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Technique for the evaluation of double excitation of atoms by fast charged particles
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A technique for evaluating cross sections for two-electron excitation in collisions of atoms with fast

particles of charge Z~ is presented. The atomic wave function is approximated by a sum of pair products
of one-electron wave functions, with the coefficients chosen by diagonalizing the fully correlated two-

electron Hamiltonian. Thus spatial correlation is included in both the asymptotic and scattering regions

by using these configuration-interaction (CI) wave functions for initial, intermediate, and final states.
Use of CI wave function also allows the first-order contributions to be expressed in closed, analytical
form. Both the energy-conserving and energy-nonconserving parts of the second-order amplitude are
evaluated. The former (a correlated generalization of the independent-electron approximation) is analyt-

ical and the latter is a one-dimensional integral. In helium it is found that the double-excitation cross
sections are sensitive to the sign of the projectile charge, but that the energy region where this sensitivity

is of the same order as for double ionization is 0.1 to 0.5 MeV/amu, whereas the latter has peak charge
sensitivity at 1.5 MeV/amu. Comparison is made with some experimental results.

PACS number(s): 34.50.Fa

I. INTRODUCTION

Describing reactions involving more than one electron
requires information about the dynamics of few-electron
phenomena, i.e., information required to describe how
relatively complex many-body systems change. Since
cross sections for two-electron transitions involve corn-
paratively simple few-electron processes, various studies
of two-electron transition cross sections have been under-
taken [1—10, 12, 13]. In this paper we present a theoreti-
cal technique for calculating cross sections that is applic-
able to such multielectron processes, and thus may be
used to comprehensively probe the dynamics of mul-
tielectron effects at reduced computational cost. Here we
detail one method that has been used [1] to describe and
evaluate cross sections for two-electron transitions in
atoms which interact with fast bare projectiles of charge
Z . This method uses a Born expansion in the projectile
interaction strength Z and incorporates a11 terms in the
electron-electron interaction. The leading term in Z is
reduced to a closed analytic form. The second-order
term is expressed as a one-dimensional energy integral
over a product of two off-energy-shell first-order ampli-
tudes, and so on. The technique is illustrated here for
double excitation of helium.

%'ithin the last decade, observations of double ioniza-
tion in helium by protons [2], electrons [3], positrons [4],
and antiprotons [5] have led to various calculations and
interpretations [6]. In particular, the ratio of double —to
single-ionization cross sections for helium is larger by a
factor of 2 for positively charged projectiles than it is for

negatively charged projectiles in the energy region
around 1.5 MeV/amu. Pedersen and Folkmann [9] and
Fuelling et al. [10] have observed a difference of this or-
der for excitation-ionization of helium by proton and
electron projectiles at 1 to 4 MeV/amu. Also, a non-Z
dependence of the double excitation of helium has been
reported by Pedersen and Hvelplund [11] and by Giese
et al. [13]. The charge sensitivity of atomic scattering
cross sections has been a useful probe of the underlying
physics since the observations in 1956 by Barkas, Birn-
baum, and Smith [14] of Z effects in single ionization
and excitation by positive and negative pion projectiles.

The first calculations of two-electron transition cross
sections were done by Reading and Ford [7] using the
forced impulse method (FIM), in which the system in-

teracts in a series of sudden impulses with the projectile,
evolving with a fully correlated propagator between im-
pulses. A second-order FIM calculation, as used by
Reading and Ford, is similar to our method, although
different expansions for correlated electronic wave func-
tions may be used. More recently, a variety of authors
have used close-coupling calculations [15—17] to evaluate
cross sections for double excitation. Here different num-
bers of iterations in the projectile interaction may be used
and correlated wave functions may be employed. Recent-
ly, Ishihara [18] has used the technique of many-body
perturbation theory (MBPT) to evaluate cross sections.
The MBPT approach truncates expansions in both the
projectile interaction and the electron correlation interac-
tion. Bachau et al. [19] have developed calculations
through first order in Z and all orders in the correlation
interaction. Both calculations of Ishihara and Bachau
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et al. include interference of the double-excitation reso-
nance with the single-ionization background which is
omitted in the other calculations of double excitation.

II. FIRST-ORDER TERM

The probability amplitude for transition from an initial
state ~i ) to a final state (f ~

may be written as [8,12]

ef= f Texp —if V(tide i),
where T is the time-ordering operator [20], and V is the
interaction between the projectile and the j electrons in
the atom, namely,

V(t)= pe ' V (t)e

approximate two-electron wave functions consisting of a
weighted product of one-electron wave functions, with
the coefficients chosen by diagonalizing the fully correlat-
ed two-electron Hamiltonian, facilitate the reduction of
amplitudes to the minimal number of dimensions requir-
ing numerical integration (0 and 1 for first- and second-
order amplitudes, respectively). This is because the
difficult electron-electron interaction integrals are
sequestered from (may be calculated in a separate com-
puter code from) the scattering amplitude integrals. The
contribution of these electron correlation terms is includ-
ed within the numerical weighting factors C„of the
one-electron pair-product terms in the configuration-
interaction (CI) wave functions. In the case of helium,
these are

with

Z Z
V (t)= — " +

iR(t) r— (3)
=0.09916' ls ) i ls ) —0. 1251' ls ) i2s )

