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The collision dynamics in the H++H system is considered at low relative velocities within the con-

cept of hidden adiabatic energy crossings in the complex plane of internuclear distance. Detailed infor-

mation is provided on the topology of all series of hidden crossings in this system which are involved in

the transitions between the states with principal quantum numbers n (4 and in the promotion of these
states into the continuum. This information is used to perform cross-section calculations for the
1s—+nl (n =2-4), n =2~n =3,4, and n =3~n =4 excitation transitions and for ionization from the
n = 1, 2, and 3 levels in the adiabatic energy region.

PACS numberI s): 34.50.Fa, 34.50.Pi

I. INTRODUCTION

The usual expansion method based on quasimolecular
states for description of slow heavy-particle collisions
[1,2], even in its semiclassical version, contains conceptu-
al difficulties associated with the Galilean invariance of
the coupled equations for the rearrangement channels, or
else, with the compatibility of adiabatic approximation
with the physical boundary conditions [3,4]. Removal of
these difficulties through formulation of the scattering
problem in the Jacobi coordinates and introduction of an
appropriate scale transformation of the internuclear dis-
tance [5] leads to transformation of the adiabatic basis
into a dynamical one, for which the solution of both the
eigenvalue problem and the corresponding coupled equa-
tions imposes formidable numerical (computer-time) re-
quirements. For instance, due to the appearance of
velocity-dependent terms in the instantaneous Hamiltoni-
an, the variables in the simplest one-electron two-
Coulomb-center eigenvalue problem are no longer separ-
able.

Another approach to the dynamics of heavy-particle
collisions at very low collision energies is to resort to the
exact asymptotic solution of the dynamical coupled equa-
tions [4], which requires solution of the velocity-
independent eigenvalue problem in the complex plane of
internuclear distance R. The transitions between adia-
batic states of the system are then entirely defined by the
singularities of the analytically continued eigenenergies in
the complex R plane [6—8], and the corresponding transi-
tion probabilities are given in terms of the well-known
Landau contour integral [9]. This approach relies on the
R analyticity of the electron-nucleus Coulomb interaction
and the R analyticity of the entire electronic Hamiltonian
H(R ) of the system in the adiabatic approximation. It
appears that the singularities of the adiabatic eigenener-
gies in the complex R plane are square-root branch points
connecting eigenstates with the same symmetry [6,7].
This is a consequence of the fact that off the real R axis,

the Hamiltonian is no longer Hermitian and in a two-
state degenerate subspace it assumes a Jordan rather than
a diagonal form [4]. The branch point connecting two
eigenenergy surfaces in the complex R plane ("hidden"
crossing [6]) is seen as an "avoided crossing" of the corre-
sponding potential-energy curves on the real R axis.

A prominent feature of the asymptotic method with
Landau contour integration is that the calculation of a
two-state transition probability requires only the
knowledge of the eigenenergies in the complex R plane of
corresponding adiabatic states. This is to be contrasted
with the ordinary eigenstate expansion method using a
real R basis where, apart from solving the set of coupled
equations, knowledge of both the state energies
(potential-energy curves) and the nondiagonal coupling
matrix elements is required.

The asymptotic adiabatic method has so far been ap-
plied [7,10,11] to collision processes in the one-electron
two-Coulomb-center system (Z&, ,ezZ) (Z, z being the
nuclear charges), for which the necessary numerical
codes for exact solution of the eigenvalue problem in the
complex R plane, identification of energy singularities,
and calculation of corresponding Landau contour in-
tegrals have been developed [6]. The processes con-
sidered in the previous applications of the method in-
clude the following: ionization in the H++H( ls ) [7,11],
He ++H(ls) [10], and H++He+(ls) [10] systems; the
electron capture reaction He ++H(ls)~He+ [10]; and
the H++He+(ls)~H++He+ (n =2) [10] excitation.
Despite the fact that only a limited number of "hidden"
crossings (or series of such crossings in the case of ioniza-
tion) were included in these calculations, they have
demonstrated the potential of the asymptotic adiabatic
method for describing the collision dynamics in the adia-
batic energy region and its competitiveness with the
large-size coupled-channel calculations in predicting the
inelastic cross sections.

In the present study we undertake a detailed investiga-
tion of the collision dynamics in the H++H (n ) system
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by using the asymptotic adiabatic method and including
a11 the adiabatic states which correlate with the
separated-atom states having principal quantum numbers
n ~ 4, as well as a large number of additional higher adia-
batic states involved in the promotion of n & 4 states to
the continuum. The analysis of the topology of adiabatic
energy surfaces in the complex R plane reveals the ex-
istence of additional series of branching points in the
(Zi, e,Zz } system [12], which introduce a significant
complexity in the collision dynamics and which have not
been considered in the previous applications of the
method [7,10,11]. A detailed account on the topology
and singularities of the adiabatic energy surfaces of the
H++H system in the complex R plane will be given in
Sec. II. In Sec. III we briefly describe some basic features
of the applied asymptotic approach to the collision dy-
namics of the H++H system. In Secs. IV and V we pro-
vide details of the cross-section calculations and results
for the H++H(ls) —+H++H(n =2,3,4), H++H'
(n =2,3)~H++H* (n ==4), and H++H" (n =1,2, 3)
~H++H++e processes in the energy region from
-0.5 to 15—20 keV/amu. The obtained results are com-
pared with the available data from other theoretical and
experimental investigations of these processes. In Sec. VI
we give some concluding remarks regarding the applied
method and obtained results.

We note that apart from providing a further insight in
the collision dynamics of the H++H system in the adia-
batic energy region and on the applicability of the asymp-
totic adiabatic method, the results of the present study
are of interest in a number of plasma-fusion research
areas in which low-energy cross-section data for collision
processes involving excited hydrogen atoms and protons
are required [13]. Guided partly by the same motiva-
tions, we have undertaken a similar systematic study of
excitation, ionization, and electron capture processes in
the He ++H (n & 4) system, the results of which will be
reported elsewhere [14].

Atomic units (e =m, =Pi= 1) will be used throughout
this work, unless otherwise explicitly indicated.

II. TOPOLOGY OF POTENTIAL ENERGY SURFACES
OF THE H++ H SYSTEM IN THE COMPLEX R PLANK

A. Basic features of the eigenvalue problem
for the (Z &, e, Z2 ) system in the complex R plane

The stationary Schrodinger equation of the two-center
Coulomb problem (Z, ,e, Z2),

1 Z] Z2
4(r, R )

/r —R/2/ /r+R/2/

=E(R )4(r, R ),

where R is the internuclear distance and r and
r, 2

=r+R/2 are the electron position vectors with
respect to the midpoint of the internuclear distance and
the centers 1,2, respectively, allo~ separation of variables
in the prolate spheroidal coordinates,

r] +r2 r$ r2
P =arctan(x /y ),

R ' R

1&(&~, —
1&ran&1, 0&/&2m .

Representing 4(r, R ) in the form

(2)

2 2d i ag —
A, 1 —m U(g)=0,

df2 g2 1 (g2 1 )2
(4a)

d 2 by+a 1 —m
V( )=0,

drl 1 —g (1—
rl )

(4b)

where

p =( 2E)' —R/2, a =(Z, +Zz)R, b =(Zi —Z2)R,

(5)

and A, is the separation constant. For real values of R,
Eqs. 4(a) and 4(b) together with the boundary conditions

~U(1)~ & ao, lim U(g)=0,
g~ oo

i V(+1) & ao

(6a)

(6b)

define two boundary-value problems, with the eigenvalues
(p, a) and k'„"' (p, b), respectively. From the gen-

eral theory of Sturm-I. iouviHe problems, it follows that
the quantum numbers n &, n „,and m are conserved when
the parameter R varies.

From the obvious requirement A,P' (p, a ) =A, '„"' (p, b ),

one obtains the eigenvalue spectrum

E (R)=E„„(R,Z„Z2) . (7)

In the classification of molecular states, the united-atom
spherical quantum numbers (Nlm) are commonly used,
and these are related to n &, n „,and m by

N=n&+n„+m+1, l=n„+m . (8)

The parabolic quantum numbers [n n, n2 m ]
(n =n, +n2+m+1), which are used to classify the elec-
tronic states in the separated-atom limit, can also be ex-
pressed in terms of (n&, n„,m), which together with (8)
gives the correlation of the states in the two limits [2].

