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Geometric phases in multiphoton ionization
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We discuss the geometric phase accumulated by the wave function of an atom ionizing in the
presence of a bichromatic field as physical parameters are varied adiabatically around a closed circuit.
As an illustration we calculate the geometric phase for a hydrogen atom in the presence of 355-nm
light and its third harmonic when the phase and intensity of the two components are varied. The
wave function need not be single valued after one complete circuit —two circuits may be necessary to
map the original eigenray onto itself. Furthermore, the geometric phase may be complex, and may
therefore modify the ionization yield calculated from the width of the instantaneous quasienergy.

PACS number(s). 32.80.Rm, 32.90.+a

I. INTRODUCTION

The seminal article of Berry [I] has generated enor-
mous interest in the geometric phase that is accumulated
by a wave function, in addition to the normal dynami-
cal phase, when the system is adiabatically transported
along a closed circuit in some physical parameter space.
For an excellent, but by no means exhaustive, collection
of papers dealing with diR'erent aspects of this phase, we
refer the reader to the book Geometric Phases in Physics
[2]. The focus of that book is on nondissipative systems,
but as pointed out by Garrison and Wright [3], the geo-
metric phase may be complex when the system is dissi-
pative [4].

In the present paper we discuss the geometric phase
within the context of an atom undergoing multiphoton
ionization in the presence of bichromatic light that is
a coherent superposition of two waves with commensu-
rable frequencies ~ and q~ (where p and q are positive
integers). As an illustration, we calculate the geomet-
ric phase of the wave function of the hydrogen atom
for a closed circuit in a three-parameter space where
the three physical parameters are the individual inten-
sities of the two components of the bichromatic light
beam and the relative phase of these components. Since
the nonadiabatic variation of the interaction is periodic
in time, we can cast the problem into a (nearly) time-
independent one by making the Floquet ansatz, whereby
the state vector, with the overall dynamical phase fac-
tor exp( —i f dk' E/h) removed, is expanded in a Fourier
(harmonic) series PN exp( —iN f dt' u)

~
%pe). The har-

monic components
~ %tv) satisfy a set of coupled, al-

most time-independent, equations which take the form
of the familiar eigenvalue problem posed by the time-
independent Schrodinger equation containing the Flo-
quet Hamiltonian. The eigenvalue of the Floquet Hamil-
tonian is the quasienergy F, and since the system is dis-
sipative (the atom ionizes) E is complex, with —2 ImE
being the ionization width. The geometric phase may
be defined as the phase accumulated by the column vec-
tor whose components are the

~
FN), when the system

is transported around a closed circuit in some parame-
ter space [5]. It turns out that the geometric phase is
in general complex (although it may be nearly real, ap-
proximately equal to an integer multiple of x for some
circuits) and hence the geometric phase modifies the ion-
ization yield calculated by integrating, over the circuit,
the width of the instantaneous quasienergy.

In discussing ionization by bichromatic light, we gener-
alize the analysis of Garrison and Wright, who calculated
the complex geometric phase in the case of a two-level
atom ionizing in the presence of monochromatic light of
fixed frequency ~ and varying phase C . While the calcu-
lation carried out by Garrison and Wright is highly in-
structive, the restriction to a one-parameter space, where
the circuit is the line Q ( 4 ( 2x, limits the behavior of
the system in ways that we now remark on. First, the
quasienergy is independent of the overall phase of the
light wave, since the quasienergy, being the eigenvalue of
a time-independent (Floquet) Hamiltonian, cannot de-
pend on the origin of time, and t, he overall phase of the
light wave can always be transformed away by a shift in
the origin of time. Consequently, the variation of 4, by
itself, cannot lead to a degeneracy in the quasienergy; at
least two other parameters, upon which the quasienergy
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does depend, would have to be varied to give rise to a
degeneracy (in a three-parameter space). Therefore, in
the one-parameter 4 space, the eigenray is single valued

that is, the eigenfunction is the same at the points
4 = 0 and 2x, aside from the overall geometric phase.
More significantly, the imaginary part of the geometric
phase can be rather easily incorporated into the dynam-
ical phase. This can be seen by first observing that an
adiabatic variation in 4, amounting to 2x over a very long
time interval, is equivalent to an infinitesimal variation in
the frequency ~. Now, an infinitesimal circuit in the one-
parameter ~ space cannot produce a nonzero geometric
phase. However, since E depends on a, a very small
change in ~ does affect the overall dynamical phase fac-
tor exp( —i f dt' I'/Ii), noting that the very small change
in E is magnified by the long time interval. In fact, since
the geomet, ric phase must be independent of the way in
which 4 is varied from 0 to 2', as long as other parame-
ters are not varied, we are free to choose the variation to
be linear in t, in which case the temporal variation in 4
may be interpreted simply as a constant shift de/Ck in the
frequency ~. We have verified t, hat the complex geomet-
ric phase obtained by lett, ing C vary linearly from 0 to 2x
over a long time interval T gives the same modification
to the ionization yield as does a shift in the frequency by
the small but constant amount, 2~/T, holding i' fixed so
that the geometric phase is exactly zero. In other words,
the imaginary part of the geometric phase is dynamical
in origin. More generally, suppose that the intensity I
of the monochromatic light varies, and that the system
follows a prescribed closed circuit in the 4-I plane over
a time interval ti & t & t2. The contribution Bc, arising
from a variation in C, to the geometric phase B, may be
absorbed into the dynamical phase and evaluated as

where, if the quasienergy E is evaluated at the current
value of the intensity, AE is the change in E at time t
due just to the change d4'/dt in ~ Since 4 i. s a function
of I along the closed circuit, we can reexpress B@, as

dC cIF.

dI 0~ (2)

The time t does not appear explicitly in this last expres-
sion, so B@ is a "geometric" phase, depending only on
the circuit in the 4-I plane, but of course if the time de-
pendence of 4 is altered, so is the functional dependence
of@on I.