—0.0230~2s~2s ) +0.0251 2p ) ~2p ) (6)

af',"=—i t e '
V, t+Vzt e 'i (5)

For the initial and final states, it is shown herein that

The second term in (3) is required to cancel the monopole
term in Z /~R(t) —r, ~

that would otherwise lead to a
divergent term in (9) as co goes to zero. Physically we
have paired each target electron with a proton in the tar-
get nucleus so that all long-range Coulomb phases (which
for neutral targets are entirely absent in our formulation)
are carried by the internuclear terms [21]. The Born ex-
pansion of the amplitude is then given by

a =a'. '+a"'+a' '+

where af;'=( f ~i ), which will be zero for the problems
under consideration. For helium, the first-order ampli-
tude is

and (for the 2s 'S final state)

=0.8796(2s i(2s i+0.4756(2pi (2p i
. (7)

Here (nl~(nl'~ are coupled to a well-defined angular
momentum (e.g., 'S). In finding the CI wave functions,
one has the freedom to choose the effective charge on the
target nucleus. The choice Z,&=A, =1.76 minimized the
ground-state energy (1% error) and nearly minimizes the
excited-state energies. To avoid orthogonality problems,
this value was used for both the initial and final states.
The wave functions for the 2p 'S', 2s2p 'P', and 2p 'D'
final states are given in Appendix A.

Use of (6) and (7) gives for the fully correlated two-
electron amplitude (5)

a''~, ~(co)= i [2C,C, —, A2, &, (u)(2sA, '~lsA )+ 2C 2C&,z, [Az, &, (co)(2s)I.' 2sk)+ A z, z, (co)(2sA, '~ls)I)]

+2C 2C ~ A 2,"2,(co)(2sl, '~2sA, )+—,
'C 2C 2[ A ~)o 2)0(co)(2pA, '~2pA, )+2A ~„2„(co)(2pA,'~2pA, ) ]J x

(8)

consisting of a weighted sum of pair products of one-
electron scattering amplitudes,

Zp

[R(t)—r/

Z
+ ' nlmX

R

and (angular plus radial) overlap integrals
( n 'l'm 'A, '~ nlm A, ) . The parameters A, =Z, /ao and
A, '=Z,'/ao allow for a change in screening between initial
and final states, respectively.

Without correlation (if only C„&,%0) the first-order
term is zero, which implies that there would be no quan-
tum interference leading to a Z dependence in the cross
section. The transition amplitudes to the other three final
states are given in Appendix A.

For a straight-line projectile trajectory, a typical one-
electron transition amplitude is [22]
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A (co)= dt e' ' d r u"*(r)00 Zp
2$, 1s ~R(t) —

r~

Z
+ u„(r)

—Z, v'u, 'B
K~(BA), (lo)

Vp A

where A =[(colu) +(3A, I2) ]', A, =Z, /ao, co=Ef E;,—
v is the projectile velocity, B is the impact parameter,
and Ez is a modified Bessel function of the second kind.
The full set of one-electron transition amplitudes of the
n =1,2 manifold is given in Appendix B. Straton has de-
rived [23] an analytic form for the general one-electron
state-to-state transition amplitude (9). Thus the first-
order amplitude for double excitation (multiple excitation

for many-electron atoms) may be given in closed analytic
form to arbitrary precision simply by adding in more CI
ter~s.

For final states such as double ionization, satisfying
three-body Coulomb boundary conditions, one may use
one-electron pseudostates [24] instead of the hydrogenic
states and, again, introduce the electronic correlation in
the CI weighting coefficients. Because one-electron pseu-
dostates have the same analytic form as hydrogenic orbit-
als, application of comprehensive reduction techniques
[23] will again yield an analytic first-order amplitude to
arbitrary precision. One may instead use Coulomb-wave
states written as a one-dimensional integral of an imagi-
nary exponential that may also be integrated using
Straton's technique [25], yielding amplitudes of the
present form, but integrated over an additional dimension
for each such state.

III. SECOND-ORDER TERM

The second-order amplitude is

af;'=( —i) f dt f dt' & f~e' ' [V,—(t)+ Vz(t)]e
' ' [V,(t')+ Vz(t')]e

' '
~i ),

where T is the time-ordering operator. If one were to neglect all correlations and set T:1, then (11—) would reduce to
the independent-electron approximation [26].

The asymptotic states are correlated because of (6) and (7), and one may likewise put correlation into the scattering
region (scattering propagator) by inserting a complete set of correlated (CI) intermediate states:

&n/= g C'„. &v, f&v, f
.