Several numerical codes presently exist for solving the
eigenvalue problem (4)—(7) for real values of R in the
discrete spectrum (see, e.g., Ref. [15]}. Solov'ev [6] has
used an analogous code for solving the problem in the
complex R plane (For ReR )0), which wi11 also be used
in the present study (with a slight extension in the region
ReR & 0). One of the specific features of the eigenvalue
problem (4)—(7) in the complex R plane is the existence of
branching points R, on the surfaces E (R) which con-
nect them with other surfaces E&(R ) having an appropri-
ate symmetry. In the vicinity of these points the eigenen-
ergy behaves as [4]

4(r, R }=[(g —1)(1—r) )] ' U(g) V(q) exp(imp),

(3)

one obtains from Eq. (1) the following equations for U(g)
and V(rl):
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E(R ) =E(R, )+const X (R —R, )'~~

and the (R —R, )
' singularity of its derivative is used

in the code as a signature for determination of the branch
points R, . The connection of two eigenenergies E (R )

and E&(R ) through a square-root branching point R,
means that E (R ) and E&(R ) are branches of a single an-

alytic function E(R ) defined in the entire complex R
plane. This property, which follows directly from the
non-Hermitian character of H(R) in the complex R
plane and its reduction to a Jordan form in the vicinity of
R„extends also to the corresponding eigenvectors, 4
and 4Ii [4], i.e., for a given symmetry they also represent
branches of a single eigenvector 4(r, R ). It can be shown
[4], however, that the normalization constant of the
eigenvector 4(r, R ) becomes singular when R ~R„
which induces singularities at R =R, in all (except the
normalization) matrix elements calculated with 4 and

For instance, the behavior of (4~IB/BR I4 ) near
the branch point R, is [6] —(R —R, ) '. If ImR, is not
too large, the singularities of matrix elements at R =R,
are seen as bell-shaped curves on the real R axis, while
the branch point manifests itself as an avoided potential
curve crossing. It should be noted that from the analyti-
eity of H(R ) it follows that the branch points R, always
appear as complex conjugate pairs.

The previous eigenenergy calculations [6,7] for the
(Z, , e, Z2) system in the complex R plane have revealed
that the square-root branching points appear in series
characterized by certain common features. Two different
kinds of series have been identified which connect the
adiabatic energy surfaces of the same symmetry accord-
ing to different "selection" rules. These series of branch-
ing points, named S and T series, have characteristic dis-
tributions and typically appear in different regions of R.
The S series appear at smaller values of IR I

where the
classification of molecular states in terms of united-atom
quantum numbers (Nlm ) is appropriate, and are desig-
nated by S» . The majority of the branch points of T
series appears at large IR I

values and they are designated

by T„„and T„„according to the parabolic states
Z 'l Z2

1 2 1 2

around the Coulomb center (Zi or Zz) to which the
molecular states correlate.

The branch points of S» series connect the states
INlm ) and IN+ k, lm ), k = 1,2, 3, . . . . With increasing
k, the imaginary part of the branching point R» .k in-
creases dramatically, and from the point of view of col-
lisional dynamics (see Sec. III), the branching points with
k ~2 are not important. The first terms (k =1) of the
S» .k series form superseries, S&, connecting pairwise
the states INlm ) and IN+ l, lm ) consecutively for all
N ~1+l. All the branch points RN& of this (infinite) su-
perseries are distributed in a small region QI in the corn-
plex R plane and have a limit point RI =limN „R»
The SI superseries of branch points have been identified
[8,16] as the physical basis for the Fano-Lichten [17] dia-
batic superpromotion phenomenon and the associated
ionization mechanism in the slow heavy-particle col-
lisions. In what follows, we shall refer to the SI super-
series simply as the SI series.

The branch points of the series T„'„' connect the
I 2

states INlm ) and IN+k, 1+k,m ), k =1,2, 3, . . . , hav-

ing the same "quasiradial" parabolic quantum number n,
(and the same parity in the Zi =Zz case) for all k. The

branch points R„'„' .k for different k values are uniform-
I 2

ly distributed on a steep straight line with a mutual inter-
val [6] Im(bRz. )=i2m(n i+n 2+m +1) /(Z i+Z2). The
branch points of the T series are related with the nonadi-
abatic transitions between the corresponding states at
large real R values. Because of the large increase of
ImR„'„' .i, with k, only the first branch points (k = 1) in

1 2

these series induce transitions with a considerable proba-

bility. The first branch points of the T„'„' series having

the same value of n2 form superseries T„",which con-
1

neet the states INlm ) and IN+ 1,1+1,m ) pairwise and

in succession. The values of ReR„'„' increase
1 2

significantly with increasing n z.
On the receding stage of the collision, the T„' super-

I

series can also promote the INlm ) state to the continuum
[7,11]. In the case of a symmetric system, Z, =Zz, the
adiabatic states acquire an additional symmetry (the pari-
ty) which is also conserved when R varies. Only the
states with the same (g or u ) parity are connected by the
branch points of the T„'„'" series. The branch points

R„'"„alternate. The correspondence between the
1 2

(Nlm) and [n ni n2 m] quantum numbers in this case is

[2,15]

N=n+nz, l =2n2+m

(1 and m of same parity), (10a)

X=n+nz+1, l =2n2+m+1

(1 and m of different parity) . (10b)

Because of the (g, u ) symmetry, the T superseries in a
symmetric system connect the states INlm ) and
IN+2, 1+2,m ).

The existence of the SI series of branch points con-
necting in the complex R plane, pairwise and in succes-
sion, all the eigenenergies of the (Z„e,Z2 ) system having
a specified symmetry, indicates that the energies E~i (R )

are only different branches of a single analytic function
E& (R ) (Riemann surface) defined on the entire complex

R plane. Similarly, the T„'„' series also define Riemann
I 2

surfaces with an infinite number of branches. In the next
section we shall show that each of these Riemann sur-
faces is a multiply (infinite times) connected surface (see
also Ref. [12]), and that, except at the branching points,
each of the EN& (R ) sheets is a smooth surface over the
entire complex R plane, including the region ReR & 0.

B. E& (R ) Riemann surfaces and Sl series

Each of the SI series of branching points starts from
the state INlm ) with N =1+1 and includes the sequence
of pairwise connected eigenenergies of the states
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~i Imbo'= Im f '
hE, ;+,(R )dR

Imf EI (R)dR
C

(12)

where the contour C starts from the real R axis where
EI =E; I (R ), encompasses in the complex R plane the
branch point R; I, and returns back to the real R axis
where EI =E;+,

&
(R ). The value of b,z' remains the

same if the integration is carried out along the same con-
tour but in the opposite direction. The quantity 50" is re-
lated to the generalized Massey parameter at the zero pa-
rameter (see Sec. III}.

It has been shown in Ref. [12] that for (1—m —
—,
'

) ~ 2,
new S series of branching points appear in the complex
plane with ReR )0 connecting the same ~N+i, lm ) and
~N+i+ l, lm ) states. For a given (l, m ) pair, the num-
ber of these points in the upper complex plane with
ReR )0 is equal to Ent[(l —m+1)/2], where Ent(x)
denotes the integer part of x. Moreover, additional S
series related to the sequence (11) appear also for
ReR &0. We shall designate these series as SI"' with
K =0, 1,2. Each of these SI'"' series has a limit point
R '„'I =RI"'. The R&"' points are distributed in the com-
plex R plane in such a way that

~Nlm )g „~~N+ 1, lm )s „~~N+2, 1m )g „
. . ~~m, lm), „

having a given g, u symmetry. For a given m value, the
parity of SI series interchanges, the first few series being

Sf, , Sz „, S(ds, etc. The g, u labels can, therefore, be
omitted from the series designation.

The identification of the square-root branch points
RN+ Im" —=R; Im of the above series in the complex R
plane for the H++ H system was done by using the algo-
rithm of Solov'ev [6] [the signature being the
(R —R; &

)
' singular behavior of the EK+, I (R ) and

EK+; + & I (R ) surfaces at R; &
]. The algorithm is

designed for calculation of EK+;, (R) and search for
R, I only for ReR & 0, but with minor modifications it
can be also used to identify R;I for R with negative
values of ReR (except for the vicinity of the real axis}. As
an additional check for identification of the branching
point, R,. I serves the calculation of the contour integral,

(1)
Sga

1: 5gx —6gx
2: 6gx-7gx
3: 79x-8gx
0: 8gx-9gx
x=&, K

(0)
Sgx

1

(0)
Sg~

0— Re R(a0)

8 10 12

FIG. 1. Structure of the first three Sg"' and first two Sg"'

series in the complex R plane.

50 (
——0.578l ', l ~ 1,

50 ( —0, 90l ', 1 &2

(14a)

(14b)

In the quasiclassical approximation, the limit points RI'
of the SI"' series can be calculated from the equation
[8,12]

points RI' of the series S'&'s Sg& Sg&'p Sg~ and S'„"are
shown to illustrate their distributions in the complex R
plane.

The branch-point distributions of other SI("' series have
similar behavior. A11 branch points of a given SI"' series
lie within a finite range I ~R&&'

~

—~R „I~~'"'j =SpI~' of a
few atomic units. 5pI"' slightly increases with 1, m, and K.

The coordinates (ReR„' ImR, ) of the first three branch
points of the first several SI"' series with m =0, 1, and 2,
and of the corresponding limit points R '„'I, are given in
Tables I and II. The values of the contour integrals (12),
60', associated with these branching points and their sum
over the entire series, b,o'"I =g;50", are also given in the
tables.

