m) pair, the num-
ber of these points in the upper complex plane with
ReR >0 is equal to Ent[(/—m +1)/2], where Ent(x)
denotes the integer part of x. Moreover, additional S
series related to the sequence (11) appear also for
ReR <0. We shall designate these series as S\¥' with
k=0,1,2. Each of these S)<' series has a limit point
R, =R[X. The R,¥ points are distributed in the com-
plex R plane in such a way that

ReRY>ReR[)>ReR>> -+ . (13)

In Fig. 1, the first few branch points R\%), and the limit

1,

1 1/2 A a A a A
==(2 +2 K |5 |- ,
14 17-( @) ! a 2a 2E 2a

2 A—a A—a
== +A' 172 j— <

1'r(a ) K " ta E A ta , a<A,
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b T (1)
H L 197 9%
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3 1
Reo 4 1§90
L Reo 2
5
S(O)
81 1. 5gx-6gx Reo 9"
2: 6gx-T7gx g.éf
3: Tgx—8gx Reo )
4: 8gx-9gx 1 Sgo
r x=0,1 4 2
3
L | 1 ] 1 L ]
-2 2 4 6 8 10 12
oL ReR{a,)

FIG. 1. Structure of the first three S;5’ and first two Sy
series in the complex R plane.

points R ,‘;’ of the series S;g), Sg(},), S;,%,), Sg“,),’, and Sé:,’ are
shown to illustrate their distributions in the complex R
plane.

The branch-point distributions of other S}’ series have
similar behavior. All branch points of a given S}’ series
lie within a finite range {|R\5), | —|R ., |} =8pt) of a
few atomic units. 8pi¥) slightly increases with /, m, and «.

The coordinates (ReR_; ImR ) of the first three branch
points of the first several S,(,;’ series with m =0, 1, and 2,
and of the corresponding limit points R ¥}, , are given in
Tables I and II. The values of the contour integrals (12),
AY", associated with these branching points and their sum
over the entire series, Aff),, =3 A}, are also given in the
tables.

For a given m, the values A{}, are roughly propor-
tional to / ~!/? and those for k=0 and m =0,1 can ap-
proximately be represented as

AP, ~0.57817172, 1>1,
AP),~0.901 712 >3 .

(14a)
(14b)

In the quasiclassical approximation, the limit points R *’

of the S/* series can be calculated from the equation
(8,12]

(m+1)/2%iy(R)=—«k, k=0,1,2,..., (15)
where

(16a)

(16b)

A=U+1P=b2/8(1+ 1)1 a=(Z,+Z,)R, b=(Z,—Z,)R, a7
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and K(x) and E(x) are the complete elliptic integrals.
The solutions of Eq. (15) for /=0-7 and m=0and m =1
in the upper-half R plane are shown in Table III. The
notation R ;,=|R, ;.|exp(+id, ;,) is used, with
¢ 1m expressed in degrees. On the negative real axis
(¢=180°), Eq. (15) has an infinite number of solutions,
only the first of which is shown in Table III. The number

of R ‘o',f? Io Doints lying in the upper half of the R plane is
v,=1, while for the 7 states that number is v,=I, for
I=1and 2,and v,=I]—1,for [ 2 3.

A series expansion of the elliptic integrals in Eq. (14)
gives the following approximate solutions for R (e‘,f’ m (re-
taining only two terms in the expansion) [8,12]:

TABLE 1. Coordinates (ReR,; ImR_) and Massey’s parameters A, of the first few branch points of

Si\s) superseries in the H +H system for ReR, > 0.

S NoN+1 N+1oN+2 N+26N+3 R‘;ff,,,,/zAff’

S R, —0.67;0.00
Aq

S, R, 0.7857;1.099 0.7676;1.050 0.7594;1.034 0.69;0.97
A, 0.3069 0.1042 0.0732 0.516

s R, 2.961;1.965 2.869;1.850 2.828;1.805 2.69;1.72
Ao 0.211 0.091 0.0479 0.427

S, R, 6.343;2.902 6.106;2.692 5.993;2.603 5.69;2.44
Ao 0.1487 0.074 0.043 0.348

S R, 2.603;7.508 2.461;7.047 2.303;6.839 2.18;6.37
Ao 0.315 0.166 0.0975 0.809

59, R, 10.957;3.889 10.514;3.574 10.289;3.432 9.69;3.15
Ao 0.11 0.060 0.037 0.291

sS4, R, 7.298;10.226 6.919;9.667 6.725;9.396 6.18;8.75
A, 0.246 0.142 0.09 0.754

S R, 16.823;4.926 16.118;4.497 15.742;4.293 14.69;3.87
Ao 0.0844 0.050 0.0324 0.248

S R, 13.161;12.896 12.525;12.229 12.183;11.889 11.18;11.03
Ag 0.196 0.121 0.0805 0.666

s@) R, 5.473;19.82 5.038;18.608 4.815;17.98 4.16;16.32
Ao 0.267 0.167 0.112 0.915

N R, 23.96;6.00 20.69;4.58
Ao 0.0669 0.216

S R, 20.23;15.57 17.18;13.25
Ao 0.160 0.593

S@) R, 12.82;24.42 10.17;20.40
Ao 0.222 0.857

S R, 32.36;7.12 27.69;5.29
Ao 0.0543 0.192

S§iy R, 28.54;18.28 24.19;15.45
Ao 0.132 0.536

Sg), R, 21.28;28.90 17.17;24.31
Ao 0.187 0.797

S R, 9.51;38.16 6.63;30.80
Ao 0.227 0.969
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(x) 2

©,lm

R Z,+2Z,

Although approximate in character, this equation
correctly predicts the number of S} series in the region
ReR, and the fact that all Sj,; (%) series with 2KZ !l —m have
ReR'Y,, <0. The distribution of R ., and R,
points for /=0-7 is glven in Fig. 2. This figure shows
the “periodicity” of R ¥ ,m points and the alternation of
R%,, and R%), with increasing x. Some of these
features follow also from the approxnmate equatxon (18).

According to Eq. (18), the limit points R ¥ ,m satisfying

=——"——((I+12—Lm+2+ 1V ti(m +2c+ 1)[2(1+ 1) = Hm +2c+1)]'2} .
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(18)

the relation m +2k+1=const have the same position in
the complex R plane.

It should be noted that with a few exceptions occurring
for large / and m (see Table I1), the S;,, %) series of branch-
ing points with ReR ‘¥ ,m >0 have the property

{IRNi | — IR, [} =8pix) >0,

i.e., when R decreases from Ry, +8R towards R,
they “promote” the |NIm ) state to the continuum on the

TABLE II. Coordinates (ReR.; ImR,) and Massey’s parameters A, of the first few branch points of

(x)

Si) and Sk superseries in the H + H system for ReR, > 0.