However, when the light is bichromatic, the
quasienergy depends on the relative phase of the two
component fields [6]. By adjusting the relative phase
and one other parameter, such as the strength of one of
the two component fields, it is possible to arrange that
at a particular point in this two-parameter space, the
quasienergy is degenerate. In other words, we can choose
a circuit in this two-parameter space which encloses a de-
generacy in the eigenvalue of the Vloquet Hamiltonian.
(In a three-parameter space the circuit wauld enclase a
line of degeneracies. ) As a consequence, the eigenray
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FIG. 1. Trajectories of the complex quasienergy of the 1s
level of the hydrogen atom when the atom is irradiated by a
coherent superposition of 355-nm light and its third harmonic;
two parameters Ig and O'H are varied, where IL, is the inten-
sity of the low-frequency component and O'H is the phase of
the high-frequency component (41, = 0). At the points A —D,
the values of IL, (in units of 10 W/cm ) and CiH (in de-

grees) are (A) Il. = 0.1, 4H = 0'; (B) II. = 1.30, 4H = 0';
(C) IL, ——1.30, Ci~ = 160'; (D) Iq = 0.1, CiH = 160'. The
intensity of the harmonic field is (a) 0.075Ii. , (b) 0.150IL, , and

(c) 0.040Ii. . In case (a) there is an avoided crossing near the
points marked a, and a true crossing near the points marked

need not be single valued. (The eigenray is single valued
when the Floquet Hamiltonian matrix is real and sym-
metric, that is, when ionization is negligible, as explained
in Appendix B.) In Fig. 1 we show the trajectory of the
quasienergy eigenvalue for the hydrogen atom, initially
in the 1s state, when the atom is irradiated by bichro-
matic light and the intensities II. and IH of the low-
and high-frequency components, and the phase 4H of
the high-frequency component, are varied. In this exam-
ple, the ratio l~/IL is kept, constant, and It and iIiH are
varied along a rect, angle in the IL-4H plane whose sides
correspond to either constant II. or constant CH, this ex-
ample is very similar to the one discussed in Ref. [7]. The
light is linearly polarized, the low-frequency component
has a wavelength of 355 nm, and the other component is
the third harmonic, The 1s and 2p states are connected
by a three-photon transition that is nearly on resonance.
We label the corners of the rectangle in the IL, -@H plane
counterclockwise as A, B, t, and D, starting from the
left lower corner. We show trajectories for three cases,
corresponding to different values of the ratio IH/II. . In
case (a) the real part of the 1s eigenvalue undergoes an
avaided crassing (paint n) with t, he real part af the 2p
eigenvalue, as Ir, is varied from 0. 1 x 10's W/cm (point
A) up to 1.3 x 10 W/cm2 (point B) along the line

4H = 0'; it then undergoes a true crossing (point P)
as II. is varied back to zero along the line +II —160'
(from points C to D). At an avoided crossing of the real
parts of the quasienergies the characters of the adiabatic
states interchange; in other words, the character of t, he
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state corresponding to a particular adiabatically evolv-
ing eigenvalue changes from 1s to 2p, or vice versa, as
the avoided crossing is passed. On the other hand, the
characters of the adiabatic states do not change at a true
crossing of the real parts of the quasienergies. Hence,
in case (a), the 1s state adiabatically evolves into the 2p
state after one complete circuit, and vice versa. However,
if the circuit is traversed again, the 2p state adiabatically
evolves into the 1s state, and vice versa. Therefore, upon
two circuits, when the avoided crossing is passed twice,
the 1s state is mapped into itself aside from a geometric
phase. As discussed further in Sec. III 8 and Appendix
B, a degeneracy is enclosed by a circuit in case (a). In
case (b) the real part of the 1s eigenvalue undergoes an
avoided crossing as IL, is varied along the line 4~ ——0',
and another avoided crossing as Jg is varied back to zero
along the line 4~ = 160'. In case (c) the real part of
the ls eigenvalue undergoes a true crossing as Ig is var-
ied along the line 4~ ——0', and another true crossing
as IL, is varied back to 0.1 x 10'3 W/cm~ along the line
4rr = 160'. Therefore, in both cases (b) and' (c) the Is
state is mapped into itself, aside from a geometric phase,
after only one circuit ~ In these cases the circuit normally
does not enclose any degeneracies, but it may happen
that the circuit encloses two degeneracies.

As noted above, the geometric phase is complex when
the relative phase of the two components of the bichro-
matic field is varied. Once again, however, the imaginary
part of the geometric phase may be viewed as dynamical
in origin. For a temporal variation in the relative phase
is equivalent to a loss of commensurability of the two fre-
quencies, and this may be taken into account by making
a double Fourier-series expansion of the wave function us-
ing two incommensurable frequencies [8]. Nevertheless,
it is more elegant to view the modification to the ion-
ization yield as being due to a complex geometric phase
rather than a loss of commensurability.

In the following section we set up the Floquet eigen-
value problem, and we briefly discuss the behavior of the
Hamiltonian and its eigenvectors under time reversal. In
Sec. III we examine the geometric phase, we investigate
the behavior of the Floquet eigenvectors and eigenvalues
near a degeneracy, and we give an illustration for the
hydrogen atom. In Appendix A we discuss the eA'ect of
time reversal in more detail, and we construct the appro-
priate norm for the Floquet eigenvector. In Appendix B
we examine the general analytic (branch point) structure
of the Floquet eigenvalue.

II. THE EIGENVALUE PROBLEM

A. The interaction

we have ~L, ——q~ and u~ ——~. We assume that the two
component fields are polarized in the same plane, the zy
plane say, and we write the unit (complex) polarization
vectors as

eL, = cos(Q, /2)x+ isin(Q, /2)y,
e~ —cos((~/2)x + i sin((~/2)y,

(4)
(5)

where (L, and (rr are the ellipticity parameters. Treat-
ing the radiation as a classical field, within the dipole
approximation, the vector potential is

A(t, 4) = At, Im(eL, e ' ' 'J "' ')
+A Im(e e ' " 'J"' ") (6)

where AL, and A~ are real, and where the argument C

of the vector potential non denotes the two phases 4L,
and 4~ collectively. Note that we could transform one
of these two phases away by a transformation of ~; e.g. ,

to transform 4L, away, we absorb it into q j dt'w, so
~ ~ ~ —(I/q)der, /dt. In other words, only the relative
phase C~ —(p/q)4r. is significant. The interaction of
an electron, of charge e and mass p, with the field is
—(e/pc)A(t, 4) p, where p is the canonical momentum.
Hence the interaction V(t, C) of the atom with the field
can be expressed as

VL+(O'L, ) = i(e/2tjc)At. e ' 'er. p,
v, (c,) = v, +(c,)t,

V~+(4~) =i(e/2pc)A~e ' "e~ p,
V~ (C'e) = V~+(C'a) .