For a given m, the values AOI are roughly propor-
tional to l ' and those for ~=0 and m=0, 1 can ap-
proximately be represented as

ReRIm &ReRIm &ReRIm

In Fig. 1, the first few branch points R I' and the limit

(m+1)/2+iy(R ) = K, K —0, 1,2, . . . ,

where

(15)

1y= —(2 )' ' Q A,

a 2Q
2E Q A,

2Q
a~i, , (16a)

=—(a+a)'" IC
7T A+a

A. —a
A+a

a~A, , (16b)

A, =(l+,') —b2/8(l+, ')', a =(Z, +Z2)R, b =(Z, Z2)R, — (17)
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and K(x) and E(x } are the complete elliptic integrals.
The solutions of Eq. (15) for 1=0—7 and m =0 and m = 1

in the upper-half R plane are shown in Table III. The
notation R „& = ~R „& ~ exp(+i/„ I ) is used, with

expressed in degrees. On the negative real axis
(/=180'), Eq. (15) has an infinite number of solutions,
only the first of which is shown in Table III ~ The number

of R'„"'I points lying in the upper half of the R plane is
v =l, while for the m. states that number is v =I, for
l =1 and 2, and v =I—1, for l ~ 3.

A series expansion of the elliptic integrals in Eq. (14)
gives the following approximate solutions for R'„"'I (re-
taining only two terms in the expansion) [8,12]:

TABLE I. Coordinates (ReR, ; ImR, ) and Massey's parameters Ap of the first few branch points of
SNI' superseries in the H++ H system for ReR, & 0.

(a)
%1o X+ %+1 R(rl g g(&l

(p)Siso R, —0.67;0.00

(p)
S2p

(p)S3

(p)S4J'0

(&)S4f'W

(p)
Ssg

(1)
S5g

(p)
6ho

(&)
6h cr

(2)
S6ho

(p)S7io

(1)S7;

R,
Ap

R,
Ap

R,
Ap

R,
Ap

R,
Ap

R,
Ap

R,
6p

R,
6p

R,
6p

R,
6p

R,
6p

0.7857;1.099
0.3069

2.961;1.965
0.211

6.343;2.902
0.1487

2.603;7.508
0.315

10.957;3.889
0.11

7.298;10.226
0.246

16.823;4.926
0.0844

13.161;12.896
0.196

5.473;19.82
0.267

23.96;6.00
0.0669

20.23;15.57
0.160

0.7676;1.050
0.1042

2.869;1.850
0.091

6.106;2.692
0.074

2.461;7.047
0.166

10.514;3.574
0.060

6.919;9.667
0.142

16.118;4.497
0.050

12.525;12.229
0.121

5.038;18.608
0.167

0.7594;l.034
0.0732

2.828; l.805
0.0479

5.993;2.603
0.043

2.303;6.839
0.0975

10.289;3.432
0.037

6.725;9.396
0.09

15.742;4.293
0.0324

12.183;11.889
0.0805

4.815;17.98
0.112

0.69;0.97
0.516

2.69;1.72
0.427

5.69;2.44
0.348

2.18;6.37
0.809

9.69;3.15
0.291

6.18;8.75
0.754

14.69;3.87
0.248

11.18;11.03
0.666

4.16;16.32
0.915

20.69;4.58
0.216

17.18;13.25
0.593

(2)S72io R,
6p

12.82;24.42
0.222

10.17;20.40
0.857

(p)Ssjo R,
6p

32.36;7.12
0.0543

27.69;5.29
0.192

(1)
Ssgo

(2)Ssja

(3)Ssjo

R,
6p

R,
5p

R,
5p

28.54;18.28
0.132

21.28;28.90
0.187

9.51;38.16
0.227

24.19;15.45
0.536

17.17;24.31
0.797

6.63;30.80
0.969
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R'„'I = t(l+ —,
')2 —

—,'(m+2@+ I) ki(m+2ir+1)[2(l+ —,') —
—,'(m+2a+ I) ]' } .2

1 2

(18)

Although approximate in character, this equation
correctly predicts the number of SI ' series in the region
ReR, and the fact that all SI ' series with 2~ I —m have
ReR '„'I~ & 0. The distribution of R '„"'I~ and R '„'I~
points for 1=0-7 is given in Fig. 2. This figure shows
the "periodicity" of R'„"'& points and the alternation of
R'„'I and R'„"'& with increasing ~. Some of these
features follow also from the approximate equation (18).
According to Eq. (18), the limit points R'„"'I satisfying

the relation m +2sc+ 1 =const have the same position in
the complex R plane.

It should be noted that with a few exceptions occurring
for large 1 and m (see Table II), the SI'"' series of branch-
ing points with ReR'„"'& &0 have the property

I IR~g' I

—IR'."'g~
I I =&pI~ &o,

i.e., when R decreases from Rz&' +5R towards R'„"'&

they "promote" the
~
Nlm ) state to the continuum on the

TABLE II. Coordinates (ReR, ; ImR, ) and Massey's parameters 60 of the first few branch points of
S&~' and S&&5) superseries in the H++H system for ReR, )0.

(1r)
SNI TT

N~N+ 1 N+ 1+-+N+ 2 N+ 2~N+ 3 R (~i g g(ii

(0)
S2p R,

50

—0.638;1.29

(0)S3

(0)
S4/ 7F

R,
b,o

R,

1.291;3.395
0.32

4.743;5.313
0.241

1.292;3. 197
0.142

4.554;4.986
0.124

1.286;3. 118
0.076

4.462;4. 842
0.073

1.27;3. 10
0.697

4.37;4.65
0.607

(0)
Sqg„ R,

60
9.384;7. 147
0.184

8.976;6.711
0.104

8.767;6.504
0.066

8.37;7.59
0.527

(1)
Sqg R,

60
3.569;12.691
0.288

3.371;11.897
0.167

3.270;11.511
0.106

3.11;10.78
0.870

(0)
S6A 77 15.248;8.99

0.144
13.37;7.59
0.462

8.114;14.004
0.234

8.11;14.00
0.803

(0)S7; R„
bo

22.34;10.84
0.116

19.38;9.04
0.409

(1)S7; R,,

5()

16.80;20. 11
0.193

14.12;17.09
0.735

(2)S„ 6.982;27.99
0.244

5.33;22.99
0.945

S42'5
(0) 1.47;6.54

0.29
2.18;6.37
0.796

(0)
Ssg5 R, 6.20;9.86

0.234
6.18;8.75
0.711

S6/15
(0) R,

60
12.21;12.79
0.189

11.18;11.03
0.635

R,
50

4.14;18.81
0.26

4.16;16.32
0.911
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TABLE III. Coordinates ( ~R „~;Po„) of the limit points R „I of the SI'"' and S,'"' series for P ~ m. .

Im

0.67
180

po
yO

1.190
54.574

4.87
180

IR„
yO

3.193
32.595

3.792
102.643

13.53
180

6.191
23.201

6.733
71.13

8.146
127.067

26.53
180

yO

10.189
18.008

12.374
54.767

11.931
94.134

14.337
143.738

43.85
180

IR. I
15~ 191
14.750

15.705
44.604

16.842
75.700

18.848
110.012

22.439
158.099

65.51
180

yO

1.439
116.316

3.350
67.722

11.12
180

4.539
151.008

23.48
180

6.381
46.778

7.287
97.158

12.48
180

yO

10.375
36.218

11.220
73.907

12.925
116.367

26.62
180

IR„ I

4„O

15.374
29.583

16.179
59.917

17.703
92.234

20.358
130.198

44.68
180

o — 0
40 Im R (Qoj

14 10

$01

—60 —00 —j0 20 Re R(+)

FIG. 2. Distribution of the limit points R'„'I of the SI'"' and
SI"' series for I =0, 1,2, . . . , 7.

approaching stage of the nuclei. On the usual adiabatic
energy diagrams, ReE~&„,(ReR), only the promoting
features of SI ' series with I ~ 3 can be observed (as series
of avoided potential curve crossings). This is shown in
Fig. 3(a) for the Sf ' series. The promoting character of
the series of pseudocrossings is well recognizable only for
the first few terms of the series. If we represent R in the
form R = ~R ~ exp(iP), the viewing plane (ReE, Q) of the
Sf ' series in Fig. 3(a) is defined by the direction /=0.
By rotating the viewing plane around the R =0 axis (i.e.,

by increasing (()), the promoting character of Sf' ' be-
comes more and more apparent and at p=p'„'f —2', the

Sf ' series of hidden crossings is seen as shown in Fig.
3(b). If we continue to rotate the viewing plane beyond

and approach the Sf" series, at the position
p=p'„"f —2' we see the pseudocrossing series originat-
ing from the Sf" series of hidden crossings, as shown in
Fig. 3(c). The promoting character of the Sl',

' series is
barely observable in the (ReE, / =0) potential curve dia-
gram. However, from the position P=P'„'h —2' of the
viewing plane, the promoting character is clearly seen
[Fig. 4(a)]. At still larger values of P, the promoting
pseudocrossing series due to the Sz" and Sz ' series of
hidden crossings also become observable [Figs. 4(b) and
4(c)].