Sk NeoN+1 N+1oN+2 N+2oN+3 Lg’,m/ 2 A§

So R, —0.638;1.29
L%

SQ R, 1.291;3.395 1.292;3.197 1.286;3.118 1.27;3.10
A, 0.32 0.142 0.076 0.697

S, R, 4.743;5.313 4.554;4.986 4.462;4.842 4.37;4.65
A, 0.241 0.124 0.073 0.607

S, R, 9.384;7.147 8.976;6.711 8.767;6.504 8.37;7.59
Ao 0.184 0.104 0.066 0.527

S, R. 3.569;12.691 3.371;11.897 3.270;11.511 3.11;10.78
Ay 0.288 0.167 0.106 0.870

S R, 15.248;8.99 13.37;7.59
Ay 0.144 0.462

S R, 8.114;14.004 8.11;14.00
Aq 0.234 0.803

S R, 22.34;10.84 19.38;9.04
Ay 0.116 0.409

N R. 16.80;20.11 14.12;17.09
Ay 0.193 0.735

S R, 6.982;27.99 5.33;22.99
A, 0.244 0.945

S R, 1.47;6.54 2.18;6.37
Ao 0.29 0.796

S5 R, 6.20;9.86 6.18;8.75
Ao 0.234 0.711

S R, 12.21;12.79 11.18;11.03
Ag 0.189 0.635

Sihs R, 4.14;18.81 4.16;16.32
Ay 0.26 0.911
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TABLE III. Coordinates (|R ,|; %) of the limit points R , ;,, of the S/ and S;*’ series for ¢ <

Im\ K 0 1

2 3 4 5
so IR, | 0.67
% 180
po R, | 1.190 4.87
#% 54.574 180
do R..| 3.193 3.792 13.53
% 32.595 102.643 180
fo R .. | 6.191 6.733 8.146 26.53
¢° 23.201 71.13 127.067 180
go IR .| 10.189 12.374 11.931 14.337 43.85
¢° 18.008 54.767 94.134 143.738 180
ho IR .| 15.191 15.705 16.842 18.848 22.439 65.51
% 14.750 44.604 75.700 110.012 158.099 180
p IR .| 1.439 11.12
% 116.316 180
drm IR, | 3.350 4.539 23.48
% 67.722 151.008 180
fr R.| 6.381 7.287 12.48
¢° 46.778 97.158 180
g IR..| 10.375 11.220 12.925 26.62
> 36.218 73.907 116.367 180
hm IR, | 15.374 16.179 17.703 20.358 44.68
¢ o 29.583 59.917 92.234 130.198 180

approaching stage of the nuclei. On the usual adiabatic
energy diagrams, ReEj,,(ReR), only the promoting
features of ;O series with / >3 can be observed (as series
of avoided potential curve crossings). This is shown in
Fig. 3(a) for the S\ series. The promoting character of
the series of pseudocrossings is well recognizable only for
the first few terms of the series. If we represent R in the
form R =|R|exp(i¢), the viewing plane (ReE,$) of the
S series in Fig. 3(a) is defined by the direction ¢=0.
By rotating the viewing plane around the R =0 axis (i.e.,

InR{a,)

LY

20 ReR(g)

FIG. 2. Distribution of the limit points R'%,, of the S/ and
S;¥ series for 1=0,1,2,...,7.

by increasing ¢), the promoting character of S}O’ be-
comes more and more apparent and at ¢=¢° f,,—2° the
S{% series of hidden crossings is seen as shown in Fig.
3(b). If we continue to rotate the viewing plane beyond
o' fq and approach the S ) series, at the position
o= ¢w) fo—2° we see the pseudocrossmg series originat-
ing from the S!! fa series of hidden crossings, as shown in
Fig. 3(c). The promoting character of the S/ series is
barely observable in the (ReE,$=0) potentlal curve dia-
gram. However, from the position ¢=¢, ha—2° of the
viewing plane, the promoting character is clearly seen
[Fig. 4(a)]. At still larger values of ¢, the promoting
pseudocrossing series due to the Si!) and S;2) series of
hidden crossings also become observable [Figs. 4(b) and
4(c)].

In the vicinity of a branch point, the adiabatic energy
surface ReEy,,, (R) is strongly deformed due to the
infinite value of its derivative at the position of the
branching point.

In Figs. 5(a) and 5(b), we show the three-dimensional
(3D) plots of the ReE,;, and ReEg, surfaces, respec-
tively, on which the branching points R4fa sfo (k=0,1)
and Rﬁhg 1he (K=0,1,2), as well as the corresponding
branch cuts, can clearly be seen. Figures 6(a) and 6(b)
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show the contour plots of these surfaces for
ReE > —0.25, with a step A( ReE )=0.002, on which the
branch cuts are also clearly seen.

With a slight extension of the numerical code [6] for
calculation of the energy of (Z,,e,Z,) system in the com-
plex R plane, it is possible also to calculate the energy
Ey;,,(R) in the region with ReR <0. Figures 7(a) and
7(b), show the surfaces ReEs,,(R) and ImEs,,(R) in the
region ReR > —5 and ImR 20, on which the first branch
points (and corresponding branch cuts) of the series S;,;),
k=0,1,2, can be seen. It should be noted that both ReE
and ImE are continuous at ReR =0. It can be also seen
from the 3D plot on Fig. 7(a) that while the gradient
d(ReE)/d(ReR) of ReEs,, in the vicinity of the
branch points with @45, <7/2 (i.e., for k=0and k=1) is
negative, its value near the branch point R(sf;)o (p>m/2)

—-0.05

-0.10 i\_____.-— 50

-0.15 - -

g

ReE (a.u.)

-0.20 fo |

—-0.25 I 1 L |
0

(b)
~0.20 | Sqy o

®=2320-2°

| | | 1
0 5 10 15 20
IRI (q,)
000 T T T T

8fo
—00s [ Jfo

-0.25

-010 -

o1 ﬂ‘“’ i

(c)

~020 Sto .
®=7113%-2°

B I | L
0 S 10 15 20
IRI(qy)

ReE{a.u.)

-0 25

FIG. 3. Cross sections through the 4fo-8fc adiabatic
energy-surfaces by the ‘“viewing” planes (ReE,$=0) (a),
(ReE,3'Y'—2°) (b), and (ReE,')'—2°) (c).
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(2)
5go

is positive. This indicates that the series S5, has an “an-
tipromoting” character.

The principal result of the above discussions is that the
specific Ey;,, sheets of the Riemann surface E,,, (R ) with
a given symmetry are multiply connected through the
branch points of the series S}, where « takes an unlimit-
ed number of values.

All the S} series with ¢ < /2 have promoting char-
acter (i.e, ReRy;), > ReR\%,,,> ReR'Y, ), while
those lying in the second quadrant of the upper half plane
(m>¢>m/2) have an antipromoting character
(ReR'%),, > ReRy), ). Therefore, if the S} series in the
region ¢ < /2 are associated with the promotion of the
system into the continuum, the S/*’ series in the region
m> ¢ > /2 should be related to the nonadiabatic capture
of a continuum electron in the |NIm ) state. These as-
pects of the hidden-crossing adiabatic theory have not

been investigated as yet.
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FIG. 4. View on the S;* series of hidden crossings from the
vertical planes (ReE,¢'*'—2°) for (a) k=0, (b) k=1, and (c)
Kk=2.
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fobla.u.)

FIG. 5. Three-dimensional plots of adiabatic energy surfaces
(a) ReE,s,(R) and (b) ReEg,,(R) for complex values of R.

C. T"1"z”' series and T,fl,,, superseries

Because of the g,u symmetry of the (Z,e,Z) system,
the T!®*  series connect the states |NIm) and

’ll nzm

IN+k,l+k,m) with k=2,4,6,.... For instance, the
series T g, consists of branch points connecting the states
lsog-3dog, lsag-Sgog,lsagJiag, ..., while the series
T{¥) contains the branch points connecting the states
2po,-4fo,, 2po,-6ho,, 2po,-8jo,, (For the
states with /=7,8, ..., we use the nonstandard notation
Jk,....) The branch points of the series T, and
T,"}n lie on the same rather steep line in the complex R

plane as shown for the Ty, and Ty, series of the
(H*,e,H") system in Fig. 8 (the dashed lines). Because
of the sharp increase of [mR: l’: 22,,, "™ with increasing k
[by m(n,+n,+m+1), for the Z,=Z, case], only the
first branching of the T,‘,f',,“z’ series is important from the

point of view of the collision dynamics (see Sec. III). For
large values of R, approximate analytic expressions can

m

be derived for the first branch points of the T,%,",, series
[10]:

R, m=6nln—ng+(m+1)/2]+1+idn , (19a)
Ry, w=6n[n—ng+(m+1)/2]+1+i8n , (19b)

where

ReR1a,)
(a)

FIG. 6. Contour plots of the adiabatic energy surfaces (a)
ReE,;,(R) and (b) ReEg;,,(R) for ReE > —0.25 in the com-
plex R plane.