(8)
(9)

(Io)
(11)

Note that V(t, 4) is locally periodic with period 2'/u,
provided that u is nearly constant over one cycle.

We have only indicated the explicit dependence of
V(t, 4) on the time t. The interaction also depends im-
plicitly on 5 through the temporal variation of AL, , A~,
and possibly other parameters, e.g. , (, C, and ~ (but not
~L, and ~tt independently). However, we assume that
the evolution of the system is adiabatic, which requires
that the implicit temporal variation of the parameters be
slow on the time scale of one cycle 2x/a and on the time
scale set by the Rabi flopping frequency if the atom is
nearly on resonance with the light ~

V(t, 4) = VL, +(@L,)e 'J ' '+ VL, (4L, )e'J

+V~+(C~)e '~ "' "+V~ (4a)e'J
(7)

where, assuming for simplicity a one-electron atom (we
merely sum over electrons in the case of a many-electron
atom),

We consider an atom exposed to a bichromatic radia-
tion field having two commensurable frequencies u~ and
GAL, with q~~ —~L, , where p and q are integers such that
p ) q (the subscripts L and H stand for low- and high-
frequency, respectively). Introducing the "fundamental"
frequency

ur =—( I/q)~L„

B. Floquet ansatz

The time-dependent Schrodinger equation is

ih )@(t,C)) = [H. + V(t—, C)] ( @(t,C)),
d

(12)

where H is the atomic Hamiltonian. To pass to the
time-independent problem, we first remove a dynamical
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phase factor and write the state vector of the atom as
' I d ' R(4)/s

I ~(t
and substitute into Eq. (12) to give

ih —
I Z(t, C )) = [H. + V(t, C) —E(C)] I E(t, e)).

(14)

We now take note of the fact that, at least over an interval
of a few cycles, V(t, 4) is periodic, and we make the
harmonic expansion

exploit the time and reflection symmetries of the Hamil-
tonian. To this end, we introduce the operator S which is
the product of the time-reversal operator and the opera-
tor which effects a reflection in the zz plane. We discuss
the properties of S in more detail in Appendix A. We
note here that StS = SSt = 1 and St = S; however,
since S is antBinear, and therefore complex conjugates c
numbers [9], it is antiunitary. We denote the action of S
by a superscript (*), e.g. , we write

I
g&')) = S

I @) for
any ket

I @). It follows from the antilinearity of S that if
I Q) and

I )t) are any two kets [9]

(2o)

In Appendix A we show that(151

which, upon substitution into Eq. (14), using Eq. (7),
yields

= E(C') I &M(C')) + i/ —
I &M(@)) (16)

dt

where H™N)(4)is the operator

SVLy(4L)st = VLy( —CL),
SVH+ (O'K )S = VH + ( —C'H ),

and also that [7]

E(-C) = E(C).

Since S commutes with H, it follows that

SH(C)St = H( —C),

(21)
(22)

(23)

(24)

HI )(4) = ( H, —Mhur)SMN + VL+(@L)SM N+q

+VL (@L)SM-,N q-
+VH+(@H)SM, N+p + VH (@H)S-M,N p. -

(»)
The "Floquet" Hamiltonian, denoted by H(4), is the
matrix operator whose elements are H~ )(4). If we

denote by I F(4))) the column vector whose elements
are the harmonic components

I XM (C)), we can reexpress
Eq. (16) as

and hence that

H(C')
I
&"(-C'))) = E'(C')

I
&"(-C'))) (25)

In other words, ((j't*)(—4) I
is a left-hand eigenvector of

H (4) w i th eigen value E(C ) .

If
I @(t)) and

I y(t)) are any two kets which are periodic
in t, with period 27r/u, and if their harmonic components
are

I AN) and
I yN), we define column vectors

I 1t))
and

I )t)) whose elements are the harmonic components.
Furthermore, we define the following scalar product:

(C) I &(C'))) = E(C')
I &(C'))) + if „t I

&(C')))—d ((Olx)) =) (@ lx ) (26)

(18) In particular, from Eq. (A15), we have

The Floquet ansatz, which is appropriate when the state
of the atom changes slowly on the time scale of one cy-
cle 2n/~, amounts to neglecting the term in the time
derivative on the right-hand side of Eq. (18). This ansatz
results in the eigenvalue problem

H(C')
I &(C'))) = E(C')

I +(C'))) (19)

The eigenvalue E(4) is complex if the system is dissipa-
tive, i.e. , if the atom ionizes; the imaginary part of the
eigenvalue is, aside from a sign, the half-width for sta-
tionary decay. Note that since we can always transform
one of the two phases 41. and CII away by a shift in the
origin of time, without affecting the eigenvalue, E(4)
can only depend on the relative phase O'K —(p/q)4L.
Note also that E(4) may vary implicitly on time through
various parameters, and we stress this must be taken
into account in evaluating the dynamical phase factor
exp[—i f Ct'E(C )/h].

In constructing a convenient norm for the Floquet
eigenvector

I j(C))), one which is conserved in time, we

(P"(—C')
I &(C'))) = 1 (27)

As we show in Sec. III A, this normalization holds for all

times, as long as the atom evolves adiabatically.

C. Floquet matrix

We can represent H(C ) as a matrix by expanding the
harmonic components on a basis, the set

I bN„), n

1, 2, . . . , say. Thus, writing

I &N(C')) =) aN I
~N ),

we can construct the Floquet matrix, H(C&), which is a
block matrix, with the (M-X)th block a submatrix whose

(m-n)th element is (b~~
I

H~ )(4) I bN„); only those
blocks for which M = N, M = N+ p, or M = N+ q are
nonvanishing. Using Sts = 1 and Eqs. (22) and (11),
and, in the last step below, Eq. (20) with St = S —in
the last step we use (@ I [Sty)] = (@ I [Sy)] = (y I [S@)]—we have
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H(4)' = H( —4), (30)

and therefore if H(4) = H( —4) the matrix H(4) is com-
plex symmetric. Let N be the overlap matrix, which is
a block diagonal matrix; the Nth diagonal block is a
submatrix whose elements are (b& I b'av„), and from
Eq. (20) we see that N is complex symmetric, that is,
N' = N. If b is a column vector with elements b~„, the
eigenvalue problem has the matrix form

H(4)b = E(4)Nb.