V), Vp

(12)

Even with this propagator, (11) is still not in a form that will allow integrations akin to (9). But if the time-ordered
intermediate-state propagator is replaced by its integral representation [27],

—tE„(r —r'), —iE„(i—f')—e " =8(t t')e—
2

—i Q(f —t')
dQ

2m — 0—E„+ig

dQe ' " '' 5(Q E)+ P——
2 " 2m. 0—E„

(13)

this casts all time dependence into the 0 exponential, giving time integrals of the same form as for the first-order ampli-
tude. Thus the exact second-order amplitude may be reduced to
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fl Jn p$ py
(2)—

pl, p2 a), a~

2

Vl 2

+g g 0p „0 A p „(Ef E„—)A, (E„E,)—
V

1

v2

(14)+ ggp „C ~ Ap, (Ef Q)A—,~ (Q E,)—.

V2 V
1

~he~e, „extends over the bound and continuum intermediate states and A p (E) is the one-electron transition matrix
element (9). Here terms quadratic in V, or Vz are omitted because they correspond to third- or (higher-) order ampli-
tudes in the sense that they go to zero when the electron-electron interaction is removed. That is, we retain only the
V~ Vz and Vz V& contributions in (11). The amplitudes for all four final states are given explicitly in Appendix C.

The closure approximation may be used at this point to remove the infinite sum over intermediate states. This is
done by approximating E„ for each of the intermediate states ~n ) by a common average energy E Then t.he propaga-
to«ver intermediate states, i.e., (13), becomes independent of n and one may apply the closure relation y„~n ) ( n

~
=1

when substituting (12) and (13) into (11). The second-order amplitude using the closure approximation then becomes

f;'= QCpp g C
P) P2

2

[Ap ~ (Ef E)Ap ~ (—E E()+Ap —(Ef E)Ap (—E E,)]—
AP a Ef —0 AP Q —E,.

+Ap ~ (Ef —Q)Ap (fI —E,. )] (15)

This closure approximation avoids the infinite sum
over intermediate states, ~n ). We note the principal-
value part of (15) may be shown algebraically to be zero
at E =(E; +Ef )/2 for A, =A, '.

The first group of terms in the exact second-order am-
plitude of (14) are known analytical functions. The
second group consists of a principle-value integral of the
first group. This principal-value term is nonzero when
the energy variable Q differs from the energy E„of the
intermediate state, corresponding to energy nonconserv-
ing contributions about E„. If these principal-value con-
tributions are ignored one obtains the results of Stotler-
foht [28] where the imaginary terms are not present. As
with second-order calculations of the Thomas peak [29]
the real and imaginary parts of the present second-order
amplitude obey a dispersion relation. It is possible that
the principle-value integral may be evaluated analytically
using Hilbert transforms [30] of Meijer s generalized hy-
per geometric functions. In any case, that one may
reduce the second-order amplitude to an analytic part

cr( —
)
—a (+ ) =4C,zZ (18)

Thus, any Z contribution to the experimentally mea-

plus a one-dimension integral shows the utility of CI
wave functions and of the integrodi8'erential transform
developed to evaluate the one-electron amplitudes in gen-
eral [23].

The exact transition amplitude through second order
may thus be expressed [1]as

a = —i(c, —czZ )Z„—czZ

where c, is the first-order contribution, c2 is the
principal-value second-order contribution from (14), and
cz is the real part of the second-order contribution of
(14). Hence, the cross section is

~=I ~a~'d'a=C'Z' 2C Z'+C'Z'+—C'Z'.
1 p 12 p 2 p 2 p

Then the difference of cross sections for excitation by
protons and antiprotons is
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sured cross section is evidence of both time ordering ( C2 )

and its consequent energy nonconserving contributions,
and spatial correlation (C, ).

IV. RESULTS

The second-order amplitude (15) for double excitation
of helium was evaluated in the closure approximation. It
is conventional [31] to choose the "average energy" E at
the ionization threshold. In the present case there are
two such thresholds at 24.5876 and 79.0059 eV above the
helium ground state. We choose our "average energy" to
be midway between these two at 51.7965 eV above the
helium ground state. This choice has an advantage of ly-
ing well below the series of doubly excited states begin-
ning at 57.87 eV above the ground state. As E was varied
from 20.616 to 79.0059 eV our cross sections generally
varied by less than about 10%%uo, except, of course, at
E =Ef where resonances occur in (15) and cross sections
increase by up to a factor of 5. The choice of E
=51.7965 eV used for the cross sections presented in this
paper is further supported by noting that singly ionized
states within this energy region play a major role in the
experimental observations [13] so their contributions to
intermediate states are well established. Even with the
closure approximation, our present results go two steps
beyond an independent-electron approximation through
the inclusion of correlation and time ordering.