Aol v,
C

7

/e
-

7

Q.

FIG. 7. (a) Real and (b) imaginary parts of the energy of 5go
adiabatic state in the complex R plane for ReR = —5 and
ImR =0.

ng=N—I-2m—1, n=n;+n,+m+1.

As mentioned in the preceding section, the first branch

points of the series T";"zm with the same n; and m and
n,Zn—n;—m —1 form a superseries T,S,lm. From each
|NIm ) state, with /[SN—1,a T ,m (o Ty, ) superseries

may start. The first few T,flm superseries in the H* +H

v
a0 6foc—8ho
- To10
r .
L 000 - ® A
B ,  5po-T7fo 3do-7i0  s5tg-7ho
L ll 4po-6fa !
/
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= r 3po-5fa < < 5do-7g0
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= | 1s055g0 P _
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2p0y4t0 5 54
- " 7 3do-5go
- I 2sg-4do
- o
| 1s0-3do
ol v v oo b e b e b e 1
6] 10 20 30 40
ReR (a,)

FIG. 8. Distribution in the complex R plane of the first
several branching points of the superseries Ty, (N =0-5, open
symbols) and T3,, (N =0-35, solid symbols). Crossed circles are
higher members of the Ty, and T, series.
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TABLE IV. Coordinates (ReR,; ImR_) and Massey’s parameters A, for the first few branch points of
T ,superseries in the H* +H system, and the values of A ;o

Nlo*

Tino NI>N+2,1+2  N+21+2->N+4,1+4  N+41+4>N+6,1+6  Ag
5o R, 4.784;4.143 20.115;9.45 45.499;15.307
Ao 1.271 0.43 0.216 2.06
T3, R, 7.904;7.242 27.854;13.156 61.00;16.00
Ao 0.3555 0.1936 0.141 0.691
0 R. 5.44;7.80 22.18;17.54 49.22;28.39
Ay 3.5 1.12 0.542 1.94
5o R, 10.958;9.924 35.326;16.503 76.00;20.00
Ay 0.1585 0.1074 0.096 0.359
e Re 8.661;14.408 30.426;25.139 61.00;32.00
A 0.955 0.524 0.283 1.76
Tio R, 11.551;20.023 38.207;31.188 106;20.0
A, 0.446 0.298 0.096 0.840

24fo is a quasistationary state for impact parameters b < 5a,. The value quoted for A, refers to the

T}y, superseries.

system connect the sequence of following states:
Ty (= §mg ): 1s0,-3d0,-580,-Tio,- ",
T(S)’(;‘ (= ipau ): Zpo'u'4f0u'6ho'u'8jau"” ’
T8 (= iwg ): 250,-4d0,-680,-8i0 - .

The first several branching points of the Ty, and Ty,
superseries are shown in Fig. 8. It can be seen that the
branch points of a superseries lie on a straight line, as do
the branch points connecting the states with different N

but the same / and m values (as shown by the dotted line
in Fig. 8 for the Nso states). The coordinates of the first
few branching points for the first several Ty;,, T, and
T3, superseries of the H™ +H system are given in Tables
IV and V, together with the values A,; of the corre-
sponding contour integral (12), and their sum
Bo,10t= ZiBo,i-

In order to obtain an insight on the behavior of adia-
batic energy surfaces ReEy;,, (R) in the vicinity of a T-
type branching point, we show in Fig. 9(a) the 3D plot of
the surface ReE;;, (R). The strong deformation of the

TABLE V. Coordinates (ReR,; ImR,) and Massey’s parameters A, for the first few branch points of
T} and T3s superseries in the H* + H system, and the values of Ag o

Tiim NI>N+2,14+2 N+2,/+2N+4,1+4 N+41+4N+61+6 Ay
Sor R. 13.443;8.537 36.185;14.34 73.00;16.00
Ao 0.398 0.205 0.140 0.743
e Re 18.59;11.76 49.00;16.00
Ao 0.178 0.141 0.319
Sar Re 15.01;16.243 39.414;26.945 73.00;16.00
Ao 1.044 0.551 0.140 1.735
TS.. R, 20.319;22.928 4932
Ao 0.489 0.283 0.772
TS R, 25.65;13.25 61.00;16.00
Ao 0.193 0.141 0.334
Tis  R. 28.28;25.24 61.00;32.00
A, 0.523 0.283 0.906
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ReR(a,)

FIG. 9. (a) Three-dimensional and (b) contour plots of the
ReE;;,(R) energy surface in the complex R plane, showing the
T(1so-3do) and S(3do-4do) branching points (a) and corre-
sponding branching cuts (b).

surface in the region ReR ~5, ImR ~4 is due to the T
branching point (4.784; 4.143) connecting the 3do state
with the lso state (see Table IV). The singular behavior
of the gradient of ReE;,, in the region ReR ~3, ImR ~2
is due to the S branching point (2.961; 1.965), connecting
the states 3d o and 4do (see Table I). The contour plot of
ReE;,;,(R), with AReE =0.01, shown in Fig. 9(b), also
shows the position of these branch points and the corre-
sponding branch cuts.

III. TRANSITION PROBABILITIES
AND COLLISION DYNAMICS

The transition probability between the adiabatic states
la) and |B) connected by the complex branching point
R, is given in the adiabatic collision energy region by
[2,4,9]

P g=exp(—24g4,/v), (20)

where v ( << 1) is the relative collision velocity, and Ag, is
the generalized Massey parameter
)

c

x(R
Bp= ‘ Imfxex(Rc)AEB“(R(x ))dx i

= |1m [ B(R(x)dx|, 1)

where AEg,(R)=Eg(R)—E,(R) is the difference of en-
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ergies of adiabatic states, x =vt =(R 2—p)1/2 with b be-
ing the impact parameter. The contour C in Eq. (21)
starts at the real x axis [where E(R)=E_(R)], encom-
passes the branch point x,=x(R_), and returns back to
the real x axis, where E(R)=Eg(R).

The quantity Ag, is a function of impact parameter b,
and for a given value of b it can be calculated (for
ReR_ >0) by using the available codes [6]. In the region
b <<|R.|, the Massey parameter Ag,(b) can be expanded
as [11]

b2

1+
2|R, |

ABa(b ) = ABa(O) ) (223)

where Ag,(0) is given by Eq. (12), and for many S and T
branch points in the HY+H system is tabulated in
Tables I and II and Tables IV and V, respectively. We
found that

Agol0)
B Im(R2—b?)!”2

Bpalb)= ImR,

(22b)

fits better the numerically calculated Ag,(b) in a wide re-
gion of b values not necessarily much smaller than IRCI.
The square-root dependence in the last formula can be
derived analytically from Eq. (21), if one assumes flatness
and parallelness of neighboring complex energy branches
(which is obviously true, except in the vicinity of R_; see
Figs. 3, 4, 5,and 7).

It has been shown [7] that Ag,(0) for the S and T series
can be approximated as

ARN0)=|AEg,(ReR,)ImR.| , (23)

AGR(0)=|(7/4)AEgo( ReR,) ImR.| . 24)

We have also checked these formulas by comparing
their results with those from the direct calculations of the
individual A, ; for many S and T series with N <4 and
found that they are very accurate.

Equations (20), (23), and (24) show that for a branch
point with a large imaginary part the transition probabili-
ty is small. It should be kept in mind, however, that the
factor AEg,(ReR.) in Egs. (22), (23), and (24) may de-
crease with changing ReR_, so that the effect of increas-
ing ImR, on p,g may not be so strong. This is the case
with the S} series, for which both ReR!*’ and ImR ¥
change considerably, but |R!*'| does not (see Fig. 2).