Incidentally, since a matrix and its transpose have the
same eigenvalue spectra, it immediately follows from
Eqs. (30) and (31) that E( 4) = E—(4), in accordance
with Eq. (23).

III. THE GEOMETRIC PHASE

A. Preliminary diseusssion

Suppose that the Hamiltonian H(4) depends implic-
itly on one or more parameters which vary slowly with
time. Let A collectively denote these parameters. If the
temporal variation of H(4') is sufFiciently slow, the sys-
tem will remain in an eigenstate of (the evolving) H(4);
this is the adiabatic hypothesis —the Floquet ansatz in
the present context —and we have made this hypothesis
in neglecting the time derivative on the right-hand side
of Eq. (18). Taking the gradient with respect to A of
both sides of Eq. (19), we obtain

[E(4') —H(~')]&r I &(4')))

= —[7 E(4') —& H(4')] I &(4'))) (32)

In view of Eq. (25), projection of (P~"&(—4) I
onto the

left-hand side of Eq. (32) must yield zero. Therefore,
introducing the projection operator

&—:I —
I &(@)))((&'*'(—c')

I (33)

and multiplying the right-hand side of Eq. (32) by Q, we
can formally express the gradient of

I P(4))) as

I &(4'))) = C
I &(4')))+ [E(4') —H(@)] '

"qF'iiH(4')]
I &(4')))

(34)

where the term in V~E(4) is absent since it vanishes
upon multiplication by Q, provided that Eq. (27) holds.
The right-hand side of Eq. (34) is nonsingular as long as
E(4) is nondegenerate, but if E(4) is degenerate the last
term on the right-hand side is singular. At 6rst sight, the

(&'I I IH+(4'H) I &iv ) =(~M I~'&~+( ~—H)~ I&iv )

= (bM' I
~'I'H ~(—@H) I

bw'. )

(»)
with a similar relation satisfied by the matrix elements of
Vgy(4L, ). It follows that, with the superscript t denoting
the transpose,

constant C appears to be arbitrary, although of course
if we wish to preserve the normalization of Eq. (27) our
choice of C will eff'ect

I
X&'&(—4'))). In fact, however,

we must choose C = 0, for otherwise the neglect of the
term in the derivative with respect to t on the right-hand
side of Eq. (18) would not be justified, Indeed, noting
that this derivative equals (dA/dt) V'~, and taking into
account Eq. (25), we must have, from Eq. (18),

((&'*'(—4')
I &~ I &(4'))) = o

a condition which, in general, forces
I X(4))) to be mul-

tivalued. It follows that if
I X(4'))) is any solution of the

eigenvalue problem which is continuous and diR'erentiable
in A, we have

I &(4'))) ="
I &(4'))) (36)

where B is given by

i(&g~)(P"(-4')
I &(4')))

+((&"(-4')
I &/ I &(@'))) = 0 (37)

If we follow the eigenvalue E(4) along a closed circuit
in parameter space, it must return to its original value
upon completion of the circuit unless the eigenvalue is
degenerate at some point inside or on the loop. For,
barring a degeneracy, E(4) must be single valued every-
where inside and on the loop. Consequently, the eigen-
vector

I F(4))) must return to its original form, aside
from a geometrical phase factor, e' say. In other words,
the eigenray is mapped into itself. The geometric phase
I3 is, using Eq. (37), the closed circuit integral

(38)

provided that
I P(4))) is chosen so that it returns to it-

self exactly after one circuit, [11]. [In contrast to
I P(4'))),

which returns to itself without a phase change, I E(4)))
carries the geometric phase. ] If the loop does enclose a
degeneracy of E(4), one circuit is normally (but not al-
ways —see below) insufficient to return the eigenvalue
and eigenray to their original values, for in following the
loop a branch cut in the complex plane of one of the
parameters is normally traversed (see Sec. III B and Ap-
pendix B), and in this case more than one closed cir-
cuit must be followed before the eigenvalue and eigen-
ray return to their original values (the branch cut must
be crossed again). In the special case where H( 4)=-
H(4), that is, where H(4) is invariant under the "time
reversal" effected by 8, we can, assuming E(4) is non-
degenerate, choose

I E(—4))) to be equal to
I P(4))).

In this case, the geometric phase can only be either 0
or +z, since if

I X(4'))) returns to e'+
I j(4))), then

I
P~*&(4))) returns to e '

I
X~'&(4))), and it follows

from the normalization, Eq. (27), that e ' = 1. In fact,
in this case, if the circuit does not enclose a degener-
acy, B = 0; this follows by shrinking the circuit to zero,
noting that B must vanish for an infinitesimally small cir-
cuit, and that B cannot abruptly change from +sr to zero
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as the circuit shrinks unless the circuit passes through a
degeneracy. The condition H{—C) = H(C) is satisfied
for 4' = 0, +x, or + 2x. If the field is monochromatic
(i.e. , one of the two components of the bichromatic field
is absent), the eigenvalue E{C) is independent of C, and
since we can always satisfy H( —4) = H(4) by shifting
the origin of time, we must have B = 0 or + sr for all 4—
provided that 4 is not varied, for we can only shift the ori-
gin of time once [12]. The preceding statements on 8 are
true whether or not the system is dissipative. However, if
the system is nondissipative, E(4) is real, and therefore,
recalling Eq. (25) and assuming E(C) is nondegenerate,

I
F(')(—4)}}is proportional to

I F(C)}};choosing the
proportionality constant to be unity, Eq. (27) becomes

(P {C) I P{C)}}=1, and it follows that 8 is real even if
4 is varied. As noted in the Introduction, if the system is
dissipative, 8 may be complex, unless H{C) is invariant
under 8, in which case, as just shown, 8 is real, and is an

integer multiple of vr, even when the system is dissipative.
In Appendix A we prove that the norm P(')(—~+

&o&
—4) I F(&+ to, 4)) is conserved over time intervals

for which U(t, C) is (nearly) periodic, and as long as the
adiabatic hypothesis holds, namely, as long as the sys-
tem evolves as an eigenstate of the slowly varying H(C),
we expect this norm to remain nonzero at each point in
parameter space —we can thereby impose the normal-
ization of Eq. (27), that is ((X(')(—C) I F(C)}}= l.
However, the evolution of t;he system ceases to be adia-
batic if the trajectory in parameter space passes through
a degeneracy of E(4). Hence we may expect that at a
degeneracy ((F(')(—4) I F(4)}}can vanish. We now

show, independently of the adiabatic hypothesis, that
(P'(')( —4) I P(4)}}can vanish only at a degeneracy.
We are always free to demand that, in the absence of
degeneracies, Eq. (35) holds for all 4, since we are free
to choose C = 0 in Eq. (34). Since 8 commutes with