In the vicinity of a branch point, the adiabatic energy
surface ReEM (R ) is strongly deformed due to the
infinite value of its derivative at the position of the
branching point.

In Figs. 5(a) and 5(b), we show the three-dimensional
(3D) plots of the ReE4f and ReE6„surfaces, respec-
tively, on which the branching points R4f 5f (K 0, 1)
and R6I, 7Q (K=0, 1,2), as well as the corresponding
branch cuts, can clearly be seen. Figures 6(a) and 6(b)
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show the contour plots of these surfaces for
ReE & —0.25, with a step 5( ReE) =0.002, on which the
branch cuts are also clearly seen.

With a slight extension of the numerical code [6] for
calculation of the energy of (Z „e,Zz ) system in the com-
plex R plane, it is possible also to calculate the energy
E~I (R) in the region with ReR &0. Figures 7(a) and
7(b), show the surfaces ReE5s (R ) and ImE5g (R ) in the
region ReR ~ —5 and ImR ~ 0, on which the first branch
points (and corresponding branch cuts) of the series Sg"',
a=0, 1,2, can be seen. It should be noted that both ReE
and ImE are continuous at ReR =0. It can be also seen
from the 3D plot on Fig. 7(a) that while the gradient
d( ReE)/d( ReR ) of ReEs in the vicinity of the
branch points with Psg' &n/2 (i.e., for @=0and a.=l) is
negative, its value near the branch point R5g' (P & rr/2)

is positive. This indicates that the series S~ ' has an "an-
tipromoting" character.

The principal result of the above discussions is that the
specific E~I sheets of the Riemann surface E, (R ) with
a given symmetry are multiply connected through the
branch points of the series SI"', where ~ takes an unlimit-
ed number of values.

All the SI"' series with (t & vr/2 have promoting char-
acter (i.e., ReR&&' & ReR&'+t I & ReR'„"'& ), while
those lying in the second quadrant of the upper half plane
(m & P & n /2) have an antipromoting character
( ReR'„'I & ReR&&' ). Therefore, if the S&'"' series in the
region P & m /2 are associated with the promotion of the
system into the continuum, the S&"' series in the region
rr & P & ~/2 should be related to the nonadiabatic capture
of a continuum electron in the ~Nlm ) state. These as-
pects of the hidden-crossing adiabatic theory have not
been investigated as yet.
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FIG. 4. View on the Si, ' series of hidden crossings from the
vertical planes (ReE, Q'„"'—2') for (a) Ir=O, (b) z= 1, and (c)
K—2.
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5ga

Ia)

FIG. 5. Three-~'-dimensional plots of adiabatic
(a) ReE4f (R ) and (b) R Ee, (R&

a ia atic energy surfaces
) for complex values of R.

C. T series and T' supsuperseries

Because of the g, u s mg, u symmetry of the (Z, e,Z) s stem

g gp $0'g 5gcr, 1so -7io
T"' o h b

g g

p
'

connectmg the state ranch oints es
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on the same rather stee
1
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TABLE IV. Coordinates (ReR„' ImR, ) and Massey's parameters 60 for the first few branch points ofT, superseries in the H++ H system, and the values of 60 „,.

TN/ o Nl +N+2, 1+2 N+2, 1+2~N+4, 1+4 N+4, 1+4~N+6, 1+6

T1$tr R,
60

4.784;4. 143
1.271

20.115;9.45
0.43

45.499;15.307
0.216 2.06

T2$(T 7.904;7.242
0.3555

27.854;13.156
0.1936

61.00;16.00
0.141 0.691

2p cT R,
60

5.44;7.80
3 5'

22.18;17.54
1.12

49.22;28. 39
0.542 1.94

T3$(7 R,
60

10.958;9.924
0.1585

35.326;16.503
0.1074

76.00;20.00
0.096 0.359

3ptT R, 8.661;14.408
0.955

30.426;25. 139
0.524

61.00;32.00
0.283 1.76

T4prJ R,
60

11.551;20.023
0.446

38.207;31.188
0.298

106;20.0
0.096 0.840

'4fo is a quasistationary state for impact parameters b ~ Sao. The value quoted for b,o „,refers to the

T4f superseries.

system connect the sequence of following states:

T'ce ( =T'„): lsos 3dos -5gos -7ios-
g

To'c (= T'2 ): 2prr, „4fo„-6ho „-8jo„--
T&'z (=T2, ): 2soz 4do 6grr'-8io--

g

The first several branching points of the Tz, and Tz~
superseries are shown in Fig. 8. It can be seen that the
branch points of a superseries lie on a straight line, as do
the branch points connecting the states with different N

but the same l and m values (as shown by the dotted line
in Fig. 8 for the Nso states). The coordinates of the first
few branching points for the first several TzI, TzI, and

T&I& superseries of the H++H system are given in Tables
IV and V, together with the values b,o, of the corre-
sponding contour integral (12), and their sum

~o, t.t=X;~O„
In order to obtain an insight on the behavior of adia-

batic energy surfaces ReEM (R ) in the vicinity of a T-

type branching point, we show in Fig. 9(a) the 3D plot of
the surface ReE3d (R ). The strong deformation of the

TABLE V. Coordinates (ReR, ; ImR, ) and Massey's parameters 60 for the first few branch points of
TNl„and TNlz superseries in the H++ H system, and the values of 60 „,.

TNlm Nl ~N +2,1+2 N +2,1+2~N +4,1+4 N +4,1+4~N+ 6,1+6

2p 'lr R,
60

13.443;8.537
0.398

36.185;14.34
0.205

73.00;16.00
0.140 0.743

3p'7r R,
50

18.59;11.76
0.178

49.00;16.00
0.141 0.319

T3d R,
50

15.01;16.243
1.044

39.414;26.945
0.551

73.00;16.00
0.140 1.735

20.319;22.928
0.489

49;32
0.283 0.772

3d5 R,
60

25.65;13.25
0.193

61.00;16.00
0.141 0.334

4f5 R,
60

28.28;25.24
0.523

61.00;32.00
0.283 0.906
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starts at the
= R, ) and returns back toebranch p

the real x a»s~
f 1mpact parameter»

axis where E(R )=E~(R .
is a function o im

b « ~R, I, the Massey pa
as [11]

b2
bp (b)= Pa

2~R ~'
(22a)

CO

6
lX
E

and TEq. (12), and for manY»&where &pa(0 1s g'
++H stem is tabulatedbranch poin s

V and V, respectively. WeTables I and II and Tables I
found that

P R 2 b2)1/2(b)= Im R, —
ImR,

(22b)

R R( 0)

ional and (b) contour plots of theFIG. 9. (a) Three-dimensiona an

T(1s0.-3do. ) and S(3do-4do) branc ing poi
sponding branching cu ts (b) ~

III. TTRANSITION PROBABILITIES
SAND COLLISION DYNAMIC

abilit between the adiabatic statesThe transition proba i i y e
' '

tates

d batic collision energy region yR, is given in the a ia a ic
[2,4,9]

P = exp( —2b,& Iv ),ap (20)

1)
'

th relative collision veloc' y,it and 5 iswhere v(« 1st crea '

the generalized Massey parameter

Im AE& (R(x }}dx
Rex(g )

Im E(R (x ))dx
C

(21)

R E(R ) is the differe—nce of en-where bE&~(R }=E&(R)—

in the region ReR -5, ImR -4 is due to the T
; 4.143) o t th 3d stat
T bl IV). Th i 1 b hwith the Iso state (see Table

of ReE in the region Reg

Th o plo of
chin oint (2.9
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(Z, +Z2) —yR
2N

2Z, Z2(Zi+Zq) [1(l+I)—3m ]
N31(l+ 1)(2l —1)(2l+1)(2&+3)

Ew =— (25)

(26)

in state population amplitudes is ruled out for the regions
between the S branching points (since they are very close
to each other), while the branch points of T superseries
are always sufficiently far from each other (see Fig. 8) so
that under slow collision conditions a phase averaging is
allo~ed.

Although legitimate in the adiabatic limit (v ~0)
[4,10], this approach obviously oversimplifies the col-
lision dynamics at finite collision velocities, and becomes
invalid for v ~ 6& . The coupled-channel formulation of
the problem in the complex t plane would require tremen-
dous computational efforts, as discussed in the introduc-
tion. It is, therefore, justifiable at this stage of the devel-
opment of the concept of nonadiabatic transitions at the
hidden crossings to adopt a simplified approach to the
collision dynamics in order to explore the potential of the
concept. (A more detailed discussion of the relation of
this approach to the coupled-channel formalism based on
dynamical molecular states can be found in Ref. [18].)