Figure 1 shows the present results plotted for proton
and antiproton impact excitation of helium into the
2p 'D' final state as a function of projectile energy. Also
shown is the experimental measurement of Giese et al.
[13] and the close-coupling calculations of Fritsch and
Lin [15) for protons and electrons at 1.5 MeV/amu.
Even though the first- and second-order (or IEA) cross
sections are of equivalent magnitude over the entire ener-

IOO v

gy range from 0.1 to 2 MeV/amu, the interference be-
tween the two is only of order 10%%uo, as seen by the p —p
differences. In contrast, the close-coupling calculation
[15] gave a difference of a factor of 2 between cross sec-
tions for protons and antiprotons. The error bars on the
experimental data are large enough that one can draw no
conclusions in support of either prediction. As for the
magnitude of the results, the present calculation lies just
below the data and lies higher than the result of Fritsch
and Lin by a factor of 2 (3) for protons (antiprotons).

Figure 2 shows the cross sections for excitation into
the 2s2p 'P' final state. In addition to the data displayed
in Fig. 1, Fig. 2 includes the experimental result of Peder-
sen and Hvelplund [11] at 1.84 MeV/amu. Although
these data are the sum of their 2s2p 'P' and 2p 'D' cross
sections, comparison with the present calculation is ap-
propriate since the cross section for the latter final state is

negligible compared to the former in the present theory.
Again, the charge-sign effects in the experiments are
masked by the error bars. In this case both the present
calculation and that of Fritsch and Lin give a p —p
difference of only order 10% at 1.5 MeV/amu. However,
in the projectile impact energy region from 0.1 to 0.5
MeV/amu the present results give factor of 2 differences.
This also holds true for excitation into the 2p 'S' final
state (not shown).

The present cross section for 2s2p 'I" excitation lies
higher than the calculation of Fritsch and Lin, which is
larger than the experimental result of Giese et al. In
Fig. 2 it is clear that the present cross section is almost
exclusively first order near 1.5 MeV/amu. Fritsch and
Lin note that their result is also dominated by the first-
order matrix element [see their Eq. (7)]. Thus it is some-
what surprising that these two first-order calculations
disagree and that they disagree with the data. For heli-

um, disagreement with experiment may be because of in-
terference of the doubly excited state that we evaluate
with the single-ionization background that we do not in-

clude at this stage of our calculation. Also, since the
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FIG. 1. Excitation of helium into the 2p 'D' final state. The
solid curve is the second-order theory for proton impact and the
dash-dotted curve is for antiprotons. The dashed curve is the
independent-electron approximation and the dotted curve is the
first-order result. The data points for proton and electron im-
pact are from Giese et a!. (Ref. [13])and the other two points at
1.5 MeV/amu are the close-coupling calculation of Fritsch and
Lin (Ref. [15]).
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FIG. 2. Excitation of helium into the 2s2p 'P' final state.
The curves are as in Fig. 1 with the addition of the observation
of the sum of excitations into the 2p 'D' and 2s2p 'P' states at
1.84 MeV/amu by Pedersen and Hvelplund (Ref. [11]).
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FIG. 3. Excitation of helium into the 2s 'S' final state. The
curves are as in Fig. 1. Winter's calculation (Ref. [17]) (not
shown) lies slightly above the data at 1.5 MeV.

present first-order calculation is "exact" only to the de-
gree that the initial and final wave functions accurately
represent the helium atom, truncation of the series (6)
and (7) is a possible source of error.

Alternatively, our result may lie higher because in us-

ing Z,z= 1.76 as the effective charge for the doubly excit-
ed states (to keep the initial and final states orthogonal),
we have included some portion of the continuum. The
exact eigenstates of the Hamiltonian can be constructed
as a linear combination of doubly excited states and the
continuum states, in which the former are embedded. To
calculate the wave function of the doubly excited part,
one needs to project this Hamiltonian onto the bound
states [32]. A general practice [33] is to use a basis set
constructed of two one-electron eigenstates excluding all
the states with one-electron energies below the doubly ex-
cited states. In our case, we could simply use Z,z =2 and
choose the basis set jn, I„nzl~LM ) such that nt, n2 & l.
Either case indicates that experimental determinations of
the 2s2p 'P' excitation cross sections may provide a sen-
sitive measure of the quality of approximate two-electron
wave functions.

Figure 3 shows the cross section for excitation into the
2s 'S' final state. In this case the independent-electron

approximation, which contains only the 1s term in the
initial-state wave function, and thus is uncorrelated, and
contains no time-ordering effects, best represents the

data. This is likely to be a fortuitous canceling of effects.
The result of Winter [17], who uses some continuum in-

termediate contributions, lies close to the observed results
[13].