T~, it follows, using Eq. (20), that, in the absence of
degener acies

Floquet matrix to a 2 x 2 matrix which pertains to the
subspace of the two states that have nearly degenerate
eigenvalues. Iet us denote the diagonal and ofF-diagonal
elements of this matrix by Hpq and Hq2, and by H~2 and

H~q, respectively. These elements may be, for example,
the matrix elements of one-dimensional blocks H( )(4),
H(22)(@) H(12)(C,) and H(21)((y) The eigenvaiuesof
this matrix are E' = E + AE/2, where

E —(Hll+ H22)/2

~E —'/(Hll H22) +4H12H21

(41)

(42)

A degeneracy occurs when b,E = 0, that is, when either

Hll H22+ 2&QH12H21 —0 (43)

or

Hll —H22 —2i/Hl2H2l ——0. (44)

AE oc QP(A —Ao)+ Q(p —po), (45)

Without loss in generality, we may assume that it is

Eq. (43) that holds, although in the case where the ma-
trix is Hermitian Eq. (44) also holds. If the matrixis (real
or complex) symmetric, two parameters must in general
be adjusted to arrange for the real and imaginary parts
of the left-hand side of Eq. (43) to vanish. If the matrix
is Hermitian, Hyy and Hg2 are real and Hy2 ——H~~, and
therefore we require that H~~ —H22 ——0 and H~p ——0;
hence, for a complex Hermitian matrix (Hl2 complex)
three parameters must be adjusted to satisfy Eq. (43).
However, if the system is dissipative, the matrix is not
Hermitian (it may or may not be symmetric) and we may
only need to vary two parameters to satisfy Eq. (43). We

suppose that we have only two parameters at our dis-

posal, ~ and p say, and that there is a degeneracy when

these parameters have the real values Ao and p, o. For

(A, p) (Ao, po) we have, assuming the matrix elements

are analytic and single valued in A and p,

(P(@)I~ I~'*'(—@)}}=o
and this implies that

(39) where P and Q are (possibly complex) constants. Writ-

ing z=PA+Qp, we have

~~(P'"'(-~)
I ~(c)}}= o

AE oc Qz —zo, (46)

According to Eq. (40), the norm (P(')(—4) I F(4)}}can
be chosen so as to be constant, and therefore nonzero,
in any region of parameter space where E(4) is non-

degenerate; in other words, (P'(')(—4) I P(C)}) can
vanish only at those exceptional points where E(4) is

degenerate. Incidentally, since Eq. (35), and therefore
Eq. (40), must hold if the atom evolves adiabatically,
((P(")(—4) I X(C))}remains constant for all time if the
adiabatic hypothesis holds.

B. Behavior at de0', eneracies

with zo = PAO+ Qpo. In general, E is not an analytic
function of z (the Cauchy-Riemann equations are not sat-
isfied in the z plane). However, E is an analytic function
of~(andof p), anditfollowsfromEq. (46) thatif p, = po,
the energy normally has a branch point on the real axis
of the complex A plane, at Ao. However, if the matrix
is real and symmetric, Eq. (44) also holds, so that EE
has a double zero at (Ao, po). For a matrix that is nearly
real and symmetric, the double zero separates into two
isolated zeros, and there are two nearby degeneracies in

the A-p plane; in the neighborhood of these degeneracies
we have

We now examine the behavior of the eigenvalues and
eigenvectors in the neighborhood of a degeneracy. [We re-

mind the reader that the geometric phase may be nonzero
even if the circuit does not enclose a degeneracy, unless

H(C?) is complex symmetric. ] We may reduce the full

AE z —zo z' —zo (47)

where the variable z' can be expressed as P'A+Q'p, and
where zo zo. Evidently, for a matrix that is exactly
real and symmetric we have z' = z' and zo ——zo so that
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the branch point on the real A axis, at As, disappears
when p = po. We can parametrize our 2 x 2 matrix by
the Cayley-Klein parameters 8 and P, which in general
are complex and are defined by

2is (+11 +22) + 2&v II12II21
(II11 II22) 2t V II12II21

e ' = H21/H12.

(48)

(49)

(Note that P = 0 if the matrix is symmetric, and that
8 = kioo at a degeneracy. ) The eigenvectors are

t'cos(8/2) e"' '" 'i -(8/2)"'/' ~'
t' sin(8/2)e-'4'/2 &

( ~4') I „,(8/2), ,P/2 I ~

(50)

and, recalling that the superscript t denotes
transpose, we have uy(8, —P)'uy(8, P) = 1 and
u+(8, —P)'u~(8, P) = 0. A loop in the A-p plane which
encircles the point (As, po) corresponds to a loop in the z
plane which encircles zs. Now, as long as this loop does
not enclose both degeneracies, the numerator of the right-
hand side of Eq. (48), which is proportional to z —zo, has
an argument which changes by +2m as the loop is fol-
lowed (the denominator is proportional to z' —zo and its
argument would also change by +2m' if both degeneracies
were enclosed). Therefore 8 changes by kn, and hence
the eigenvectors transform into one another upon a com-
plete circuit; for example, if 8 increases by x, we have
u+(8, $) ~ —u (8, $) and u (8, $) ~ u+(8, $) From.
Eq. (46) we see that E+ and E also interchange. Upon
a second circuit, the original eigenrays are mapped into
themselves, and the original eigenvectors are mapped int;o
themselves up to a geometrical phase factor of kn. If the
loop encloses both of the degeneracies in the A-p plane, 8
changes by +2m, and the original eigenrays are mapped
into themselves after a single circuit.

