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Exact calculation of the second-order Born terms for exotic-atom formation into excited states
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Differential cross sections of the second-order Born approximation are calculated exactly for particle
transfer to 1s, 2s, and 2p states of exotic atoms. The processes can be classified into three types. In the
collision ofp +(pp ), the Thomas process [Proc. R. Soc. London 114, 561 (1927)] takes place only via a
single path as in the proton-hydrogen case, while, in the collision of p +(pp ), it can proceed via two
paths that interfere destructively or constructively depending on the parity of the final state as in the po-
sitronium formation from a hydrogen atom. In the third type, in which all the three particles have an

equal mass as in positron-positronium collisions, the critical angle occurs at 180' only and the two
second-order terms which are forbidden in classical mechanics are contributing significantly to the back-
scattering.

PACS number(s): 34.70.+e, 36.10.Dr

I. INTRODUCTION

The Thomas double-scattering mechanism [1] has been
one of the most controversial problems in the field of
atomic collisions since Drisko [2] established the connec-
tion between this classical mechanism and the second-
order Born terms in the quantum-mechanical description.
In the original picture of Thomas, two successive binary
collisions lead to electron capture by an incident ion from
a target atom. Though the Thomas mechanism is essen-
tially a second-order process, it tends to dominate the
first-order contribution as the collision energy increases
[3]. This mechanism plays an important role not only in
electron capture but also in many types of rearrangement
collisions, e.g. , positronium formation [4] and atom
transfer in chemical reactions [5]. A particular scattering
angle, which is called the Thomas critical angle, is
favored for the projectile and one of the target particles
to move off together after the two binary collisions. This
angle is determined by the conservation requirements of
the total momentum and energy in the classical mechan-
ics. The differential cross sections show a prominent
peak there. In the quantal description, the Thomas
mechanism manifests itself as a singularity of the Green's
function in the second-order Born terms. The angle
determined by the singularity coincides with the classical
prediction [6).

In general three-body rearrangement collisions,

P+(Tc)~(Pc)+T,
where the particles in a bracket denotes a bound state,
three ways of Thomas mechanism are possible: (i) P hits
c in the first binary collision and c makes the second col-
lision with T. (ii) P hits c in the first collision and the
recoiled P makes the second collision with T. (iii) P hits
T in the first collision and the ejected T makes the second
collision with c. The process (i) is important for electron
capture in ion-atom collisions. The critical angle in the
center-of-tnass frame for (i) is given by [6]

3v~vp —1
cos8~ = for 4 vyvp 1

2(vrvp)

with

Mp" M+M,
and

(2)

(4)

where M's are the masses of the labeled particles. This
scattering angle is generally very small for ion-atom col-
lisions and it amounts to 0.94 mrad for proton-hydrogen
collisions. The critical angle for (ii) is given by

1
cosOg =

2+vrvp

vp(1 —vzvp)
1+v~vp-

vz (1—vp)

for vp~vr~
2

. (5)
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The critical angle of the process (iii) is obtained with vz
and vp interchanged in Eq. (5).

Exact calculations of the second-order Born ampli-
tudes for electron capture have been reported in several
papers [7—9]. However, all of the performed calculations
are only for capture into the 1s state and the contribution
of capture into excited states is generally taken into ac-
count by multiplying a factor of 1.2 under the assumption
that the same scaling law of 1/n (n is the principal quan-
tum number of the final state) holds as the high-energy
behavior of the Oppenheimer-Brinkmann-Kramers ap-
proximation [10]. Although Shakeshaft and Spruch [11]
showed that the classical double-scattering cross section
satisfies the same scaling law in the high-energy limit, it is
not evident whether purely quantal, especially di6'er-
ential, cross sections also satisfy the same scaling law.
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Recently, the second-order Born cross sections for po-
sitronium formation into excited states have been calcu-
lated accurately [12]. In this process, the two paths of (i)

and (ii) give the same Thomas critical angle of 45'. These
two amplitudes interfere destructively for capture into
states with even parity and constructively for capture
into states with odd parity [4]. Loss of significant figures
is serious owing to cancellation error when destructive in-

terference takes place. Highly accurate calculation of
scattering amplitudes is required for reliable analysis of
the interference effect.