Apart from the transitions through the S and T branch
points (which couple states with same values of the quan-
tum number m ), the rotational transitions in the region
R ~0 [between the states of a given (Nl ) manifold with
m quantum numbers differing by one] should also be in-
cluded in the collision dynamics.

In the present work we have calculated the rotational
probabilities within a given (Nl ) manifold by solving nu-
merically the coupled equations for the transition ampli-
tudes A &"( t ), resulting from the expansion of time-
dependent electron wave function over the united-atom
basis functions [19]. The rotational coupling matrix ele-
ments in this basis have simple forms [19],while the state
energies, to the first order in R, are given by [4]

over 100, and about 85 of them have been considered im-

portant in the present calculations.
In the calculations of channel probabilities shown

below, the transitions at the S and T branching points
have been treated on equal footing. This means that fol-
lowing an S&( ' sequence of branch points, the probability
flux entering in that sequence does not necessarily end in
the continuum in its entirety. Rather, at each subsequent

R~&~ branch point the flux is divided into p~&~' and
(1—pz, "') parts which further evolve independently. If
we are interested, however, only in the probability for
ionization p~ &" along the series Sz '&, starting from the

C C

state ~N, lm ), N, ~1+1 (or, equivalently, for the proba-
bility 1 —pg &'"'), the multiplication of the transition

C

probabilities of the form (19) gives

p' "'= g exp( —26J&' /v)
j=N

C

exp( 2+( to(K)
/U ) (28)

where

stot, (a) ~ g(]c)
N Im ~ jim

j=N
(29)

Expressions analogous to (28) and (29) apply also to the
ionization probability p~ &' due to the superpromotion

C

along a T superseries. In that case instead of Eq. (30a),
we have used the expression

Having in mind the definition (21) of b, '&' and the fact
that R~P

~' =R '„'& for allj ~ N„one obtains [10]

6'"'s"'=~E~
&

( ReR" ) Im[(R'„"' )
—b ]'

C C

(30a)

We have solved the corresponding system of coupled
equations for A&"(t) (see Ref. [19])by using Eq. (25) to
represent the molecular energy, and the probability for
the rotational transition (Nlm )~ (Nlrn& ) has been
determined as

where for b,~ &
(b ) the expression (22b) is used.

C

B. Excitation transitions from the ground state

(30b)

IV. EXCITATION OF n ~4 STATES
IN H++ H COLLISIONS

(27)
Within the concept of collision dynamics described in

Sec. III, we have considered the following proton-
impact-induced excitation transitions from the ground-
state hydrogen atom:

H++H(ls)~H++H(2s, or 2p) (31)
A. General considerations

In the present section we shall apply the asymptotic
approach discussed in the preceding section to calculate
the cross sections for excitation of the n =2, 3,4 levels of
a hydrogen atom in slow collisions with protons, as well
as for the proton-impact-induced transitions between
these excited states. The number of S and T branching
points connecting the H2+ molecular states which in the
separated-atom limit go over to the n =2, 3,4 manifolds is

~H++H(3s, p, or 3d)

~H++H (n =4) .

(32)

(&3)

In Fig. 10 we show part of the potential-energy dia-
gram for the molecular states involved in the above tran-
sitions (only for the states going to the n =2 and n =3
separated-atom manifolds), as well as the most important
S and T branch-point couplings. The initial-state proba-
bility flux splits equally between the 1so. and 2pcr„
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P 1

pa zP2pa, 3pa( 1 P2pa, 3pa )( 1 P )'( 13pcr, 4pcr P3pa, 5fa )( P2pa 4fo )
s

P3d, 4d

TPiscr3daP3do, 4d, a( 4do )P3dcr 4 ( P, o', 5gcro 3dcr, 4da Pisa, 3dcr 1 P3do, 5gcr)'+-,'P2,.3 .P32P2P. , 3P.P3P„,4P. 1 P4p. )P3p. ,4 .—(1—P, )(1—
p

3dcr TP1sa3dcr( P, 1sa, 3do P3dcr 5 a )+, 1s3d. , 5g. —,P is., 3d. (1— ' —P is,1scr, 3da P3da, 5ga )

(34)

(35)

(36)

(37)

where the factor —' a ear,—, appears due to equal population of the

initial 1so. and 2p o. states. W
ca y large R the above molecular states are linear

on the target and the
weig t o twoatomic states centered

an t e projectile. Therefore, onl ne-
of the probabi]ities (34)—(37) are associat

The excitation probabilitie P, d
b fi t o t th iNl

's
2, an P ar

g e m states with the nn
holi t t d th
1 bbl

en projectin the c
a i ities to the se arate"-

the corresponding Clebsc
a es n, m . Using the numerical va

e sc - ordan coefficients [9) and

having in mind the above remark, one obtains

P2, =
—,'(P2, +P3 +P3d ),

P2 =—', [0.408 (P +Pp22saP3pa+P3)+da0. 577 35P 2p 7T

(39)

hen integrating these probabilities p
er to o tain the cross sections o.

(b) in the region b ~RN™
were used in the

Nlm

e expressions for PN
(b) were calculated for a lar

Nlm, N'lm '

allowing a hi hl
e or a large number of b,

a ig y accurate fit to an a
expression. ]

appropriate analytic



EXCITATION AND IONIZATION PROCESSES IN SLOW. . . 5567

I I I IIII I I I I I I I IIII| I ( I IIII

10
—17

O
10O

07
U)

L
O

U
07

U)

ta

10

1O'

Energy (keV)

10
—17

Energy (keV)

10

FIG. 11. Cross section for 1s~2s excitation in H++H(1s)
collisions. The solid line represents the present results; open di-
amonds are experimental data of Morgan, Geddes, and Gilbody
[24]. Other symbols are theoretical data from Refs. [20] {0),
[21] (~), [22] (V), and [23] (+).

FIG. 12. Cross section for excitation of the n =2 hydrogen
level in H++H(ls) collisions. The solid line represents the
present results; open diamonds are experimental data of Mor-
gan, Geddes, and Gilbody [24]. Other symbols are theoretical
data from Refs. [21] (~), [22] (V), and [23] (~).

The cross section for excitation of the 2s state is shown
in Fig. 11(the solid line), and is compared with the re-
sults of other calculations [20—23] and with the experi-
mental data of Morgan, Geddes, and Gilbody [24]. The
present results in the region 1-8 keV agree within 10%%uo

with the results of the 10-molecular-orbital (MO)
coupled-channel calculations of Kimura and Thorson
[20].

The main contribution to o2, comes from the 3do re-
action channel which is dominantly populated by the
T] 3d transition at ReR =4.8. The 3po channel also
gives an appreciable contribution to o.z„since the pro-
motion to continuum along the Szp series is not too
strong.

In the case of the 2p excitation, the main contribution
to the cross section in the region below 8 keV gives the
2p~ channel populated by the strong 2pe-2p~ rotational
coupling at small ReR. At energies above 8 keV, the
probability Aux along the 2p ~ reaction channel is
signi6cantly reduced due to the promotion of that molec-

ular state along the Tzp superseries. For E &15 keV,
the main contribution to oz gives the 3do and 3pcr
channels.

In Fig. 12 we give the total excitation cross section
0'z 0 z +0'zp for the energy range 0.2—5 keV, where the
contribution of o2, is about 10% or less. The compar-
ison of present results with those from the multistate
atomic orbital coupled-channel calculations, using both
two-center [21,22] and three-center [23] expansion, shows
a good agreement in the region 1-5 keV.

2. Excitation of the n =3 and n =4 levels

The reaction channels 5g cr and 4fn. , populated via the
T„3d XT3d 5g and (2po-2pn. )XT2p„4f„ transitions,
respectively, give the dominant contribution to the exci-
tation of the n =3 hydrogen level at low energies.
Neglecting certain weak couplings, the probabilities of
these reaction channels are (cf. Fig. 10)

2 rotP5g. 2[pis-3g-(1 p3g-4d-) (1 P3e+3dw)(1 P]se3dcr)P3dcr 5gn+(1 Pis+3ge)P}scr 3dcrP3de5gcr](1 P5g-7r-) r

I rot
4fcr T' P2pa, 3pcrrP2pcr, 2pnP2pm, 4fn( P4fz, 6hz)( P2pcr, 4fp)

(40)

(41)

The corresponding excitation probabilities of the atom-
ic angular-momentum states 3s, 3p, and 3d can be ex-
pressed in terms of P5 and P4f as

P3p 4(P4f+P5 )

P3d= '(P4f + —,'P5 ). —

(42b)

(42c)

—1P3 6P5g (42a) The values of the cross sections o 3 03p 0 3d and their
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TABLE VI. Values of the o.» and cr3 excitation cross sec-
tions of ground-state hydrogen by proton impact. The numbers
in brackets denote multiplicative powers of ten.