Note that u+(8, $) does not return to itself exactly
after a double loop, rather, u+(8, P) carries the geometric
phase. A similar remark applies to u (8, P). Thus, if
we were to calculate the geometric phase from Eq. (38),
around a double loop enclosing a single degeneracy say,
and if we were to use one of the eigenvectors u+(8, P)
and u (8, $), say u+(8, $), we would obtain the value
B' = f u+(8, P)'du+(8, $) =——(i/2) f cos(8)dg rather
than the correct answer B = 8' + x. Note that the
geometric phase associated with a double loop around
the degeneracy is, in general, complex and does not equal
x as it would in the case of a symmetric Hamiltonian (for
which P = 0 and hence B' = 0). However, the geometric
phase is exactly vr, if upon the second turn of the double
loop the contour is retraced exactly —at least to the
extent that the system can be adequately modeled by a
two-state approximation. To see this, we first note that
after a single turn around the loop, 8 has increased or
decreased by 1r, as explained above. Since cos(8 + n) =
—cos(8), we find upon evaluating B' = —(i/2) f cos(8)dg
that the contribution from the erst loop exactly cancels
the contribution from the second loop. However, in the
general case where the loop does not retrace itself, no

such cancellation occurs and the geometric phase will be
complex (and hence differ from n).

C. Illustration

We now discuss the results obtained for the geomet-
ric phase for the hydrogen atom irradiated by bichro-
matic light, corresponding to the three cases (a)—(c) of
Fig. 1 that we discussed in the Introduction. We re-
call that the intensity II, of the low-frequency compo-
nent and the phase 4H of the high-frequency component
are varied along a rectangle in the Ir, 4rr -plane, whose
sides correspond to either constant II, or constant CH,
we fix 41, = 0, but IH varies with II, along the circuit
because the ratio IH/Ir, is kept constant. We have la-
beled the corners of the rectangle in the II,-C~ plane
counterclockwise as A, B, C, and D, starting from the
left lower corner. To calculate the geometric phase, we
used the expression of Eq. (38), which requires the wave
function to be single valued. We have enforced this single

A B D A B D
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/

/
/

/!
/:
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//
&/
V
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I

D D

FIG. 2. The geometric phase corresponding to Fig. 1(a).
Solid curve, normalization of the wave function such that its
projection on the 1s state equals unity; dashed curve, normal-
ization with the projection on the 2p state set equal to unity
(see text). The upper part of the figure shows the real part of
the geometric phase. The lower part of the figure shows the
imaginary part.
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valuedness somewhat arbitrarily, by requiring the projec-
tion of the wave function onto the {unperturbed) ls or
2p state to be unity everywhere on the circuit, or, more
precisely, (1s

~ Po(4)} = 1 and (ls
~ Pg( —4)} = 1, or

(2p ~
Ps(C')} = 1 and (2p ~ Ps( —4)} = 1. This also

fixes the normalization. In order to illustrate how the
geometric phase builds up, we show the value of

(52)

as the point P describes the circuit in the parameter

the points B, C, and D; of course, once P returns to Pc,
passing y

after a complete circuit, B(Ps, P) is identical to the ge-
ometric phase of Eq. (38) (and does not depend on the
normalization). In Figs. 2—4, respectively, we display the
cases corresponding to Figs. 1(a)—1(c), respectively. In
the upper part of each figure the real part of the B(Po, P)
is shown, while in each lower part the imaginary part is
shown. Note that, as indicated on the horizontal scale, a
double loop was needed to map the ls state back onto it-
self in case (a) (Fig. 2), whereas in cases (b) and (c) (Fig.
3 and 4, respectively) a single loop was taken. As seen
rom t ese figures, the value B(Pc P) is complex d f

7

0 epends markedly on the choice of normahzation.

However, this is of no physical importance: a given choice
of normalization amounts to multiplying the eigenvector

~ P(4)}}by a complex factor, which varies with the point
in different ways for different normalizations, and the

differences in the values of B(PO, P) merely compensate
for the variations in this complex factor. In other words,

ifferent normalizations of
~ P(4)}}lead to eigenvectors

~ P(4)}}—defined by Eq. {36)with B = B(Po, P)—
that differ only by a constant numerical factor. Hence no
conclusions can be drawn, about the modifications to the
ionization yield calculated from the width of the instanta-
neous quasienergy, from the magnitude of the imaginary
part of B(Ps, P) plotted in Figs. 2—4(b), as long as P

as not reached the end point of the circuit. However,
at the end point, a nonvanishing imaginary part of the
geometric phase B indicates that the actual ionization
yield is different than would have been obtained by as-
suming that at each instant the ionization rate is simply
the instantaneous value of —2 Imz/h.

In Figs. 3 and 4 we illustrate that, in accordance with
he discussion in the preceding sections, the geometric

p ase is in general complex for a single loop not encir-
cling a degeneracy, provided H( 4) is n—ot equal to H(4).
With reference to Fig. 2, the geometric phase is real and
equal to z, within the accuracy of the computation. One
may have expected the geometric phase for this case to

3'/2 vr/2

7r/2-

-7r/2-

0--

J'

0-

-vr/2

/

/

/
/

/
/

/
/

/
/

/
/

/

D

x/2

0-—

0-

-7i./2

-7(./2

D

FIG. 3. Sa.m Fme as in Fig. 2, but for the case corresponding
to Fig. 1(b).

FIG. 4. Same as in Fig. 2, but for the case corresponding
to Fig. 1(c).
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be complex. However, this result is in accord with the
analysis of Sec. III B, where we demonstrated that to the
extent that the atom is adequately described by a two-

state approximation, the geometric phase is equal to z (to
the accuracy of the calculation) provided that the second
loop retraces the first loop around the degeneracy. We
have checked that the geometric phase is indeed complex
if the second loop does not exactly retrace the first one
(but still encircles the degeneracy). In another case, not
illustrated here, O is constant but Ir, and I~ are varied
independently around the sides of a rectangle in the Il,
I~ plane defined by 1.1 x 10is W/cmz ( Il, ( 1.2 x 10is
W/cm2, 0.5 x 10iz W/cmz ( I~ ( 1.5 x 10iz W/cmz.
This loop encircles a degeneracy. As in Fig. 5, the geo-
metric phase is approximately x after two identical loops
[when 4L, = 0 and 4~ = 10' we find B z —0.14i, but
when C L, = 4~ = 0, we find B = z —not surprisingly
since H( —C) = H(4) and B cannot be complex].

Finally, we note that for monochromatic ionization the
imaginary part of the geometric phase is zero if only the
intensity, but not the phase of the field [14], is changed
adiabatically: in this important case, the nonresonant
decay rate can be safely evaluated from the imaginary
part of the quasienergy.