With the knowledge of the transition probability p g at
each branching point, the simplest approach to the adia-
batic collision dynamics is to follow the distribution of
the incoming flux along different reaction paths. Since
the position of “transition” points (the branching points
in the complex R plane) is exactly known, and p 4 is cal-
culated through the contour integral (21), the problem of
overlapping transition regions, which appears in the usu-
al multiple pseudocrossing treatments, does not exist.
Even for the closely lying branch points of the S, series,
the corresponding generalized Massey parameters can be
calculated exactly. The evolution of the system outside
the immediate vicinity of the branch points is strictly adi-
abatic. The question of accumulation of adiabatic phases
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in state population amplitudes is ruled out for the regions
between the S branching points (since they are very close
to each other), while the branch points of T superseries
are always sufficiently far from each other (see Fig. 8) so
that under slow collision conditions a phase averaging is
allowed.

Although legitimate in the adiabatic limit (v —0)
[4,10], this approach obviously oversimplifies the col-
lision dynamics at finite collision velocities, and becomes
invalid for v =2 Ag,. The coupled-channel formulation of
the problem in the complex ¢ plane would require tremen-
dous computational efforts, as discussed in the introduc-
tion. It is, therefore, justifiable at this stage of the devel-
opment of the concept of nonadiabatic transitions at the
hidden crossings to adopt a simplified approach to the
collision dynamics in order to explore the potential of the
concept. (A more detailed discussion of the relation of
this approach to the coupled-channel formalism based on
dynamical molecular states can be found in Ref. [18].)

Apart from the transitions through the S and 7 branch
points (which couple states with same values of the quan-
tum number m ), the rotational transitions in the region
R —0 [between the states of a given (N/) manifold with
m quantum numbers differing by one] should also be in-
cluded in the collision dynamics.

In the present work we have calculated the rotational
probabilities within a given (NI) manifold by solving nu-
merically the coupled equations for the transition ampli-
tudes A4 “"(t ), resulting from the expansion of time-
dependent electron wave function over the united-atom
basis functions [19]. The rotational coupling matrix ele-
ments in this basis have simple forms [19], while the state
energies, to the first order in R, are given by [4]

m 2N2 b
2Z,Z,(Z,+Z,)[1(1+1)—3m?]
NI+ 1)(21—1)21+1)(21+3)

We have solved the corresponding system of coupled
equations for 45" (t) (see Ref. [19]) by using Eq. (25) to
represent the molecular energy, and the probability for
the rotational transition (NIm,)—(NImg) has been
determined as

mt—lAmt t——>+00)| . (27)

Y= (26)

IV. EXCITATION OF n <4 STATES
IN H* +H COLLISIONS

A. General considerations

In the present section we shall apply the asymptotic
approach discussed in the preceding section to calculate
the cross sections for excitation of the n =2, 3,4 levels of
a hydrogen atom in slow collisions with protons, as well
as for the proton-impact-induced transitions between
these excited states. The number of S and T branching
points connecting the Hy molecular states which in the
separated-atom limit go over to the n =2, 3,4 manifolds is
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over 100, and about 85 of them have been considered im-
portant in the present calculations.

In the calculations of channel probabilities shown
below, the transitions at the S and T branching points
have been treated on equal footing. This means that fol-
lowing an S}¥’ sequence of branch points, the probability
flux entering in that sequence does not necessarily end in
the contmuum in its entirety. Rather, at each subsequent

RS branch point the flux is divided into p\3;< and

(1—pi5:<)) parts which further evolve independently. If
we are interested, however, only m the probability for

ionization pj\}s;,,',” along the series S\ ,,,,, starting from the

state |N, lm) N.=1+1 (or, equlvalently, for the proba-

bility 1—pNSK’), the multiplication of the transition
probabilities of the form (19) gives
= II exp(—2A%) /v)
j=N
= exp(—2 }St,m /v), (28)
where
AN = 2 Aﬂfn’, : (29)

Having in mind the definition (21) of A'f j,m and the fact
that R ) ~R ¥}, for all j > N,, one obtains [10]

AN = |Ey i (ReR S ) Im[(R 3, ) = 2117

(30a)

Expressions analogous to (28) and (29) apply also to the
ionization probability pi'7) due to the superpromotion

along a T superseries. In that case instead of Eq. (30a),
we have used the expression

b)+ 3 [Ay +im(0)—

i=1

AR = Ay i Ay m(0)],

(30b)

where for Ay ;,,(b) the expression (22b) is used.

B. Excitation transitions from the ground state

Within the concept of collision dynamics described in
Sec. III, we have considered the following proton-
impact-induced excitation transitions from the ground-
state hydrogen atom:

H*"+H(1s)->H"+H(2s, or 2p) (31)
—H"+H(3s, p, or 3d) (32)
—H*+H (n=4) . (33)

In Fig. 10 we show part of the potential-energy dia-
gram for the molecular states involved in the above tran-
sitions (only for the states going to the n =2 and n=3
separated-atom manifolds), as well as the most important
S and T branch-point couplings. The initial-state proba-

bility flux splits equally between the lso, and 2po,
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= ]H“* H(n=3)
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FIG. 10. Partial potential-energy diagram of H; system, em-
phasizing the potential curves correlated to the n =2 and n=3
manifolds and showing the transitions due the hidden crossings.

states during the incoming part of the trajectory, and for
R <6 part of it is transferred to the upper-lying states
through the Ty, 4705 Ti56,300> @nd Sy, 3,, branch
points and through the 2po,-2pm, rotational coupling.
The probability flux transferred to the upper states
evolves further according to the distribution of the
branching points connecting the higher states. During
the receding stage of the collision, the probability fluxes
(population probabilities) propagating along various mo-
lecular states are further redistributed when the system
J
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passes through the coupling regions. The probability
Py, for population of a given asymptotic state |Nim )
consists, therefore, of many reaction paths. In what fol-
lows, the elementary transition probability at a given
branching point Ry, ™ will be denoted as pyy, yrm- The
character of the branching point (S or T type) can be dis-
tinguished on the basis of selection rules (N'=N+1,
I"=1for an S branch point,and N'=N+2,/’=1+2 for a
T branch point). In the case of S branch points, the su-
perscript « will appear in pyy, y+1m; Only when k= 1.
The  probability for a  rotational transition
INIm)—|Nim') (m'=m=1) will carry a superscript
“rot,” while the probability for promotion to the continu-
um starting with the |[N,Im ) state will be denoted as in
Eq. (28).

1. Excitation of 2s and 2p states

From the six molecular states shown in Fig. 10 which
asymptotically go into the n =2 separated-atom states,
only four (2so,, 2pm,, 3po,, and 3do,) effectively lead
to population of the n=2 level in reaction (31). The
4f o, state is coupled with the 2po, state at ReR ~5.44
by a very weak T coupling (see Table IV), and when pop-
ulated it is quickly promoted to the continuum or decays
within the N =4 manifold of states. The rotational cou-
pling 3dm,-3do, is also very weak with respect to the
other couplings populating the above-mentioned four
molecular states. Neglecting also some other weak cou-
plings, the asymptotic population probabilities of the
2so, 2pm, 3pw, and 3d o states can be written as (see Fig.
10)

Piso =3P 1s0,3d0P3d0,4d0 (1 ~P3do,sdo (1 ~Pado,sds )2P4da,2317 + 3P 150,3d0P3d0,4doPado 250 1 (34)
P2p1r =31 “P2po,3po p 5;10,2;1#( 1 _P2p1r,4f7r)( 1 “Papo,4fo ), (35)
Py, =~ %Pz,m.zpa( 1=Papo,3p0 )(1 “P3po,apo (1 “Pipo,sfo )1 “Papo,afo )
+%P2po,3pal73pa,4pa( 1 _Pflpa )p3p(7,4pcr( 1=Popoare 1 =P3pgspo) ’ (36)
Piio =1P156.3a0 1 = Piso.3d0 1 = P3do 500 ) T P 150,3d0 (1 ~Pido.ade (1 —Pise 300 1~ Pido.sg0)
t 3P 1sa,3d0P3do,ado 1 -Pida P3do,4d0 (1 ~Piso,300 M1~ P3ao,sg0) » (37)
f
where the factor 1 appears due to equal population of the having in mind the above remark, one obtains
initial 1so, and 2po, states. We note that at asymptoti- Py =1(Pyy+Psyy+Pasy) » (38)

cally large R the above molecular states are linear com-
bination (with equal weight) of two atomic states centered
on the target and the projectile. Therefore, only one-half
of the probabilities (34)—(37) are associated with the ex-
citation channels.