In this article, we calculate the second-order Born
cross sections for rearrangement collisions involving ex-
otic atoms. The first- and second-order scattering ampli-
tudes for transfer to the shell of n =1 or 2 are calculated
exactly. Atomic units are used unless otherwise stated.

II. FORMULATION

We calculate the cross sections of the second-order
Born approximation for the rearrangement collision (1).
The initial and the final three-body wave functions are
composed of an atomic bound state and a plane wave
representing the relative motion between the projectile
and the target:

4, =P, (rz)exp(ik; Rr),
@f=Pf(rp}exp(ikf R~),

where rz (r~) is the position vector of the particle c mea-
sured from the particle T (P) and Rz (Rp) is the position
vector of the particle P [the center of mass of the atom

(Pc)] measured from the center of mass of the atom ( Tc)
(the particle T). k; and kr are the wave vectors of the rel-

ative motion in the initial and the final channels. The
first- and second-order terms of the T matrix elements are

and

6+ 1

E—Ho+ ig
(12)

Ho is the Hamiltonian for three free particles and g is an

infinitesimal positive number [13].
The first-order terms are calculated by an analytic pro-

cedure [14]. The four terms of the second-order T matrix
element are Fourier-transformed to

where V; is the interaction between the projectile and the
target atom in the entrance channel and Vf its counter-

part in the exit channel:

ZpZc ZPZT
V;= +

rp R

Z7 Zg ZpZQ
Vf= +

rz R

R is the distance between the particles P and T, and Z's
are the charges of the labeled particle. Go+ is the free
Green's function of the three particles satisfying the out-

going boundary condition:

Go p, = — „fdk, 2 p;(ki+B)
rz- rp 2m' k )

&& f dk~ 2pf'( A —kq)
k2
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dk2
1

k (k, —k2~ k; kf
k 2+2JM +

P T

k)

MP
.k2+ (k, —A ) 2—Pef i—g

P

(16)

Mp(Mr+M, )
PT= (18)

e; and ef are the eigenenergies of the initial and the final
bound states, respectively, and P, & are the Fourier trans-
forms of the atomic wave functions:

P, f(p)= fP;fexp( —ip r)dr .

The reduced masses and the vectors A and B are defined
as

III. RESULTS AND DISCUSSIONS

The three-dimensional integrals of the second-order
terms are evaluated directly by a numerical quadrature
based on the nine-point Newton-Cotes scheme. The con-
vergence of the integration is carefully checked by sup-
plementing and comparing with the results of the Gauss
quadrature and the Romberg formula. The intervals of
the integral are divided into pieces, and the number of
points is doubled for each piece of intervals iteratively
until satisfactory convergence is achieved.

and

Mr(Mp+M, )
PP=

MPM~p=
MP+M~

A=k; —vpkf,

B=kf —v~k; .

(19)

(20)

(21)

(22)

A. p+H~H+p

In advance of investigating rearrangement collisions of
exotic atoms, we show the results of proton-hydrogen
collisions, since this process serves as a prototype of vari-

10

The four second-order terms (13)-(16) are reduced to
three-dimensional integrals utilizing the formula [15]

1 n
l
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(23)
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1Q
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and its variations obtained by parametric differentiation.
The phases of the square roots of complex numbers are
determined by the requirement that the sign of the imagi-
nary part becomes consistent with that of the Green's
function.

The differential cross section in the center-of-mass
frame is calculated by [13]

10
-)

10 s-

-2
1Q s-

-3" 0.0
I I I I
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"'"' '(r+r i',k

4 P k 1 2 (26)

and it is converted to the laboratory frame when neces-
sary.

O„(mrad)

FIG. 1. The second-order Born differential cross sections in
the laboratory frame for p+H~H+p at u =10 a.u. (2.5 MeV,
upper three curves) and U =20 a.u. (10 MeV, lower three
curves). The solid, dotted, and dashed lines are for capture to
1s, 2s, and 2p, respectively.
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ous capture processes. No exact calculation of the
second-order Born terms has been executed for capture
to excited states before. Figure 1 shows the differential
cross sections in the laboratory frame at v =10 and 20
a.u. (corresponding to the collision energies of 2.5 and 10
MeV, respectively). While the shape of the differential
cross section for capture to 2s is very similar to that of 1s
at both energies, the differential cross section for capture
to the 2p state has a different shape. The difference be-
comes larger as the collision energy increases. The for-
ward peak decreases faster than the Thomas peak, which
is located at 0.47 mrad in the laboratory frame. At
v =20 a.u. , the peak value of 2p cross section at the Tho-
mas angle is comparable to the forward peak value.