E (keV) o.3, (cm ) o.
3~ (cm ) cT3d (cm ) o3 (cm )

0.2
0.4
0.6
0.8
1

1.4
2
3
4
6
8

10
14
20

2.20[ —22]
3.31[—21]
1.05[—20]
2.02[ —20]
3.13[—20]
5.39[—20]
8.57[ —20]
1.33[—19]
1.83[—19]
3.08[—19]
4.73[—19]
6.68[ —19]
1.10[—18]
1.75[—18]

1.82[ —21]
2.13[—20]
6.40[ —20]
1.25[ —19]
1.95[—19]
3.57[ —19]
5.95[—19]
9.90[—19]
1.35[—18]
1.95[—18]
2.58]—18]
3.18[—18]
4.34[—18]
5.88[—18]

1.60[ —21]
1.80[ —20]
5.36[—20]
1.04[ —19]
1.64[ —19]
3.05[ —19]
5.16[—19]
8.91[—19]
1.25[ —18]
1.87[ —18]
2.50[ —18]
3.06[—18]
4.08[—18]
5.31[—18]

3.65[—21]
4.26[ —20]
1.28[ —19]
2.49[—19]
3.90[—19]
7.16[—19]
1.20[ —18]
2.01[—18]
2.78[ —18]
4.13[—18]
5.55[ —18]
6.90[—18]
9.51[—18]
1.29[—17]

I I I I I I I I I I I I I I

17

—1810
O

sum 0.
3 are given in Table VI for the energy range from

0.2 to 20 keV. Below 10 keV, the o 3, cross section gives
a small contribution (10% or less) to the total cross sec-
tion, rejecting the fact that the T~ 3d transition in this
energy region is much weaker than the rotational
2pcr-2pm. coupling. The total n =3 excitation cross sec-
tion is shown in Fig. 13. In the region above 12 keV, the
cross section cr3 can be compared with the extensive [40
atomic orbitals (AO)] two-center-expansion coupled-
channel calculations of Fritsch and Lin [22], and the
agreement is good. In the energy range 15—25 keV, the
present results also agree with the experimental data of

Park et ctl. [25], normalized according to Shakeshaft [26]
(the normalization factor being 0.91). The coupled-
channel calculations of Shakeshaft [26], using scaled hy-
drogenic functions, are also shown in the figure.

The main contribution to the excitation of the n =4
level in H++H( ls ) collisions gives the reaction channels
6h7r (originating from the 2po-2p7r coupling} and 7io.
(originating from the T~ 3d transition). The 7i o and
6hz channel probabilities are constructed similarly to
those for the 5go. and 4f0, channels, respectively. P7;
can be obtained by replacing the factor (1—

p5s 7' ) in

Eq. (40) by p5 7' (1—p7' 9k ), and P~s„ is obtained
from Eq. (41) by replacing the last two factors

p4f&, 6$& }(1 pzp, 4f } by p4f~, 6s~( 1 p6$, sj
calculated excitation cross section 0.4=a.6&„+0.7; is
shown in Fig. 13 (solid line) and its value at E=25 keV
agrees with the experimental result of Park et al. [25].
The cr4 cross section is compared with the recent calcula-
tions of Reinhold et ctl. [27] (dashed line) performed by
using the symmetrized eikonal approximation. This ap-
proximation is not expected to be valid below 20
keV/amu since it accounts for only the direct transitions.

C. Cross sections for n =2~n'=3, 4
and n =3~n'=4 transitions

The analysis of the strength of various couplings con-
necting the molecular states correlated with the n =2
manifold of atomic states showed that in the population
of the reaction channels leading to excitation of the n =3
level only the following initial molecular states have to be
considered: 2s cr, 2p m, 3p o., 3d o., and 3d m. The
significantly populated molecular states correlating to the
n =3 level are 4dcr, 5fcr, 5gcr, 3p7r, 4f7r, and Sg7r The.
main couplings connecting the above initial and final
states are T2so, 4do. 9 T3pa, sfo. , T3da, 5go. ~ T2p~ 4f~ T3d~ 5g~9
and the 3po 3p7r rotatio-nal coupling. [In the redistribu-
tion of the initial probability flux (weighted by —, for the cr

states and by —,
' for the 7r states) along various reaction

paths, many other transitions have also to be included. ]
The total excitation probability for the 2~3 transition
can be written as

0
o

~0
—19

V)

(f)

0

P(2~3)= —,'[P (2~3)+P (2~3)],
P (2 3)=P4d +P5f +P5

P„(2~3)=P3 +P4f +P,

(43)

(44a)

(44b)

0
—20

—21

I I I I I I I I I I I I II

10
Energy (keV)

FIG. 13. Excitation of the n =3 and n =4 hydrogen levels in
H++H(ls) collisions. Solid lines are the present results and
open diamonds are experimental data of Park et al. [25] nor-
malized as in Ref. [26]. Other symbols are theoretical data from
Refs. [22] (~), [26] ('7), and [27] (dashed lines ).

where the probabilities PNI and P~I are given in Appen-
dix A.

The excitation of the n =4 level from n =2 has dynam-
ics similar to the excitation of the n =3 level, except that
the promotion of the system along the T superseries is
now extended with one additional T-type transition. The
dominant reaction channels populating the n =4 level are
6go (dominated by the T2, 4d X T4d 6 transitions),
7ho (dominated by T3p 5f X T5f 7$ ), 7io (through

T3d~ 5 X T5 '7' ), 6h 7r (through T2 4f X T4f 6I „},
7i 7r (through T3d 5s X T5g 7' ), and 5f7t (through
3po.-3p~ rotational coupling, followed by the T3p 5f
transition).
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TABLE VII. Initial and anal molecular states considered in

the H(n =3)~H(n =4) excitation by proton impact.

Initial states Final states

E
O —1510
0
0

U)

10 16

4p cT, 4do, Sf cT, Sgo, 6ho.
3psr, 4dm;4f m, Sgm

3do, 4f8

5po, 5do, 6frJ', 6go, 7h o, 7i o, gjo
Sfsr, 6g sr, 6h n, 7i .sr

Sf5,5g5, 6h6

V. IONIZATION OF H(1s) AND H (n =2, 3)
BY PROTONS

keV is shown in Fig. 14 and compared with the results of
symmetrized eikonal approximation [27) available down
to 1 keV.

Present data In the present section we shall apply the "hidden-
crossings" adiabatic method to calculate the cross sec-
tions of the following ionization processes:

Energy (keV)

FIG. 14. Cross sections for n ~n' transitions in H++H (n )

collisions. Solid curves are the present results; open circles are
the data from Ref. [27].

H++ H(1s )~H++H++e,
H++ H*(2s, or 2p ) ~H+ +H+ +e,
H++H'(3s, 3p, or 3d) —+H++H++e .

(47)

(48)

(49)

The 2~4 transition probability is, therefore,

P(2~4) =
—,
' [P (2~4)+P (2~4) ]

with

(45)

P (2~4) =P6 +P7h +Pq;

P (2~4)=P5f +P6I, +Pq;

(46a)

(46b)

where Pz«and P&«are given in Appendix A.
The cross sections of the 2~3 and 2~4 transitions in

the energy range 0.2—20 keV are shown in Fig. 14 (solid
lines). At energies above 10 keV, the calculated cross sec-
tions are close to those of the symmetrized eikonal ap-
proximation [27]. As noted earlier, the eikonal approxi-
mation ceases to be valid for energies well below the ener-

gy at which the cross-section maximum appears
( -20—25 keV for these transitions).

The excitation of n =4 level from n =3 includes cou-
pling of a plethora of initial and final molecular states.
The most important states involved in the population of
the n =4 level are shown in Table VII. The number of S
and T branching points which need to be included in the
description of the process is over 100. The higher-order
S&

' (1~=1,2) series (notably Sf"', Ss", Si,') are also in-
volved in the collision dynamics of the process, as are
several Nlm ~%1m'(m, m'=0, 1,2, bm =+1) rotational
couplings. The expression for the 3~4 transition proba-
bility is too complex to be displayed here. The total cross
section for 3~4 excitation in the energy range 0.2—20

P;,„(1S) =P'l'," +P2'"

with

(50)

In the energy range 5 —25 keV, reaction (47) has been
studied previously by Ovchinnikov [11]by using the same
method. Here, we extend the calculations down to 0.2
keV to compare the results of this method with the recent
extensive (150-MO's) coupled-channel calculations of
Kimura and Thorson [28].