The excitation probabilities P,; and P,, are obtained
by first connecting the |NIm ) states with the |nn n,m)
parabolic states and then projecting the corresponding
population probabilities to the separated-atom angular
momentum states Inlam ). Using the numerical values of
the corresponding Clebsch-Gordan coefficients [9] and

P2p:%[0'4082(P2sa+P3PU+P3dU)+O'577 352P2pﬂ] :

(39)

When integrating these probabilities over the impact
parameter b to obtain the cross sections o,; and o,,, the
exact values of Ay, yi,,(b) in the region b <Ry I™
were used in the expressions for Py, yium-
[ANim, v'rm(b) were calculated for a large number of b,
allowing a highly accurate fit to an appropriate analytic
expression.]
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FIG. 11. Cross section for 1s—2s excitation in H* + H(1s)
collisions. The solid line represents the present results; open di-
amonds are experimental data of Morgan, Geddes, and Gilbody
[24]). Other symbols are theoretical data from Refs. [20] (O),
[21] (@), [22] (V), and [23] (W).

The cross section for excitation of the 2s state is shown
in Fig. 11 (the solid line), and is compared with the re-
sults of other calculations [20-23] and with the experi-
mental data of Morgan, Geddes, and Gilbody [24]. The
present results in the region 1-8 keV agree within 10%
with the results of the 10-molecular-orbital (MO)
coupled-channel calculations of Kimura and Thorson
[20].

The main contribution to o,; comes from the 3do re-
action channel which is dominantly populated by the
T'\54,3q4, transition at ReR ~4.8. The 3po channel also
gives an appreciable contribution to o,, since the pro-
motion to continuum along the S,,, series is not too
strong.

In the case of the 2p excitation, the main contribution
to the cross section in the region below 8 keV gives the
2p 7 channel populated by the strong 2po-2p rotational
coupling at small ReR. At energies above 8 keV, the
probability flux along the 2pm reaction channel is
significantly reduced due to the promotion of that molec-
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FIG. 12. Cross section for excitation of the n =2 hydrogen
level in H*+H(1s) collisions. The solid line represents the
present results; open diamonds are experimental data of Mor-
gan, Geddes, and Gilbody [24]. Other symbols are theoretical
data from Refs. [21] (@), [22] (V), and [23] (W).

ular state along the T3,, superseries. For E 215 keV,
the main contribution to o,, gives the 3do and 3po
channels.

In Fig. 12 we give the total excitation cross section
0,=0+0,, for the energy range 0.2-5 keV, where the
contribution of o, is about 10% or less. The compar-
ison of present results with those from the multistate
atomic orbital coupled-channel calculations, using both
two-center [21,22] and three-center [23] expansion, shows
a good agreement in the region 1-5 keV.

2. Excitation of the n =3 and n =4 levels

The reaction channels 5go and 4/, populated via the
Tis6,300 X T340,500 and (2po-2pm) X Ty, 47, transitions,
respectively, give the dominant contribution to the exci-
tation of the n=3 hydrogen level at low energies.
Neglecting certain weak couplings, the probabilities of
these reaction channels are (cf. Fig. 10)

Psgo =P 150,300 (1= P3do,4d0 (1 — P34 300 1 =P 150,300 P3do,sg0 T (1~ Pise,3d0 WP 150, 3d0P 3d0, sg0 )1 —Psgo.ic) »

(40)
P4fa z%( 1 “P2po,3po )pigta,ZpﬂPpr,‘tfﬂ( 1 _p4f11-,6h17)( 1 “Ppo,afo ). 41D
[
The corresponding excitation probabilities of the atom- Py, =P, +Ps,,) , (42b)
ic angular-momentum states 3s, 3p, and 3d can be ex- P ¢
pressed in terms of Ps,, and P,,, as Py =Pyt 1Psg,) (42¢)

P3S=‘;—P5ga ’ (423)

The values of the cross sections 03, 03,, 034, and their



5568

TABLE VI. Values of the o3 and o; excitation cross sec-
tions of ground-state hydrogen by proton impact. The numbers
in brackets denote multiplicative powers of ten.

E (keV) o3 (cm?) o3, (cm?) o3 (cm?) o3 (cm?)
02 220[—22] 182[—21] 1.60[—21] 3.65[—21]
04  331[—21] 2.13[—20] 1.80[—20] 4.26[—20]
06  1.05[—20] 640[—20] 5.36[—20] 1.28[—19]
08  202[— 20] 125[—19] 1.04[—19] 2.49[—19]
1 3.13[—20] 1.95[—19] 1.64[—19] 390[—19]
14 539[—20] 3.57[—19] 3.05[—19] 7.16[—19]
2 8.57[—20] 5.95[—19] 5.16[—19] 1 20[— 18]
3 133[—19] 9.90[—19] 891[—19] 2.01[—18]
4 1.83[—19] 1.35[—18] 1.25[—18] 2.78[—18]
6 308[—19] 1.95[—18] 1.87[—18] 4.13[—18]
8 473[—19] 2.58]—18] 2.50[—18] 5.55[—18]
10 6.68(—19] 3.18{—18] 3.06[—18] 6.90[—18]
14 1.10[—18] 4.34[—18] 4.08[—18] 9.51[—18]
20 1.75[—18] 5.88[—18] 531[—18] 1.29[—17]

sum o are given in Table VI for the energy range from
0.2 to 20 keV. Below 10 keV, the o3, cross section gives
a small contribution (10% or less) to the total cross sec-
tion, reflecting the fact that the T, 34, transition in this
energy region is much weaker than the rotational
2po-2pm coupling. The total n =3 excitation cross sec-
tion is shown in Fig. 13. In the region above 12 keV, the
cross section ¢o; can be compared with the extensive [40
atomic orbitals (AQO)] two-center-expansion coupled-
channel calculations of Fritsch and Lin [22], and the
agreement is good. In the energy range 15-25 keV, the
present results also agree with the experimental data of
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FIG. 13. Excitation of the n =3 and n =4 hydrogen levels in
H™ +H(1s) collisions. Solid lines are the present results and
open diamonds are experimental data of Park et al. [25] nor-
malized as in Ref. [26]. Other symbols are theoretical data from
Refs. [22] (@), [26] (V), and [27] (dashed lines ).
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Park et al. [25], normalized according to Shakeshaft [26]
(the normalization factor being 0.91). The coupled-
channel calculations of Shakeshaft [26], using scaled hy-
drogenic functions, are also shown in the figure.

The main contribution to the excitation of the n =4
level in H* +H(1s) collisions gives the reaction channels
6hm (originating from the 2po-2pm coupling) and 7io
(originating from the T, 3,4, transition). The 7ic and
6hm channel probabilities are constructed similarly to
those for the 5go and 4f o, channels, respectively. P,
can be obtained by replacing the factor (1—ps,, 7;,) in
Eq. (40) by psg 7i0(1=P1io,0ks)» and Pg, is obtained
from Eq. (41) by replacing the last two factors
(1 =pasmena 1 =P2po ar0) VY Pasrehall —Pennsjz)- The
calculated excitation cross section o,=0g,,t07;, is
shown in Fig. 13 (solid line) and its value at E =25 keV
agrees with the experimental result of Park et al. [25].
The o, cross section is compared with the recent calcula-
tions of Reinhold et al. [27] (dashed line) performed by
using the symmetrized eikonal approximation. This ap-
proximation is not expected to be valid below 20
keV/amu since it accounts for only the direct transitions.