IV. CONCLUSION

The wave function of an atom undergoing multiphoton
ionization in a laser field may acquire a complex geomet-
ric phase on top of the usual dynamical phase when the
phase of the laser field varies slowly with time. This im-
plies that a naive calculation of the (adiabatic) ionization
yield, obtained by integrating the instantaneous Floquet
decay rate, may sometimes give an incorrect answer. We
illustrated this for the case of a bichromatic field with
commensurable frequencies whose relative phase is var-
ied slowly with time. However, if the varying phase were
to be incorporated by allowing for a drifting frequency,
the geometric phase due to the variation of the phase
of the light field would be entirely contained in the dy-
namical phase; but this would imply a loss of commen-
surability of the frequencies. In cases where the loop en-
closes a degeneracy, a double loop is in general necessary
to map the original eigenray onto itself. We find that,
whenever the second loop retraces the first one exactly,
the geometric phase may be very close to z, a conse-
quence of the fact that not too far from the degeneracy
the atom may be accurately modeled by a two-state ap-
proximation. Finally, let us remark that for a frequency-
chirped monochromatic laser pulse it may be most conve-
nient to incorporate the imaginary part of the geometric
phase in the dynamical phase through the dependence of
the quasienergy on the frequency; the residual geometric
phase then exactly equals a multiple of x, the multiple de-
pending on the number of degeneracies of the quasienergy
enclosed by the loop in the frequency-intensity plane.

United Kingdom Science and Engineering Research
Council, and by a RIC grant from the University of
Durham.

APPENDIX A: TIME-REVERSAL
AND THE NORMALIZATION

T = +1. (A2)

The interaction of the atom with the field is only locally
symmetric in time since, in general, the interaction is
only locally periodic. It is convenient to display the local
periodicity of the field by shifting the origin of time by
tp, introducing a new time variable t = t —tp, where tp
is such that over afew cycles J dt'u =at Thus we ca. n
write

V(t + tp, C') = Vl+(4L)e ' + VL (4L,)e'

+~~+(~~). '""'+V~ (~-~)e""'.
(A3)

The time-reversed field is obtained by complex conju-
gating the polarization vectors. Since 7 complex conju-
gates c numbers and anticomrnutes with p, the interac-
tion of the atom with the time-reversed field is simply
7tV( t+ to, —4)7—. We can also complex conjugate the
polarization vectors by reversing the sign of y. Thus, in-
troducing the operator X&, which acts only on the atomic
coordinates and which effects a reflection in the zz plane,
we can write the interaction of the atom with the time-
reversed field in the alternative form 2&V(t+tp, 4)Z&t. It
follows that if we define

S—:7I„,
we have

SV(t + to, C)St = V(—t+ to, —I),

(A4)

(A5)

In this appendix we examine the time symmetry of the
interaction and, utilizing this symmetry, we construct a
convenient norm for the state vector, which is conserved
in time. (The usual norm is inappropriate, due to the
exploding exponential behavior of the Floquet eigenfunc-
tion in position space. ) The Hamiltonian of the system
"atom plus radiation field" is invariant under time rever-
sal. However, we treat the radiation field as an external
entity. Thus we define the domain of the time-reversal
operator 7 to be the space of atomic coordinates only.
Note that

7t7=77t = 1

but that 7 is antiunitary [9] since it complex conjugates
c numbers. Note further that, since the time-reversal
operator acting on the time-reversed world produces the
original world, 7z must be the identity operator up to a
phase factor, and from the fact that 7 is antiunitary the
phase factor must be +I:
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which expresses the time symmetry of V(t + to, 4).
In arriving at this symmetry relation we used

StS = SSt 1 (A6)
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which follows from Eq. (Al) and the fact that X& is uni-
tary and commutes with T. We note some further prop-
erties of S: Since Zz~ ——+I, where [9] the sign correlates
with the sign on the right-hand side of Eq. (A2), we have

~( t—+ tp, —e)} is an eigensolution corresponding to
eigenvalue E"( e—) (where here e denotes complex con-
jugate):

and hence, from Eq. (A6), we have

(A7) ih=
I
T&'l( —t y t„—e))

d

Ck

(A8)

S is ant&linear (actually antiunitary) since T is.
Letting S act on both sides of Eq. (14), using Eq. (A5),

noting that dt = Ck and changing t to —t, we find that
I

f

�2'/u)
d

dt pI'l( —t+tp, —e) Iih= I E(t+tp, e))
0 dt

= [e.+ V(t + tp, e) —&'(—e)] I
z"(—t + t, —e)).

(A9)

We now use Eqs. (14) and (A9) to write

2n /ur

dt P'&'&( —t + t„—e) I [H. + v{tit„e)—E(e)] I E(t+ tp, e))
0

(A10)

2n /u)

dt (x' (—t+tp, —e) I [H, + v(t+tp, e) —E(—e)] I x(t+tp, e)), (All)
0

where in going from the first to the second step we inte-
grated by parts, noting that, as long as u is (nearly) con-
stant over one cycle, p~'l( —t+tp, —I')

I X(t+tp, e)) is
periodic and therefore the surface term vanishes; we also
used the Hermiticity [10] of the Hamiltonian II, + V(t+
tp, e). Comparing the right-hand sides of Eqs. (A10)
and (All) it follows that [7] E( e) = E(e—), as stated
in Eq. (23). Using this last result, in conjunction with

I

Eqs. (14) and (A9), yields

dih=(P~"l( —t + tp, —e) I
E(t + tp, e)) = 0. (A12)

dt

Hence the norm P~'~( t+t—p, —e) I
X(t+tp, e)) is con-

served in time, at least over intervals of a few cycles or
so. Consequently, choosing the norm to be unity, and
using the harmonic expansion

I P(t+to, e)) = ) e ' '
I PM(e)), (A13)

together with the similar expansion

I&"(-t+tp, —e)) =).e ' "'
I &M'(-e))

Fo

we obtain

):P&'g(-e) I &~(e)) = ~«

(A14)

(A15)

branch cut ~
degeneracy ~

~bronch cut
I

F) F~ F~

I

F F

The scalar product of exp[—iE(e)t/h] I F(t, e)) with
itself, while it may only formally exist, represents the
probability for finding the electron inside some finite vol-

ume V, and this decays in time, as exp[21mE(e)t/h],
due to the flux passing out of V as the atom ionizes. On
the other hand, the scalar product of exp[—iE(e)t/h] I

x(t + tp, e)) with sexp[iE( —e)t/h] I x(—t + tp, —e))
is preserved in time because the flux passing out of V is
compensated for by the flux passing into V in the time-
reversed state.