In reaction (47) the system initially evolves along the
1scr molecular state and at ReR =4.8 it undergoes the

T„3d transition (see Table IV). At ReR =3 the system
starts the promotion along the S3d series and reaches
the continuum at ReR =2.7. The part of initial flux in
the molecular state 1so. that has avoided the T&, 3d

transition is subject to superpromotion to the continuum
along the Tl, (or Tolll') superseries during the receding
of the nuclei. The system H++ H( ls ) evolving along the
initial molecular state 2po. meets first the transition point
T2 4f at ReR =5.44 (see Table IV). Because of the
large value of the corresponding Massey parameter
( b,o =3.5, see Table IV), the transition probability

p 2p 4f is negligibly smal 1 in the entire adiabatic energy
region. At ReR =0.8 the system enters the superpromo-
tion region of the S superseries. The unpromoted part
of the flux is subject to the 2po. -2pm. rotational transition
and the outgoing flux on the 2pm molecular state can be
promoted to the continuum via the T2p superseries.

The probability of the ionization process (47) can,
therefore, be written as

lscr 2 [Plso3dcr da +, ( Plscr, 3do )Pisa +Pls, 3dcr(1 P3da, 4da ) ( P3da, 3dn)( Pisa, 3da )P3da

rot i (T) rot rot i(T)
Pisa, 3do ( P3da, 4dcr )(P3da, 3dvr 3dn +P3dcr, 3dnP 3dn, 3dS 3dS (51)

Plo& 1 [pi(S) + rot i(T) 2 i(T)
2pcr 2 L po1P2p'a, 3pa P2po, 2prr 2pn +P2po, 3pa( P3pa, 4pcr ) (1 P2pa, 3po )P3pcr ]
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where PI' ' and Pz&
' are the probabilities for superpro-

motion to the continuum along the corresponding S and
T superseries.

The calculated ionization cross section o;,„(Is ) is
shown in Fig. 15 (solid line). It is compared with the re-
sults of the 40-AO-based two-center [22] and triple-center
[23] coupled-channel calculations, with the results of the
150-MO coupled-channel calculations by Kimura and
Thorson [28] and with the experimental data by Shah
et al. [29]. The agreement of the present results with the
experimental data in the overlapping energy region is
found to be very good, as mell as with the results of 150-
MO-based coupled-channel calculations [28] in the region
below 3 keV.

The cross sections for proton-impact ionization of
H'(2s) and H (2p) excited atoms have been calculated
in a similar manner. Referring to Fig. 10, and keeping in
mind that the statistical weights of cr and m molecular
states correlating with the n =2 separated-atom states are
—,
' and —,', respectively, the probabilities for ionization of 2s
and 2p states are

(53)

(54)

where PNI" are the ionization probabilities for particular
initial molecular states, given in Appendix B.

The cross sections for ionization of H'(2s ) and H*(2p)
excited atoms by proton impact in the energy range
0.2—20 keV are given in Table VIII together with their
sum. The dominant ionization channels in the entire en-

E (keV)

0.2
0.4
0.6
0.8
1.0
1.4
2.0
3.0
4.0
6.0
8.0

10.0
14.0
20.0

o;,„(2s )

(cm )

1.795[—18]
6.484[ —18]
1.282[ —17]
2.011[—17]
2.801[—17]
4.509]—17]
7.282[ —17]
1.227[ —16]
1.749[ —16]
2.792[ —16]
3.781[—16]
4.699[—16]
6.327[ —16]
8.339[—16]

o;,„(2p )

(cm )

1.953[—18]
8.131[—18]
1.781[—17]
3.024[ —17]
4.490[ —17]
7.977[ —17]
1.434[ —16]
2.690[ —16]
4.077[ —16]
6.949[—16]
9.723[ —16]
1.231[—15]
1.689[—15]
2.253[ —15]

o.;,„(n =2)
(cm )

3.748[ —18]
1.461[—17]
3.063 [—17]
5.035[—17]
7.291[—17]
1.249[ —16]
2.162[—16]
3.917[—16]
5.826[ —16]
9.740[ —16]
1.350[—15]
1.701[—15]
2.321[—15]
3.087[ —15]

ergy range considered are the 4fo and 3da channels, as-
sociated with the powerful superpromotion series S4f',
S',g', and S6I,

' . The total ionization cross section for the
n =2 level is shown in Fig. 16 (solid line), together with
the results of classical-trajectory Monte Carlo (CTMC)
calculations [30] (open circles). Having in mind that the
CTMC results are, generally speaking, reliable to within
30% in the region of the cross-section maximum and less
reliable for energies below the maximum (the CTMC
cross section decreases too rapidly), one may expect that
the present results below -6 keV are accurate (at least)
to within 30%.

TABLE VIII. Ionization cross sections for H*(2s), H*(2p),
and H* (n=2) in collisions with protons. The numbers in

brackets denote multiplicative powers of ten.

I I I I I I I I I I I I I I
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—13

I I I I I I I I I I I I I I I
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—16
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FIG. 15. Cross section for ionization of H(1s) by proton im-
pact. The solid curve represents the present results; open dia-
monds are experimental data of Shah et al. [29]. Other symbols
are theoretical data from Refs. [11](0 ), [22] (8, ), [23] (V), and
[28] ( ).

FIG. 16. Cross sections for ionization of H (n =2) and H
(n =3) by proton impact. Solid lines: present results; open cir-
cles: results of classical-trajectory Monte Carlo (CTMC) calcu-
lations [30].
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The ionization of the n =3 level of a hydrogen atom by
proton impact proceeds through a large number of super-
promotion channels. From all molecular states which
correlate with the n =3 separated-atom manyfold of
states, only 3pm. and 3d6 do not have a promoting char-
acter. Among the most promotive S series which origi-
nate from states correlating with n=3 are Ssf S5g',
S6"h'., S4'f'., and S5"f'.. T-type transitions to molecular
states correlated with the n=2 and n=4, 5 separated-

I

atom manifolds of states introduce additional superpro-
moting S series into the n=3 ionization process (e.g.,
S3« through the T5g~ 3d~ transition, S7&'~ through the

Tsf 7h transition, etc ) . .During the receding of nuclei,
superpromotion of the system to continuum takes place
along several strong T' superseries (such as T3p T4d

T4p, T4f, etc.). The expression for the ionization prob-
ability of the n =3 level can be written as

P;,„(n =3)=P;,„(3s)+P;,„{3p)+P;,„(3d),

Piall( p ) 36(P3SCT+P4plT + sglT+P6ho +P7ict )+ /g { 3p1r+ 4d7r+P4fw+Psg7r ) ~

P;,„(3d)——,', (P3 +P4 +Ps +P6h +P' '7)+ ~~(P 4d+Psf }

{55)

(56)

(57)

(58)

In the present paper we have investigated the dynamics
of excitation and ionization processes in slow H++H

TABLE IX. Ionization cross sections for H*(3s, 3p, or 3d)
and H*(n=3) in collisions with protons. The numbers in

brackets denote multiplicative powers of ten.

E (keV)

0.2
0.4
0.6
0.8
1.0
1.4
2.0
3.0
4.0
6.0
8.0

10.0
14.0
20.0

o;,„(3s)

(cm )

6.805[ —17]
1.474[ —16]
2.342[ —16]
3.238[ —16]
4.134[—16]
5.866[ —16]
8.237[ —16]
1.159[—15]
1.435[ —15]
1.866[ —15]
2.195[—15]
2.459[ —15]
2.863[—15]
3.283[ —15]

0„„(3p)
(cm )

1.164[—16]
2.814[—16]
4.854[ —16]
7.121[ —16]
9.481 [ —16]
1.420[ —15]
2.082[ —15]
3.03 1$—15]
3.816[—15]
5.047[ —15]
5.987[—15]
6.738[ —15]
7.883[—15]
9.067[ —15]

o;,„(3d)

(cm )

8.388[ —17]
2.573[ —16]
5.047[ —16]
7.963[—16]
1.108[—15]
1.739[—15]
2.629[ —15]
3.901[—15]
4.947[ —15]
6.584[ —15]
7.828[ —15]
8.821[—15]
1.032[—14]
1.185[—14]

cr;,„(n =3)
(cm )

2.683[—16]
6.861[—16]
1.224[ —15]
1.832[ —15]
2.469[ —15]
3.745[ —15]
5.535[ —15]
8.091[—15]
1.020[ —14]
1.350[—14]
1.601[—14]
1.802[ —14]
2.107[—14]
2.420[ —14]

where the initial molecular state ionization probabilities
PN'I" have a very complex structure to be presented here,
and the numerical coefficients in front of the parentheses
in Eqs. (56)—(58) include both the statistical weights and
the corresponding Clebsch-Gordan coefficients. The
values of the ionization cross sections o';,„(3s), o;,„(3p ),
and o;,„(3d ) in the energy range 0.2 —20 keV are given in
Table IX. The total cross section for ionization of the
n =3 level is shown in Fig. 16. The results of present cal-
culations agree well with the CTMC results [30] (also
shown in Fig. 16) in the energy region around the cross-
section maximum and should be accurate to within
(30—40)%%uo for lower energies.