C. Cross sections for n =2—>n'=3,4
and n =3 — n'=4 transitions

The analysis of the strength of various couplings con-
necting the molecular states correlated with the n=2
manifold of atomic states showed that in the population
of the reaction channels leading to excitation of the n =3
level only the following initial molecular states have to be
considered: 2so, 2pw, 3po, 3do, and 3dw. The
significantly populated molecular states correlating to the
n=3 level are 4do, 5f0, 5go, 3pm, 4fm, and 5g7. The
main couplings connecting the above initial and final
states are TZSU,4d07 T3pa,5f¢7’ T3d0,5g¢7’ T2p1r,4f1r’ T3d1r,5g1r7
and the 3po-3pm rotational coupling. [In the redistribu-
tion of the initial probability flux (weighted by + for the o
states and by + for the m states) along various reaction
paths, many other transitions have also to be included.]
The total excitation probability for the 2—3 transition
can be written as

P(2—3)=1[P,(2—3)+P (2—3)], 43)
Pa(z_’3):P4d0+P5fo+P5gU ’ (44a)
P,(2—3)=P;,,+P,;, +Ps,. , (44b)

where the probabilities Py, and Py, are given in Appen-
dix A.

The excitation of the n =4 level from n =2 has dynam-
ics similar to the excitation of the n =3 level, except that
the promotion of the system along the T superseries is
now extended with one additional T-type transition. The
dominant reaction channels populating the n =4 level are
6go (dominated by the T, 450 X T4y0,6g, transitions),
7Tho (dominated by T3,, s;; X Tssq 740 ), 7i0 (through
T340,550 X T'sgo,7i0)s 6hm (through Ty 4rn XTypr 6hr)s
7im (through T;4, 5., XTsgr i), and 5fm (through
3po-3pm rotational coupling, followed by the T3, 5.,
transition).
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FIG. 14. Cross sections for n —n’ transitions in H* +H (n)
collisions. Solid curves are the present results; open circles are
the data from Ref. [27].

The 2-->4 transition probability is, therefore,

P(2—4)=1[P,(2—4)+P_(2—4)] (45)
with

P,(2—4)=P¢,, + Py, + Py (46a)

P.(2—4)=Ps; +Pg,,+ Py, (46b)

where Py, and Py, are given in Appendix A.

The cross sections of the 2— 3 and 2—4 transitions in
the energy range 0.2-20 keV are shown in Fig. 14 (solid
lines). At energies above 10 keV, the calculated cross sec-
tions are close to those of the symmetrized eikonal ap-
proximation [27]. As noted earlier, the eikonal approxi-
mation ceases to be valid for energies well below the ener-
gy at which the cross-section maximum appears
(~20-25 keV for these transitions).

The excitation of n =4 level from n =3 includes cou-
pling of a plethora of initial and final molecular states.
The most important states involved in the population of
the n =4 level are shown in Table VII. The number of S
and T branching points which need to be included in the
description of the process is over 100 The higher-order
Six) (k=1,2) series (notably Sjx), Six), Six) are also in-
volved in the collision dynamics of the process, as are
several NiIm —Nim'(m,m’'=0,1,2, Am ==%1) rotational
couplings. The expression for the 3—4 transition proba-
bility is too complex to be displayed here. The total cross
section for 3—4 excitation in the energy range 0.2-20
J

P’l(?(lf = [plso 3d¢7Pd ol +( 1 _pls0,3da )Pll(szTJ:) +plsa,3da( 1 _p3da,4da )2( 1 4 g?ita,?:dn )( 1 plscr 3do )P3
+plsa,3da(1
fpo =B
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TABLE VII. Initial and final molecular states considered in
the H(n =3)—H(n =4) excitation by proton impact.

Initial states Final states

4po,4do,5f0,580,6ho
3pm,4dm,4fm, Sgm
3d8,418

5po,5do,6fo,6g0,Tho,Tio,8jo
S5fm,6gm,6h,Tim
5f8,5¢6,6h6

keV is shown in Fig. 14 and compared with the results of
symmetrized eikonal approximation [27] available down
to 1 keV.

V. IONIZATION OF H(1s) AND H* (n=2,3)
BY PROTONS

In the present section we shall apply the “hidden-
crossings” adiabatic method to calculate the cross sec-
tions of the following ionization processes:

HY+H(ls) >HY"+H" +e , 47)
H*+H*(2s, or 2p)->H"+H" +e¢ , (48)
Ht+H*(3s, 3p, or 3d)>H " +H" +e . (49)

In the energy range 5-25 keV, reaction (47) has been
studied previously by Ovchinnikov [11] by using the same
method. Here, we extend the calculations down to 0.2
keV to compare the results of this method with the recent
extensive (150-MQ’s) coupled-channel calculations of
Kimura and Thorson [28].

In reaction (47) the system initially evolves along the
Iso molecular state and at ReR ~4.8 it undergoes the
T\, 34, transition (see Table IV). At ReR =3 the system
starts the promotion along the S3;, series and reaches
the continuum at ReR =~2.7. The part of initial flux in
the molecular state 1so that has avoided the T, 34,
transition is subject to superpromotion to the continuum
along the T3, (or T ) superseries during the receding
of the nuclei. The system H' +H(1s) evolving along the
initial molecular state 2po meets first the transition point
Typo4rs at ReR =5.44 (see Table IV). Because of the
large value of the corresponding Massey parameter
(Ay=3.5, see Table IV), the transition probability
Papo,afo 18 negligibly small in the entire adiabatic energy
region. At ReR ~0.8 the system enters the superpromo-
tion region of the S,, superseries. The unpromoted part
of the flux is subject to the 2po-2p rotational transition
and the outgoing flux on the 2p 7 molecular state can be
promoted to the continuum via the 77, superseries.

The probability of the ionization process (47) can,
therefore, be written as

Pi,(1s)=Pi" +Py" (50)

with

i(T)

_ rot i(n rot rot i(T)
P3do,4do \P3do,3a7P 3dn TP 3do,3dmP 3dr,3a6F 3d8 )] > (51)

+(1 pro’ 3po pgpo 2p11‘P2[71T +p2pa 3po( 1 _p3pa,4p<7 )2( 1 _p2pz7,3pa )sz? ’ (52)
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where P}'S and P! are the probabilities for superpro-
motion to the continuum along the corresponding S and
T superseries.

The calculated ionization cross section o, (1s) is
shown in Fig. 15 (solid line). It is compared with the re-
sults of the 40-AO-based two-center [22] and triple-center
[23] coupled-channel calculations, with the results of the
150-MO coupled-channel calculations by Kimura and
Thorson [28] and with the experimental data by Shah
et al. [29]. The agreement of the present results with the
experimental data in the overlapping energy region is
found to be very good, as well as with the results of 150-
MO-based coupled-channel calculations [28] in the region
below 3 keV.

The cross sections for proton-impact ionization of
H*(2s) and H*(2p) excited atoms have been calculated
in a similar manner. Referring to Fig. 10, and keeping in
mind that the statistical weights of o and 7 molecular
states correlating with the n =2 separated-atom states are
+ and 1, respectively, the probabilities for ionization of 2s
and 2p states are

Pion(25)=L(PYS + Py, + P, +PF,), (53)

Pion(zp)=%(Pi2(;)nw+Pi30dnﬂ
+ L (PY, + P, +PRL +PY),  (54)

250 3po
where Pioh, are the ionization probabilities for particular
initial molecular states, given in Appendix B.

The cross sections for ionization of H*(2s) and H*(2p)
excited atoms by proton impact in the energy range
0.2-20 keV are given in Table VIII together with their
sum. The dominant ionization channels in the entire en-
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FIG. 15. Cross section for ionization of H(1s) by proton im-
pact. The solid curve represents the present results; open dia-
monds are experimental data of Shah et al. [29]. Other symbols
are theoretical data from Refs. [11] (0), [22] (A), [23] (V), and
[28] (O0).
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TABLE VIII. Ionization cross sections for H*(2s), H*(2p),
and H* (n=2) in collisions with protons. The numbers in
brackets denote multiplicative powers of ten.