V. CONCLUSION
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APPENDIX A

The CI wave function used for the 2p 'S' final state 1s

(2p 'S'j =0.8796(2pj(2pi —0.4756(2sj(2sj,

for the 2s2p 'P' final state is

(2s2p P'I =I 0(2s l(2pl

and for the 2p 'D' final state is

(A 1)

(A2)

&2p' D'I = 1.0&2p l&2pl . (A3)

The first-order amplitude for excitation into the 2p 'S'
final state is identical to that for the 2s 'S' except for the
interchange of CI coefficients. The first-order amplitude
for excitation into the 2s2p 'P' final states is

%e have presented a technique for evaluating cross
sections for double excitation of atoms by fast particles of
charge Z . The amplitude first order in Z has been
given in analytic form and may be made as exact as
desired. The second-order amplitude contains an analyt-
ic energy-conserving term (correlated generalization of
the IEA) and an energy-nonconserving (time-ordered)
term that interferes with the first-order term. The
energy-nonconserving term in the second-order ampli-
tude is given by a one-dimensional integral over inter-
mediate energies. This method may by applied to
ionization-excitation and double ionization if appropriate
pseudostates are used to describe continuum wave func-
tions. This technique significantly reduces the computer
costs of multielectron calculations. In actual calculations
for double excitation of helium, ignoring background
continuum states, differences in the cross sections for im-

pact excitation by protons versus antiprotons have been
found to be of order 10% at 1.5 MeV/amu.

a "„,2(co)= i C, 22
——C, 2Az„„(ar)(2si, '~isA, )+ —C 2Az„2, (co)(2sA, '~2sA, )

+C),2, [A2„„(co)(2sk,'j2sA, )+ A2„2,(co)(2sA.'jlsi, ) ]

+ —C 2 A 2, ~, , ( co ) ( 2p i, '
j 2p A, ) (A4)

for the m =1 sublevel and
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—C„A"o, ,(~)(»~'l»~&+ —C, A,",„,(~)(2sz'I2sg)

+C, , [A,"o,( )&2 &'I2 &&+A,","„,( )&2 a'll Z&]

+ —C, 2( —I)A 2', ", »0(~) & 2pl2p & (A5)

for the m =2 sublevel,

x (2px'I2pA, ) (A6)

ct2 21D, ~ » 2(cv)=i,— C2 2C2 2A211210(cv)

x &2pk'I2pA, &

for the m =1 sublevel, and

. 2v2—
2 ''D'~=01'( 3 2p 2p

(A7)

I. 211,211(~) A 210,210(~)1

x (2pA, 'I2pA. & (A8)

for the m =0 sublevel. For the m = —1 sublevel, the am-
plitude is the negative of (A7). For the m = —2 sublevel,
the amplitude equals (A6).

APPENDIX B

The general one-electron state-to-state transition am-
plitude has been given by Straton [23] in closed analytic
form. To accomplish this, Straton developed [34] an
integrodifferential transform to replace the Fourier trans-
form, because the latter becomes extremely awkward for
integrating excited states since it results in a "final" ex-
pression containing derivatives of parameters rather than

For the m = —1 sublevel, the amplitude is the negative of
(A4).

The first-order amplitude for excitation into the
2p 'D' final state is

21D I—2 1
2(~) 1

2 2C2 2 A 211,21 —1(~

16(A,'A, )'"Z,Z,
( )—

P 11Up

K11(BA„)—
2

K1(BA 11 ) . (B1)
11

The one-electron transition I n ', n }
=

I 1,2} mixed mani-
fold amplitudes are

simple analytic functions. However, in individual cases
these derivatives may be evaluated to obtain analytic
functions. This was done for each of the following ampli-
tudes to verify their accuracy.

The amplitudes for transitions from the ground state
into the n =2 and 3 for Z, =1 were first calculated by
Van Den Bos and De Heer [22] and then Hopkins,
Brenn, and Whittemore [35] scaled those results for
higher values of the target charge Z, . McAbee [36] cal-
culated the 2p~ls transition amplitude in a case where
there is a change of screening between initial and final
states. McGuire et aI [37] f.ound the 2p~2s amplitudes.

The following amplitudes are for completely general
charges, allowing for a change of screening between ini-
tial and final states, through the initial- and final-state pa-
rameters A. =z, /a0 and 71,'=Z,'/ct0, respectively. As not-
ed by Straton [23], the amplitudes calculated by Van Den
Bos and De Heer [22] contain an error in phase, arising
from their use of the erroneous phase in the momentum-
space hydrogenic wave function derived by Podolsky
and Pauling [38]. The phase is given correctly in the
following. In all expressions A„„=(a +y„„)'
y„„=A,'/n'+A, /n, a=co/v~, cv=Ef E, , v is—the pro-
jectile velocity, 8 is the impact parameter, and E is a
modified Bessel function of the second kind.