~ p+(sI ) (JI )+I

Figure 2 gives the differential cross sections in the labo-
ratory frame at U =10 and 20 a.u. (2.5 and 10 MeV).
Though this process is analogous to the proton-hydrogen
collision, there exist some differences owing to the fact
that the mass of a muon is 207 times larger than that of
an electron. One is the shift of Thomas critical angle to a
larger angle of 0.1 rad and another is the smallness of the
capture cross section. The geometrical size of the atom
(pu ) is about +» of a hydrogen atom. This makes the
total cross section smaller by a factor of (+») . The ex-
tension of the angular distribution up to larger scattering

& p +(pp ) (p p )+p

Figure 3 gives the differential cross sections in the labo-
ratory frame at U =20 and 30 a.u. (1.13 and 2.55 MeV).
In this process two paths lead to the Thomas double
scattering at the same scattering angle of 48' and they in-
terfere analogously to the positronium formation from a
hydrogen atom,

e++ H —+ Ps+p, (27)

in which the critical angle is located at 45'. However,
scaling from the data of the positronium formation [10]
does not hold well. In the collisions of p++(pp ) and
e++ H, the kinematics is infIuenced directly by the mass
ratio M, /Mr owing to the asymmetry of the initial and
Anal channels. Two sharp dips were seen at U =20 a.u. in

angles diminishes the absolute value of the differential
cross section further. The cross sections approximately
obey scaling from the results of proton-hydrogen col-
lisions; the absolute value is reduced by a factor of ( —„', )

and the angular distribution is stretched by a factor of
207. The validity of the scaling is mainly due to the fact
that both p+H and p+(pp ) are symmetric for the in-

terchange of the projectile and the target nuclei. The
difference of the binding energies between (pe ) and

(pp, ) affects the kinematics only a little.
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FICi. 2. The second-order Born differential cross sections in
the laboratory frame for p+(pp )~(pp )+p at v =10 a.u.
(2.5 MeV, upper three curves) and v =20 a.u. (10 MeV, lower
three curves). The solid, dotted, and dashed lines are for cap-
ture to 1s, 2s, and 2p, respectively.

FIG. 3. The second-order Born differential cross sections in
the laboratory frame for p++(pp )~(p+p )+p at v =20 a.u.
(1.13 MeV, upper three curves) and v =30 a.u. (2.55 MeV, lower
three curves). The solid, dotted, and dashed lines are for cap-
ture to 1s, 2s, and 2p, respectively.
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the process (27), but, in the present process, we see no dip
in the figure at the same velocity. At v =30 a.u. , two dips
exist in the differential cross sections for the capture of 1s
and 2s while the cross section for 2p state has still no dip
there. As shown in Ref. [10], the dips are not caused by
the destructive interference of the two second-order
terms but rather by the interference between the first-
order terms and the real part of the second-order terms.
In fact, the dip angles, 26 and 39', do not coincide with
the Thomas angle of 48'.

D. e++(e+e )~(e+e )+e+

This process has a peculiarity that all the three parti-
cles have an equal mass. In this kind of process, the
quantal and the classical predictions of the Thomas pro-
cesses disagree. All the three Thomas processes (i)—(iii)
give the same critical angle of 180' but the two paths (ii)
and (iii) are forbidden in the classical mechanics. In the
first mechanism (i), the projectile positron makes a head-
on collision with the electron at first. The projectile stops
there because of the equality of the masses and the elec-
tron instead begins to run with the incident velocity of
the projectile. The electron makes a secondary head-on
collision with the target positron and stops there to make
a bound state with the projectile positron. These two
successive head-on collisions result in a backward scatter-
ing if it is seen in the center-of-mass frame. This process
is really possible, though the probability seems very
small. In the second mechanism (ii), the projectile posi-
tron makes a zero-angle scattering with the electron at
first, and in the second step it makes a head-on collision
with the target positron. In the third mechanism (iii), the
projectile positron makes a head-on collision with the tar-
get positron at first, and in the second step the ejected
target positron makes a zero-angle scattering with the
electron. The problem is the zero-angle scatterings in
these two paths. Zero-angle scatterings occur only at
infinite-impact-parameter encounters for Coulomb poten-
tials, and thus they are forbidden for electrons in a bound
state. On the other hand, all of the three paths are possi-
ble in the quantum mechanics, since they arise from the
singularity of the Green's function.