VI. CONCLUDING REMARKS

(n ), n ~ 3, collisions by using the asymptotic method and
the concept of hidden crossings of adiabatic potential-
energy surfaces in the complex plane of internuclear dis-
tance. %e have studied in detai1 the topology of the S
and T series of hidden crossings in the (H+, e, H+) sys-
tem in the entire complex R plane. All hidden crossings,
or series of such crossings, contributing significantly to
the inelastic processes studied have been taken into ac-
count in the cross-section calculations. The rotational
transitions in the united-atom region have been treated
within the close-coupling formalism.

The comparison of the obtained results for the process-
es considered with the available experimental data and
with the results of extensive coupled-channel calculations
shows that the present method adequately describes the
collision dynamics of the H++H (n ) collision system in
the adiabatic energy region. The agreement of the
present results is always better with those from the large-
base coupled-channel calculations which incorporate
molecular effects (such as the MO and triple-center ex-
pansion methods) than with the results of two-center
AO-expansion calculations. The observed good agree-
ment of the present results with the experimental data
and with the MO calculations indicates that the basic as-
sumption of the method (i.e., localized transitions at the
complex branching points and adiabatic evolution outside
their immediate vicinity) seems to be acceptable.

The range of applicability of the present method as de-
scribed in Sec. III is limited on the low-energy side by the
validity of the adopted semiclassical approximation. On
the high-energy side, the applicability of the method is
limited by the assumption about the adiabatic develop-
ment of the system. In practice, this assumption is
justified for v 60 where ho is the minimum value of
all 60; which appear in the expression for a given chan-
nel probability. This criterion simply requires that all
transition probabilities involved in the dynamics are ex-
ponentially small.
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APPENDIX A: CHANNEL EXCITATION PROBABILITIES IN n = 2~n'= 3,4 TRANSITIONS

The molecular-channel excitation probabilities entering Eqs. (44) for the n =2~n'=3 transition are given by

4da s [( P2sa, 4da )P2sa, 4da( P4da, 6gcr )+P2sa, 4da( P3da4dc, r ) ( P4dcr, Sdcr ) ( P2sa, 4dcr )( P4dcr, 6gcr )1

~5 fear Ti[( 1 P3pcr, 5fa )(1 P2pa, 3pa ) (1 P3pa, 4pa ) (1—
P3po' 3pn)P3'pa 5fa(1 PSfa, 7ha )

P3pa Sfo( P5fa, 4fa ) ( PSfa, 6fa ) (1 P4fa, 5fcr ) (1 PSfa, 6fa )
(1) 2 (1) 2 2

X(1 P3pa Sfa!(1 PSfa, 7ha)(1 PSfa, Sjn ]

~Sga I[( P3dcr, 5gcr )( P1sa, 3da ) ( P3dcr, 4da ) ( P3do3dn ,P3da, Sgcr( PSga, 7ia

(Q'1 (1)
+P3dcr, Sga( PSga, 6go')( P5ga, 6ga ( P3da, Sga)( P5ga7ia,

P3p (1 P3p, sf )(1 P2p, 3p )( P3p, 4p )P3p, 3p ( P3p, Sf

4fn 4 [( P2prr4frr)( P2po, 2pn )P2prr4fn( P4frr6hrr)P2prr 4fn( P4fn, 5fn P'4fn, 6hn )( P4fa, 4fn

PSg 4 [( P3da, 5g P3d, 4d ) (1 P3d, 3d )P3d, Sg ( P5g, 7

2 (1)
+P3dn, 5gn(1 P4gn, Sgn ) (1 P4grr, Sgrr) (1 P3dn, 5gn )(1 PSgrr, 7in )( PSgn, Sgs ))

The molecular-channel excitation probabilities entering Eqs. (46) for the n =2~n'=4 transition are given by

—1 2 2
6ga T[( P2sa, 4ctcr P2sa4ctaP4c, tahgcr +P, 2sa, 4dcr( P3da, 4da ) ( P4da, Seta ) ( P2so, 4ctcr )P4cta, 6ga( P6ga, gicr ) j

7hcr Ti[( P3pcr, 5fo )( P2pa, 3pcr ) ( P3pcr, 4pa ) ( P3pcr, 3pn )P3pa, SfoP5fa, 7hcr( P7ha, 9j a )

+P3pa, 5fa( PSf cr, 6fa ) ( PSfa, 6fa') ( P4fa, 5fa ) ( P4fcr, 5fa ) ( P3pa, 5fa )

PSfcr, 7ha PSfa, 5fn)( P7ha, 9ja ))

7ia Ti[( P3dcr, Sgcr )( Pisa, 3dcr ) (1 P3dcr, 4dcr ) ( P3da, 3dcr)P3da, 5gaP5gcr, 7io ( P7ia, 9ka )

+P3da, Sga( PSga6ga ) ( , PSga, 6gcr ) ( P3da, 5ga )PSga7ia( ,P7icr, 9ka )1

PSfcr Y(1 P3pa, 5fa )( P2pcr, 3plr )(1 P3pcr, 4pa )P 3pa, 3pnP3prr, Sfrr(1 PSfrr, 7hrr ) r

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A 10)

P6hrr 4 [( P2pn, 4fn )( P2prr, 2pa )P2pn, 4frr+P2pn, 4frr( P4fn, 5fn ) ( P5fn, 7hn )P4fn, 6hn( P4fa, 4fn ))( P6hn, gj n )

(Al 1)

7in 4[( P3dn, Sgrr)( P3dcr4dn) ( P3da, 3dn )P3drrSgcrPSgn, 7irr

(0) 2 (1)+P3d, Sg (1 PSg, 6g ) (1 P5g, 6g ) (1 P3d, 5g )(1 PSg, 5g )P5g, 7 l(1 P7 ,9k'' (A12)

APPENDIX B: INITIAL MOLECULAR-CHANNEL IONIZATION PROBABILITIES
FOR THE H++ H(n =2)~8++H++ e REACTION

2scr P2so, 4da( P3dcr, 4da ) 4dcr +( P2scr, 4dcr ) 2scr

3pa ( P3pcr, 5fa ( P2pcr3pa ) 3pa +P3,po, 5fa

P4fa Sfa ) Sf cr ( P4fcr 5fa )('1 P5fa, 6fa )(1 P4fcr, Sfa )PSfa

P3p-.» '[" P2p-, 3p-) " »=p-.4p-)'(' P'3p'-, 3p-)P'3p'-'+(' »p-, 3p-)( P3p..4,
—.)P3",.3,P3,"—.'

+(1 P2pa 3pa)P3 4 [(1 P4 5 ) +(1 P3 —
3 ))(1 P3p 4p )P4pa ),

(B1)

(B2)
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2prr P2prr4frr 4fo P2pa, 4fcr P2prr, 2pa ) 2po +P2po, 4fo( P2prr4frr P4frr, Sfrr 4frr (B3)

X[(1 P—3do 3dcr P3da 3dS )P3da+P3da 3daP3ds +P3da 3dSP3dS ]
(0) 2 (1) 2 i(T)+P3d., 5g. P—3d., Sg. }(1 P—Sg.,sgo) (1 P—Sg.,sg. ) Psga

P3da —(1 P3—dcr, Sga }(1 Plscr 3dcr }P3da+P3dcr, 5gcr [PSga +(1 P—Sga6g,a )PSga ]

+(1 P3da, sga)[(1 Pisa, 3da) (1 P3da, 4da) (1 P3da, 3da)P3da

+ (1 P—
isa 3da )(1 P3dcr 4do)(P 3d'a, 3drr 3do +P 3da, 3dop 3da, 3dS 3dS

+( Plsa3da , }P3da,4do ( P3da, 4da }[ P3da, 3do+(I P4dcr, Sdcr ) ]( P2scr, 4da ) 4dcr ]

+P3dcr, 5ga(1 PSga, 6go ) (1 PSga, 6ga } ( P3da, sgcr Sgcr
(O) 2 (l) 2

1 )pc(T)

P4'fa =(1—P4f., sh. )[P4fa' +(1—P4f. ,sf. )P4fa' ]

+P4fcr, 6ha[ 6ha +( P6ho, 7hcr } 6hcr +( P6ho, 7ha }( P6hcr, 7ha ) 6ha

+(1 P4fa, 6ha)(1 P2pa, 4fa) (1 P4fa Sfa) (1 P4fa Sfa) Pea
+P4fa, 6ha( P6ha, 7ha ) ( P6ha, 7ha ) ( P6ha, 7hcr ) ( P4fcr, 6ho )P6ha

+( P4fa6ha )IP4fasfa [( PSfa6fa ) ( P Sfa6fa } ( P4fcrSfa } +( P4fa5fcr }]( P4fcr5fa }

+P4fa Sfa[(1—PSfa sfa) (1 P4fa, fa—)(1 PSfa 6fa
—)+1](1 P4fa 5fa—)

X(1 p5f sf )(—1 p4fa Sf )](—1 —
p3p Sf )PS

(B4)

(B6)
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