The one-electron transition n = 1 amplitude is

A 2~, „(cv ) = A 1, 2, [21 ~ 12 }( cv )

2~2(A. 'A, }3/2ZPZ, , 2
(A,

' —
A, ) —K0(BA2, )+ K, (BA2, )

(B2)

A 210, 1s(~) A 1s,210[21~12}(co)

&Z 8X'"X'"Z,Z, 4g2
a ~ K0(Ba) 1+ K0(BA—2, )—

5U
21

2 4g+ K, (BA, ) . ,
2221 4g 21

(B3)
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and

A2]] ]$(0])=—A2] ] ],(0])A'A = A'A

= A ], 2], {21~12j(~)
A 1 21 1 {21~12j(0])

sx'"x'"z zp e

5
721Up

4 2
X21B r21B2

aK, (Ba}— A2, + K](BA2] ) — K]](BA2] )
8A21 2

(B4)

The one-electron transition {n',n j
= {2,2j manifold amplitudes are, where A = A22»d y=y22

(A, 'A, ) ~2Z Z, , g g»82 82 4

2,', 2, (m) =
6

p '- — 2(3A')y], 2—y3)+
4 +(3A'Ay 4—y3)

2 Eo(BA22)
Up

r

B(3g'g —2 ) + + +(3g'g —4 ) K (BA }y y
A 4 A' A' y r 2A' 1 22 (B5)

A 210,2 (~) A2, 2]0(~)
A'A = AA'

Zp Z=i a 2(A.
' —4A, )K0(8a )—

r'U,
A, 6B2

E(BA )
4B2

(A, 4~) 2+y
4A

~y 8B BB 2 4B
4~) y +y

2A' K, (BA22) ~,

A 2i],2.(0])= A 21 —],2*(0]}
A'A

A 2,211(~)

B2 4 gB2 6
(A,

' —4A) 2A + —
3 E](8A 22 )

A2., 2] —](0]}
5/2g3/2Z Z gB3 6

2(A,
' —4A, )aE (Ba)— (k' —4A, )y 8 — E (BA )6f Up

1 4A2 0 22

(B6)

p 14 2 38 y +3yB +yB(A, 'A, ) Z Z 2 4 6 2 ]] 2

210210 7 V 2 4A2 A4Up

—12 A K]](8A 22 )

A 2]],2]]() A 21 —1,21 —1(~)

68y2A E (BA ) .
A 4A 2A A' 4A

(B8)

r'
' —[—4y + —,'y 8 +6A ]K0(BA22)— 3y AB — + K, (BA22)

and, since the following depend only on the product A, 'A, ,

A 211,210(~} A 21 —1,210(~}
A'A = A'A

(B9)

A 210,21 —1(~}

3~2(A.'A. )5/2ZpZ,
I

7
Up

6B3 p4B2 6B2Xa 2{a{K](Ba)— y 8+ K (BA ) — 2A+ + K (BA )
24 A

(B10)
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and

A 211,21 —l(~) A 21 —1,211()VA,

3(A, 'A, ) Z~Z, 2 r4B2
2a aK0(Ba)+ —Kl(Ba) — 2A + Kll(BA22)

Vp

6g 34A+ 2AB+ r B K (BA ) (B11)

The relations

A„.i. ~ „1 (coB)=(—1) + A„i" „1 (coB)

1)m'+m[ A
k'2.

( B )]» [ A lj.iL'
( B )]»

have been used to find the amplitudes with permuted parameters. In (9) we have set Z, = —1.

(812)

APPENDIX C

The real parts of the second-order amplitudes are

«[g 121
]
— C C A lj.'2, (~ ) A

k'k
( )

+ 2s2 ls2s 2s, ls(1) A 2s2s(~2)+ C„2C„2A Zs2s(011) A 2s'2s(0l2)

C 2C2s 2p+ [ A 2s211(~1)A 2s211(2) A 2s210 ~l 2s210(2)]

C 2C2p' 1s+ [ 2A 211,1s(1)A 211,1s(~2) A 210, 1s(1)A 210, 1s(2)]

C 2C &2
2.'2. VA A.'A,+ [ A 211,1s 1) 211,2s(2 A 210, 1s(1 A 210,2s(2)]

C 2C
2p 2s VA A'A+ ~ [ A 211,2s(~l ) A 211,2s(~2) A 210,2s(~l ) A 210,2s(2)]

2
A, 'A, A, 'A,+

3 [ 211,211(~1)A211,211(2 + A 211,210(1)A 211,210(2)

2A 211,21 —1(~1) 211,21 —1(~2)+ A 210,210(~1) 210,210(~2)]A. 'jlL

«[&„21,.„2]=—C2 2P 2 Cl A2, 1 (~1)A211,1 (~2)+ [A2, 1 (~1)A2112 (~2)+A2, 2 (~1)A211,1(2)]
ls2s 2. 2 22 ieA, A, 'A.

s2 A 2s, 2s(~l ) A 211,2s(~2

C
A, 'A, A'A+ ~ [ 2s, 211(~1)A211,211(~2) A 2s, 210(~1)A 211,210(~2)

2s, 211(~1)A 211,21 —1(~2)1
A, 'I, (C2)
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«[az, 2,0. igz ]= Cz, zp 2 C, sz A zs is(rpi) A 210 ls(&2)+ — [ A 2s ls(&1)A 210 zs(rpz)+ A zs zs(roi) A zip is(F02)]

A, 'A,+ zsz A zs, zs(1) zip, zg(~2)

C
zp A, 'z. A, 'A. iL'A,

A 2s 211 {~1)A 211,210(~2 2s, 210 ~1)A 210 210 ~2)