The term (16) can also contribute to the backscatter-
ing. This is a second-order correction of the first-order
knock-on process. When the masses of the projectile P
and the target T are equal, a single head-on collision be-
tween these two particles can also induce particle transfer
as a first-order process, as shown by Mapleton [16].

Figure 4 shows the differential cross sections at v =10
and 20 a.u. (1.36 and 5.44 keV). In this figure we use the
center-of-mass frame, which is more convenient to show
backscatterings. While a11 of the curves show the domi-
nance of the backscattering contribution, there is a
difference between the shapes of the cross sections of 1s
and of the excited states. The differential cross sections
for the excited states show a dip at 8=180', but that for
1s is smooth there. This is caused by the fact that the
first-order knock-on capture is not allowed if the initial
and final states have different quantum numbers. In the
first-order process, the electron does not participate in
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FIG. 4. The second-order Born differential cross sections in

the center-of-mass frame for e++(e+e )~(e+e )+e+ at
U =10 a.u. (1.36 keV, upper three curves) and U =20 a.u. (5.44
keV, lower three curves). The solid, dotted, and dashed lines

are for capture to 1s, 2s, and 2p, respectively.

the collision process directly. It continues to be in the
same state without perceiving the interchange of the
center of Coulomb force (positron in this case). The
nonzero values of the cross sections of 2s and 2p at
8=180' arise only from the second-order contribution.
Among the second-order terms, the term (13) gives a
much smaller contribution than the other two terms (14)
and (15) at variance with the classical prediction. The
term (16) gives the largest contribution.

We show the differential cross section of the first-order
Born approximation at v =10 a.u. in Fig. 5. The first-
order cross sections for the 1s and the 2s states have a dip
at 45'. This dip is caused by the mutual cancellation of
the two terms of the first-order T matrix element. p
states have three sublevels, and the sum over these sub-
levels smears out the dip. We see that the contribution of
the second-order terms is sizable in the angular range less
than 70.

Though the two positrons are identical particles, we
have not antisymmetrized the positron wave function in
the present treatment to show the backscatterings more
clearly. If the wave function is antisymmetrized proper-
ly, the transition amplitude for electron exchange be-
comes a linear combination of the direct-pickup part cal-
culated in the present study and its counterpart for the
interchange of the positrons, the latter of which corre-
sponds to elastic (or excitation for n =2 shell) scatterings
between a positron and a positronium. Since the position
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peak of the pickup backscatterings may be masked by the
sharper peak of the elastic forward scattering.
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FIG. 5. The first-order Born differential cross sections in the
center-of-mass frame for e +(e+e )~(e+e )+e+ at U =10
a.u. (1.36 keV). The solid, dotted, and dashed lines are for cap-
ture to 1s, 2s, and 2p, respectively.

vector between the atomic system and the ion is mea-
sured antiparallelly in these two amplitudes, the forward
part of the elastic-scattering amplitude is added to (or
subtracted from, depending on the spin symmetry) the

IV. SUMMARY

We have calculated the second-order Born cross sec-
tion for exotic-atom formation rigorously without a
recourse to any further approximation. The processes
can be classified into three types. The first type is analo-
gous to the ordinary electron-capture processes in ion-
atom collisions. Only one path is possible for the Tho-
mas double scattering. The second one is analogous to
positronium formation in positron-atom collisions. Two
different paths are contributing to the Thomas process,
and they interfere. The third one is the case in which all
three particles have equal masses. The two second-order
terms (ii) and (iii) that have no classical analogue are con-
tributing significantly to the backscatterings. Unfor-
tunately, no experimental data are available at present for
the processes studied in this paper. The authors hope
that the present results may help for planning a new ex-
periment on exotic-atom formations.
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