Tion(2s) Tion(2P) Tion(n=2)
E (keV) (cm?) (cm?) (cm?)

0.2 1.795[ — 18] 1.953[ — 18] 3.748[ — 18]
0.4 6.484] — 18] 8.131[ —18] 1.461[—17]
0.6 1.282[ —17) 1.781[—17] 3.063[—17)
0.8 2.011[—17] 3.024[—17) 5.035[—17)
1.0 2.801[ —17] 4.490[ —17] 7.291[—17)
1.4 4.509]—17] 7.977[—17] 1.249] —16]
2.0 7.282[—17] 1.434[ — 16] 2.162[ — 16]
3.0 1.227] — 16] 2.690[ — 16] 3.917[—16]
4.0 1.749[ — 16] 4.077[—16] 5.826[ — 16]
6.0 2.792[ — 16] 6.949] — 16] 9.740[ — 16]
8.0 3.781[ — 16] 9.723[ — 16] 1.350[ — 15]
10.0 4.699[ — 16] 1.231[—15] 1.701[ — 15
14.0 6.327[ —16] 1.689[ — 15 2.321[—15]
20.0 8.339[ — 16] 2.253[—15] 3.087[—15]

ergy range considered are the 4fo and 3do channels, as-
sociated with the powerful superpromotion series S§7,,
S§,, and S§5,. The total ionization cross section for the
n =2 level is shown in Fig. 16 (solid line), together with
the results of classical-trajectory Monte Carlo (CTMC)
calculations [30] (open circles). Having in mind that the
CTMC results are, generally speaking, reliable to within
30% in the region of the cross-section maximum and less
reliable for energies below the maximum (the CTMC
cross section decreases too rapidly), one may expect that
the present results below ~6 keV are accurate (at least)
to within 30%.

10 E T T T T — T T T T 3
107" L o @y
= O 3
F g
“ L o]
S 107" b .
c = 3
Rl - ]
s
£ -
-16

n 10 .
2] 3
o =
o .
(@) .
107" O Ref.[30] |
——Present data E

10°'8 el | L

109 10"

Energy (keV)

FIG. 16. Cross sections for ionization of H (n=2) and H
(n=3) by proton impact. Solid lines: present results; open cir-
cles: results of classical-trajectory Monte Carlo (CTMC) calcu-
lations [30].
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The ionization of the n =3 level of a hydrogen atom by
proton impact proceeds through a large number of super-
promotion channels. From all molecular states which
correlate with the n=3 separated-atom manyfold of
states, only 3p7 and 3d& do not have a promoting char-
acter. Among the most promotive S series which origi-
nate from states correlating with n =3 are S4,, S%.,
sS4y, S, and SY) . T-type transitions to molecular
states correlated with the n =2 and n=4,5 separated-

|
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atom manifolds of states introduce additional superpro-
moting S series into the n =3 ionization process (e.g.,
S34, through the T, 5, transition, S through the
Ts;, 7no transition, etc.). During the receding of nuclei,
superpromotion of the system to continuum takes place
along several strong T* superseries (such as T3,,, T4

4po> Tagm €tc.). The expression for the ionization prob-
ability of the n =3 level can be written as

P, (n=3)=P, (3s)+P,(3p)+ P, (3d) (55
Pion(35)= (P, + P, + P, +PY), + PG, + Py, (56)
Pion(3p)= (P53, +PUG, + PG, PG, +PFL )+ 5Py, + PG, +PUF 4P oD
Pion(3d)=L(PL + Py, + PSy, + PG + PP )+ 5 (PY, +PSF,)

+ L (Pion - Pion 4+ Pign 4+ Pion )+ L(PioR +PiK) (58)

where the initial molecular state ionization probabilities
P have a very complex structure to be presented here,
and the numerical coefficients in front of the parentheses
in Egs. (56)-(58) include both the statistical weights and
the corresponding Clebsch-Gordan coefficients. The
values of the ionization cross sections o;,,(3s), ;,,(3p),
and o,,,(3d) in the energy range 0.2-20 keV are given in
Table IX. The total cross section for ionization of the
n =3 level is shown in Fig. 16. The results of present cal-
culations agree well with the CTMC results [30] (also
shown in Fig. 16) in the energy region around the cross-
section maximum and should be accurate to within
(30-40)% for lower energies.

VI. CONCLUDING REMARKS

In the present paper we have investigated the dynamics
of excitation and ionization processes in slow HY+H

TABLE IX. Ionization cross sections for H*(3s, 3p, or 3d)
and H*(n=3) in collisions with protons. The numbers in
brackets denote multiplicative powers of ten.

Oion(3s) T.on(3p) Tion(3d) Oion(n=3)

E (keV) (cm?) (cm?) (cm?) (cm?)
02  6.805[—17] 1.164[—16] 8.388[—17] 2.683[—16]
04  1.474[—16] 2.814[—16] 2.573[—16] 6.861[—16]
0.6 2.342[—16] 4.854[—16] 5.047[—16] 1.224[—15]
0.8 3238[—16] 7.121[—16] 7.963[—16] 1.832[—15]
10 4.134[—16] 9.481[—16] 1.108[—15] 2.469[—15]
14 5.866[—16] 1.420[—15] 1.739[—15] 3.745[—15]
20 8237[—16] 2.082[—15] 2.629[—15] 5.535[—15]
3.0 1.159[—15] 3.031{—15] 3.901[—15] 8.091[—15]
40  1.435[—15] 3.816]—15] 4.947[—15] 1.020[ —14]
60 1.866[—15] 5.047[—15] 6.584[—15] 1.350[—14]
80  2.195[—15] 5.987[—15] 7.828[—15] 1.601[ —14]
100 2.459[—15] 6.738[—15] 8.821[—15] 1.802[—14]
140 2.863[—15] 7.883[—15] 1.032[—14] 2.107[—14]
200 3.283[—15] 9.067[—15] 1.185[—14] 2.420[—14]

—

(n), n =3, collisions by using the asymptotic method and
the concept of hidden crossings of adiabatic potential-
energy surfaces in the complex plane of internuclear dis-
tance. We have studied in detail the topology of the S
and T series of hidden crossings in the (H",e,H") sys-
tem in the entire complex R plane. All hidden crossings,
or series of such crossings, contributing significantly to
the inelastic processes studied have been taken into ac-
count in the cross-section calculations. The rotational
transitions in the united-atom region have been treated
within the close-coupling formalism.

The comparison of the obtained results for the process-
es considered with the available experimental data and
with the results of extensive coupled-channel calculations
shows that the present method adequately describes the
collision dynamics of the H* +H (n) collision system in
the adiabatic energy region. The agreement of the
present results is always better with those from the large-
base coupled-channel calculations which incorporate
molecular effects (such as the MO and triple-center ex-
pansion methods) than with the results of two-center
AO-expansion calculations. The observed good agree-
ment of the present results with the experimental data
and with the MO calculations indicates that the basic as-
sumption of the method (i.e., localized transitions at the
complex branching points and adiabatic evolution outside
their immediate vicinity) seems to be acceptable.