A zs, zl 1 (1) A 211,210(2) )
A. 'jig {C3)

«[a, »D. M 2 „2)=—C, 2 C„zAZIi, i.(~i)AZ», i.(rPZ)

+ ls2s 211,ls(1)A zll, zs(2) zsZ 211,2s(~l) 211 zsg'~(~2)
A, 'A,

C
zp i'A.+ [ A 211,21 —1(~1)A 211,211(2) A 211,210 1)A 211,210(2)) (C4)

Re[az '2iD, M 11 2]=—C 2 2 C, Azii „(co,)A2101,(coz)

is 2s A, 'A, A. 'A,+ [ A zl1, ls(~l)A 210,2s(~2)+ zll, zs(~l) 210, ls(~2))

jlL'A,+Czsz 211,2s {1) A 210,2s {0 2)

C
zp 2, 'Z. A'A A.'A,+ [ A 211,21 —1(1) 211,210{2) A 211,210{1 A 210,210{~2)

A, 'jlLA 211,211 ~1 211,210(~2)) (C5)

and

C ,&Z
Re[azP2&zi M 01 2] — Ci [ Azii 1,(col)A2111,(012)+Azip 1 (rpi)Azip 1 (aiz)](2) 2p jl.'2, 2, 'A, A, 'A. ill, 'A,

+ 2 Is2s [ A zl1, ls(~l ) zll, zs(2)+ A 210, 1s(~l) zip, zs(2)]

+Czsz[ A zll, zs(rpl A 211,2s rpz + 210,2s 1 210,2s ~2
A'A, VA, iL'A, X'A,

C
z.'z. A, 'i+ [ A 211,21 —1(~1)A 211,21 —1(2 A 211,210(~2) 211,210(2)

A, 'A, jE'A, A, 'A,
A 210,210(~1 210,210(~2)+ A 211,211(~1) 211,211(~2)) (C6)

For the M = —1 sublevel, the amplitudes are the negatives of (C2) and (C5). For the M = —2 sublevel, the amplitude
equals (C4). The amplitude for 2p '8' is given by {Cl),but with the CI coefficients interchanged as in (7) vs (Al).

The imaginary parts of the amplitudes are given by

Itn[a' '(Ef,E„E;)]= Pf — Re[a' 'Ef, Q, E;)] . (C7)

[1]J. H. McGuire and Jack C. Straton, Phys. Rev. A 43, 5184
(1991).

[2] J. Puckett and D. W. Martin, Phys. Rev. A 1, 1432 {1970);
H. Knudsen, L. H. Andersen, P. Hvelplund, G. Astner, H.
Cederquist, H. Danared, L. Liljeby, and K. G. Reasfelt, J.

Phys. B 17, 3545 (1984); M. B. Shah and H. B. Gilbody,
ibid. 18, 899 (1985).

[3] B. Adamczyk, A. J. Boerboom, B. L. Schram, and J. Ki-
temaler, J. Chem. Phys. 44, 4640 (1966); B. L. Schram, A.
J. Boerboom, and J. Kitemaler, Physica 32, 185 (1966); P.



5524 JACK C. STRATON, J. H. McGUIRE, AND ZHENG CHEN

Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249
(1980); K. Stephan, H. Helm, and T. D. Mark, J. Chem.
Phys. 73, 3763 (1980).

[4] M. Charlton, L. H. Andersen, L. Brun-Nielsen, B. I.
Deutch, P. Hvelplund, F. M. Jacobsen, H. Knudsen, G.
Lariccha, M. R. Paulsen, and J. O. Pedersen, J. Phys. B
21, L545 (1988).

[5) L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Moiler,
J. O. P. Pedersen, E. Uggerhoj, M. Elsner, and E. Moren-
zoni, Phys. Rev. Lett. 62, 1731 (1989); L. H. Andersen, P.
Hvelplund, H. Knudsen, S. P. Moiler, A. H. Sorensen, K.
Elsner, K. G. Rensfeld and E. Uggerhoj, Phys. Rev. 36,
3612 (1987).

[6] J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982); R. L.
Becker (private communication); J. H. McGuire and J.
Burgdorfer, Phys. Rev. A 36, 4089 (1987); L. Vegh, ibid.
37, 992 (1988);R. E. Olson, ibid. 36, 1519 (1987).

[7] J. F. Reading and A. L. Ford, Phys. Rev. Lett. 58, 543
(1987); J. Phys. B 20, 3747 (1987); A. L. Ford and J. F.
Reading, J. Phys. B 21, L685 (1988).

[8] J. H. McGuire, Adv. At. Mol. Opt. Phys. 29, 217 (1991).
[9]J. O. P. Pedersen and F. Folkmann, J. Phys. B 23, 441

(1990).
[10]S. Fiilling, R. Bruch, E. A. Rauscher, P. A. Neill, E.