APPENDIX B: BRANCH POINTS
IN A COMPLEX PARAMETER PLANE

FIG. 5. Upper: bra.nch cuts of the quasienergy in the
complex F plane for difterent values of a, parameter p. The
Floquet Hamiltonian is exactly real and symmetric. Lower:
possible circuit in the corresponding I'-p plane.

Let us take, as an example, two parameters, with one
of these parameters the field strength I" of one of the
two components of the bichromatic light field. The other
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parameter, itt, say, may be either the field strength of the
other component, or the relative phase of the two com-
ponents. To understand the behavior of an eigenvector
as these parameters are varied it is useful to briefly com-
ment on the analytic structure of E(4) T.his appendix
is complementary to Sec. III C, where we discussed the
behavior near a degeneracy in the eigenvalue, for a two-
parameter space.

The quasienergy E(4) has branch points in the com-
plex F plane corresponding either to a resonance or to a
multiphoton ionization threshold [13]. Here we consider
the passage past a resonance. At a (resonance) branch
point, the complex energy eigenvalues for two different
levels coincide; normally this can only occur for a com-
plex value of F since both the real and imaginary parts
of the two eigenvalues must coincide, and two parameters
(the real and imaginary parts of E) must be adjusted to
arrange for the levels to intersect. However, since we have
another parameter p at our disposal, we can arrange for
the branch point to occur on the real E axis. Note that
there is always a second branch point associated with
a resonance, which, as long as the decay width is very
small, is close to the conjugate of the first branch point.
To see this, suppose that both fields are sufficiently weak
near the resonance that the decay width is negligible, so
that E(4) is very nearly real when F is real. It follows
from the Schwarz reflection principle that if there is a
branch point at Ft„, there is also one at Fb„at least
if the decay width is small. Even if the decay width is
not small, these two "conjugate" branch points must ex-

I

br, 4

br, 1

ist even though they may not be complex conjugates of
each other [15].

We now study what happens as we follow a rectangular
circuit in the real F p, -plane, starting from the corner

(Fo, pt), moving to the corner (Fs, pt), then to (Fs, p4),
and finally back to (Fo, pq), where the subscripts on F
and p indicate different values (see the lower parts of
Figs. 5—7). Suppose that at the values p;, i = 1 —4, of
p there are resonance branch points at Fb, ; and F&, ;,
where F»; and F&, ; are conjugate branch points. We
draw a branch cut between each pair of conjugate branch
points, and if the ith cut intersects the real F axis we
denote the point of intersection by F;. At the point F;
there is an avoided crossing of the real parts of the two
quasienergy eigenvalues involved in the resonance, and
when the branch cut is crossed, the character of one of
the states changes to that of the other state, and vice
versa.

In Fig. 5 we show a possible behavior in the case where
the decay width is negligible and the "conjugate" branch
points are truly conjugates. As p (say the strength of the
"other" component of the field) varies, from pq to p4, the
branch points vary, and one of them may cross the real
F axis. This happens in Fig. 5, when p = ps, since the
branch points are exact conjugates, they both merge into
a single point on the real F axis, at Fs. Therefore the
point (Fs, ps) inside the rectangle is a point of degener-
acy, but not a branch point. As we follow the rectangular
path in the real F p, plane, w-e first cross the branch cut
at Ft, and subsequently cross the branch cut, at F4, since

Fbr, 4

r, 3

F I' br 3'

I

br, 4

br, 3 4F( f F, =F

Fbr 2 F3 =Fb 3'

Fo (F~
Fbr, 2

t

br, 1

F3=Fbr 3 F5

branch cut ~
degenerocies degeneracy ~0

~branch cut
I

F) F2 F3

I

F„
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+bronch cut

I I

F) F F

I

F F5

FIG. 6. Upper: branch cuts of the quasienergy in the
complex I' plane for diR'erent values of a parameter p, . The
Floquet Hamiltonian is roughly real and symmetric. Lower:
possible circuit in the corresponding F-p. plane.

FIG. 7. Upper: branch cuts of the quasienergy in the com-
plex field plane for difterent values of a parameter p, . The
Floquet Hamiltonian is complex and nonHermitian. Lower:
possible circuit in the corresponding I'-p plane.
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we cross a branch cut twice, the eigenray is mapped into
itself upon one complete circuit. %hen the decay width is
small but not negligible, the two conjugate branch points
do not merge into a single point on the real F axis, for
a certain value of p; rather, there are two nearby branch
points on the real F axis, at F3 and F3 say, which occur
for nearby values of p, say p3 and p3, as shown in Fig.
6. For all practical purposes, unless the circuit passes
between the points (Fs, ps) and (Fs, ps), the two branch
points can be viewed as a single point of degeneracy [16].

In Fig. 7 we show a possible behavior in the case
where the decay width is significant, so that the conju-
gate branch points are far from being conjugates. Again,
as p (say the phase 4~ of the high-frequency component)
varies, a branch point may cross the real F axis. This
happens in Fig. 7, when p = ps, only one branch point
sits on the real F axis, at Fs Thu.s the point (Fs, ps)
is not only a point of degeneracy, it is also a branch
point. As we follow the rectangular path in the real F IJ, -

plane, we cross the branch cut at F~, corresponding to
an avoided crossing, but upon returning, with p = p4,
there is no branch cut to cross —the real parts of the
eigenvalues undergo a true crossing. Hence, after one
complete circuit, the original eigenray is mapped into an-
other eigenray, the one corresponding to the other level
with which the original level is resonant. After a second
complete circuit, the branch cut is crossed again, at Fq,
and the original eigenray is mapped into itself. This is
the situation realized in case (a) of Fig. 1, where only one
degeneracy is enclosed by the circuit. In cases (b) and
(c) of Fig. 1, respectively, two and zero branch cuts in
the F plane are crossed at different places on the circuit.
However, in the case of Fig. 1(b) we do not know whether
the branch cut in the F plane moves over the real axis
as 4~ varies, as in Fig. 6, so that there may be zero, not
two, degeneracies enclosed by the circuit, The same is
true in the case of Fig. 1(c).
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