The range of applicability of the present method as de-
scribed in Sec. III is limited on the low-energy side by the
validity of the adopted semiclassical approximation. On
the high-energy side, the applicability of the method is
limited by the assumption about the adiabatic develop-
ment of the system. In practice, this assumption is
justified for v <A, , where A, ,, is the minimum value of
all A, ; which appear in the expression for a given chan-
nel probability. This criterion simply requires that all
transition probabilities involved in the dynamics are ex-
ponentially small.
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APPENDIX A: CHANNEL EXCITATION PROBABILITIES IN n =2 —n'=3,4 TRANSITIONS
The molecular-channel excitation probabilities entering Eqs. (44) for the n =2—n'=3 transition are given by

Piio=1[(1=P2s0 440 P250,4d0 (1 —Pado,6g0) F P 250 4d0 (1 = Pdo 4d0 ) (1 —Pado,5d0 ) (1= Pso 4d0 1 —Pago.sga)] » (A1)

Psro=5[(1=P30, 570 (1 =P2po 3p0 (1 T P3po,ape P(1—p 390,397 P3po,sro (1 —Psfo,7ho)
FP3p0,570 (1P 510 470 V=D 670 ) (1 =pysy 50 (1 —Psfo.6f0)
X(1=P3p0,5r6 M1 =Psso 100 1 —DP5F0 5721 5 (A2)
Pseo = +[(1= P340, 500 1 =P 156,300 (1= P3d 40 (N =Py 307 P3d0, 550 (1 —Psgo.7ic)
+P3d0,5g0(1 p‘s%'a 6go X\ 1—p (51g)o,6ga (1 —P3do,sg0 1 —Psgo,7i0)] » (A3)
P =5(1=P30 500 N1 =P 2po 3p0 N1 =P3ps 4p0 P 5pe,3p L = Ppmspn) > (A4)
Pyr= (1 =Poprara 1 =P 2pr Popmara(1 = Pasr b Papmars 1 —Pagrsra (1= Parmeha 1= P55 4rn)] 5 (AS5)

[
P5g7r =%[( 1 _p3dfr Sgm )1 _p3d11 4dm )2( 1 —p?z)ita,3dﬂ )p3d1r,5g1r( 1 _pSgn',7ifr)

+p3d17' Sgn( 1 “Pagn, 5g‘rr) (1 p4gv7- Sgm )2( 1 “Pidn,sgr )(1 T Psgmin J1—p g?fr,ig& )] (A6)

The molecular-channel excitation probabilities entering Egs. (46) for the n =2 —n’=4 transition are given by

P6g0 =%[( 1 _p2so',4da )p2:0,4dap4da,6ga +p2s0,4da( 1 —-p3da,4da )2( 1 _p4da,5da )2( 1 —p2:a,4da )p4d0,6g0( 1 ——p6g:7,8io )] ’

(A7)
P7h0 2%[( 1 —p3po’,5f(7 )1 _p2pa,3p0' )2( 1 _p3pa,4pa )2( 1 4 5?0,3;:7 )p3p0,5f0p5f0,7h0( 1 _p7ha,9ja )
+P3p¢7,5f0( 1 _p(S(j)"o,Gfa )2( 1 4 (SIf)a,6f0' )2( 1 _p&(})a,Sfa )2( 1 _pfi_lf)a,Sfo )2( 1 —p3pa,5fo' )
XPsro, 1m0 1 =P 0 52 )1 —P1ho 9j0)] » (A8)
P7ia =%[( 1 _p3da,5ga )(1 T Piso,3do )2( 1 “P3do,4do )2( 1 -p 5(:)110,31111’ )p3da,5gop5g0,7ia( 1 ~P1io, %0 )
+p3da,5ga( 1=p (Sg}a,Gga (1 —-p (51;)0,6g0 (1 ~P3do,5ga )p5g0,7io( 1 ~Piio,%0 ), (A9)
PSf‘rr:%( 1 —p3p0',5fa )(1 _prU,Spa )1 _p3pa,4pa )P g;t0,3pffp3p’n',5f77( 1 ‘p5f1r,7h1r) ’ (A10)
P6hﬂ:%[( 1 —p2p17,4f7r )(1 _pazlrrjpo )p2p‘rr,4frr +p2p1r,4f1r( 1 _p4frr,5f17 )2( 1 _p5f1r,7h1r)p4f17,6hrr( 1 _pz(j)‘"ta,4ffr )]( 1 _p6h1r,8jfr) ’
(A11)
Py,=3l1 “P3dmsgn 1 = P3dm adn (1 4 Zri?z'ta,Sdﬂ )P 3dnm,sgnP sgm,Tin
+p3d1r,53rr( 1—p (5(;)1r,6g1r )2( 1 p5g1r 6gm )2( 1 T P3dn,sgm )1 _pg;to,Sgﬂ )pngr,7i1r ]( 1 _p7i1r,9k7r) . (A12)
APPENDIX B: INITIAL MOLECULAR-CHANNEL IONIZATION PROBABILITIES
FORTHE H*+H(n=2)>H*+H"'+e REACTION
Py (1— PG +(1— PLT (B1)
250 = P2so,4do P3dg,4do T ado Paso,4do M 250 >

ion —

3po (1~p3pa,5fa (1 —prtr 3po )PS;? +p3po' 5fo

X[(1=pFy 576 PESY +(1—=pS, 1o Y1—=pY, 670 1=l 570 ISV ]

+(1_p3po,5f0){(l__pra,Spo) (l—p3pa,4pa )2(1 pg‘;}; 3pm )P’3;7? (1 pra,Spa )1 p3pa 4po pgpa 3pﬂP§L3;)

+(1 —pru,Jpo )p3pa,4po[( 1 —p4sa,5pa ) +(1 _pggtu,3p1r )]( 1 —p3p0,4p0 )P4p0 } 4 (B2)
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i2(;;111- =p2p1r,4f1rP£(j§1: +(1 “Poypmafn )1 _ngtrr 2po )P‘(T

ion i(S,0) (0) l(Sl)

rot

3d1r:p3d1r,5g17'[ sgmr +(1 p5g1r6g1r sgm ]+(1—p3dﬂ,5g1r)

2pw +p2p1r4f1r(1 p2pﬂ'4f1r)(1 “Dafn, Sfﬂ) P4f1r ’ (B3)

7) i(T)
X (1= Pt 3d0 —P'dr,3a8 P 5 + D% 300 P oxis +P 5k, 305P 55 |

+p3d1r,5g1r( 1 —p3d1r,5g1r )1 _p 5g77,6g17 )2( 1 4 (513)17,6g1r ) P

ion —

S (B4)

3do = (17 P3ag,500 1 —P150,3d0 Pig, ‘*‘Psda,sga[P'er%m +(1 _P(sg)a 6g0 Pi"

+(1 —P3da,5ga ){ (1 _plsa,Sda )2( 1 _P3da,4d0 )2( 1 _—pg%ta',.’:dv )P3da

ot i(T rot rot i(T
F(1=P150.300 1 =P3d0.4d0 )P 550, 3d7P 5in TP 5o, 3d 70 Sm, 306P 35 )

+( 1 -p 1so,3do )p3d0,4do( 1 _P3d0,4da )[ 1 _pg(;’ita,3d77 +( 1 —P4da',5da )2]( 1 —p2sa,4da )Pft(d? }

(1)

i(T)
+p3da Sga( l1—p (5%)0 6go )2( 1-p 5g0,6g0 )2( 1 ~P3do,5g0 )P’5go s (BS)

e =(1=pasy eno WPASY +(1=p'P, s 1o WPIRD ]

i(S,0) i(S,1)

FPaso6no[Péins T (1=DGhs 100 Peing" + (1P & 700 X1 =Pk 700 )Py

+(1 —p4fa,6ho' )(1 _—p2p0,4fa )2( 1

+P4so,6h0(1 =P ko 180 V(1 (2)

F(1=Paso.6ho P Fo, 570 [(1=P 5 670 )2(1 —p5f0,6fa Y(1=pel, 5,0 )7+ (1

——pft(})a,Sfa )2( 1 —pz_lf)o,Sfa )2P4fo

(1) 2
Poho,7he ) (1 —Pého,7ho

i(S,2)

i(T)

¥(1=P4so.6no P bh

—Pafo,sf0)](1 —Pft(})a,Sfa )

+p£tlf)aSfa[(l_Pglf)a6fa)2(l_pig)aSfa)(1_p(5(})a'6fa)+1](1—Pf4(}‘)g,5fg)
X(1=p§Y, 670 Y1 =P42s 57 N1 —=P3pg 575 PSS (B6)
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