Trabert, P. H. Heckmann, and J. H. McGuire, Phys. Rev.
Lett. 68, 3152 (1992).

[11]J. O. P. Pedersen and P. Hvelplund, Phys. Rev. Lett. 62,
2373 (1989).

[12]J. H. McGuire, Phys. Rev. A 36, 1114(1987).
[13]J. P. Giese, M. Shultz, J. K. Swensen, H. Schoene, M.

Beahenn, S. L. Varghese, C. R. Vane, P. F. Dittner, S. M.
Shafroth, and S. Datz, Phys. Rev. A 42, 1231 (1990).

[14] W. H. Barkas, W. Birnbaum, and F. H. Smith, Phys. Rev.
101, 778 (1956).

[15]W. Fritsch and C. D. Lin, Phys. Rev. A 41, 4776 (1990).
[16]M. Matsuzawa (private communication).
[17]T. G. Winter, Phys. Rev. A 43, 4727 (1991), and (private

communication).
[18]T. Ishihara (private communication).
[19]H. Bachau, M. Barhi, F. Martin, and A. Salin, J. Phys. B

24, 2015 (1991).
[20] C. J. Joachain, Quantum Collision Theory (North-Holland,

New York, 1983), Sec. 13.4; M. L. Goldberger and K. M.
Watson, Collision Theory, (Wiley, New York, 1964), p. 49.

[21]J. H. McGuire and O. L. Weaver, Phys. Rev. A 34, 2473
(1986).

[22] J. Van Den Bos and F. J. DeHeer, Physica 34, 333 (1967).
[23] J. C. Straton, Phys. Rev. A 43, 1381 (1991).

[24] R. Damburg and E. Karule, Proc. Phys. Soc. 90, 637
(1967); P. G. Burke, D. F. Gallaher, and S. Geltman, J.
Phys. 8 2, 1142 (1969); K. L. Bell and A. E. Kingston, J.
Phys. B 4, 162 (1971); P. G. Burke and J. F. B. Mitchell,
ibid. 7, 665 (1974); W. C. Fon, K. A. Berrington, P. G.
Burke, and A. E. Kingston, ibid. 14, 1041 (1981); W. L.
van Wyngaarden and H. R. J. Walters, ibid. 19, 929
(1986); C. K. Au and R. J. Drachman, Phys. Rev. A 37,
1115 (1988); A. K. Bhatia and R. J. Drachman (unpub-
lished) ~

[25] J. C. Straton, Phys. Rev. A 42, 307 (1990).
[26] M. Gryzinski, Phys. Rev. 138, A336 (1965); J. H. Hans-

teen and O. P. Mosebekk, Phys. Rev. Lett. 29, 1961 (1972);
J. H. McGuire and O. L. Weaver, Phys. Rev. A 16, 41
(1977); J. F. Reading and A. L. Ford, ibid. 21, 124 (1980);
A. L. Ford, J. F. Reading, and R. L. Becker, J. Phys. B 12,
2905 (1979); R. L. Becker, A. L. Ford, and J. F. Reading,
ibid. 13, 4059 (1980); R. L. Becker, A. L. Ford, and J. F.
Reading, Phys. Rev. A 23, 510 (1981); V. A. Sidorovitch,
V. S. Nikolaev, and J. H. McGuire, ibid. 31, 2193 (1985);
V. A. Sidorovitch and V. S. Nikolaev, J. Phys. B 16, 3743
(1983);V. A. Sidorovitch, ibid. 14, 4085 (1981).

[27] J. M. Ziman, Elements of Advanced Quantum Theory
(Cambridge University Press, New York, 1969), pp. 81 and
109.

[28] N. Stolterfoht, Phys. Scr. 42, 192 (1990), and (private com-
munication).

[29] J. H. McGuire and O. L. Weaver, J. Phys. B 17, L583
{1984).

[30] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tri-
comi, Table of Integral Transforms (McGraw-Hill, New
York, 1954), Chap. XV.

[31]Reviewed in H. M. Hartley and H. R. J. Walters, J. Phys.
B 20, 1983 (1987)~

[32] The projection operator is of the form P =P
~
+P2 P, P&, —

where I'
&

is the one-electron projection operator
P, =g~nlm ) (nlm~, with ~nlm ) the eigenfunction of the
one-electron Hamiltonian T—2/r.

[33] L. Lipsky, R. Anaia, and M. J. Conneely, At. Data Nucl.
Data Tables 20, 127 (1977); T. F. O' Malley and S. Gelt-
man, Phys. Rev. A 137, 1344 (1965).

[34] J. C. Straton, Phys. Rev. A 41, 71 (1990).
[35] F. Hopkins, R. Brenn, and A. R. Whittemore, Phys. Rev.

A 13, 74 (1976).
[36] T. L. McAbee, Nucl. Instrum. Methods 214, 89 (1983).
[37]J. H. McGuire, D. J. Land, J. G. Brennan, and G. Basbas,

Phys. Rev. A 19, 2180 (1979).
[38] B.Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).


