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Semiclassical energy levels and the corresponding potentials in nonhydrogenic ions
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A semiclassical expression is derived for the potential seen by an nl-shell electron in a nonhydrogenic
ion. Corresponding energies E„Iare compared with experimental values and with results of self-
consistent-field calculations.
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I. INTRODUCTION

This work is intended to contribute to the semiclassical
modeling of complex ions, in particular in the context of
plasma-physics calculations. Though energy levels and
wave functions of ions with many electrons can be ob-
tained with high accuracy from self-consistent-field calcu-
lations, the semiclassical description is still very impor-
tant since it allows one to calculate these quantities much
faster and is more flexible when one wants to include per-
turbing effects of the neighborhood, such as in dense plas-
ma environments. The ultimate goal is to compute plas-
ma equation-of-state data and radiation coe5cients accu-
rately and fast enough for on-line use in radiation-
hydrodynarnics calculations. The potential of the semi-
classical theory for this ambitious goal is far from being
fully developed.

The screened hydrogenic model (SHM), first intro-
duced by Slater [1] and recently improved by More [2],
allows for a rapid determination of energy levels in arbi-
trary ions; however, within the hydrogenic approxima-
tion, the energies are degenerate for major n shells. The
model has been found very useful for calculating
equations-of-state of hot dense matter and also for calcu-
lating radiation coefficients [2,3] when complemented by
the semiclassical expression for the oscillator strengths
between n shells. For heavier elements, the restriction to
hydrogenlike spectra becomes rather inaccurate, and the
model was extended by Perrot [4] to include l splitting of
the major n shells. It was studied in the extended form
for plasma opacity calculations by Rickert and Meyer-
ter-Vehn [5]. The SHM avoids dealing with wave func-
tions explicitly; however, this becomes a problem when
transitions between nl orbits are concerned.

The present work also builds up on the SHM, but
makes systematic use of semiclassical WKB wave func-
tions in addition. In this way, an analytic expression for
the potential seen by an electron in a particular nl orbit is
constructed in Sec. II and is used to determine energies
E„lvia the Bohr-Sommerfeld quantization condition. In
Sec. III, these energies are compared with experimental
energies and with other theoretical calculations for some
selected cases. In a companion paper [6], the energies are
used to compute dipole matrix elements, again making
use of VPKB wave functions with appropriate phase shifts
determined within the Coulomb approximation.

II. POTENTIAL EXPERIENCED
BY nl-SHELL ELECTRONS

P„i(r)= 2E„t+2 V(r)— (2)

Atomic units are used. The goal in this paper is to derive
an analytic expression for the potential V(r) in Eq. (2)
and then to solve Eq. (1) for E„i.This is achieved by a
process of successive approximation.

Let us consider an electron in a particular state nolo of
an ion with charge Z;,„andask for the potential V„&(r),

0 0
which this electron experiences in the field of the ionic
core made up by the nucleus with charge Z and the other
(Z —Z;,„—1) electrons. The corresponding electrostatic
potential

0 0 T T 0

4'f p"—'(r')dr'
I'

is obtained from the charge density

p
' '(r) = g N„,' 'p„,(r),

n, l

(3)

(4)

where N„l is the number of electrons in each nl she11,
n010

except for the shell nolo, in which the electron in ques-
tion is subtracted. The average density contribution
p„t(r)=R„&(r)/4mof each nl electron is c.onstructed from
the WKB radial wave functions [7]

A„l r
R (r) = cos P (r)dr ——

nl P ( )&y2 nl 4nl

which again contain P„I(r)given by Eq. (2). The scheme
of successive approximation, followed here, is to deter-
mine P„t(r)at this point on a more elementary basis, us-

Energies E„& of single-electron states with principal
quantum number n and orbital quantum number I can be
obtained in semiclassical approximation from the Bohr-
Sommerfeld quantization condition [7]

bf P„t(r)dr=a(n —l —
—,')

a

with the turning points a and b determined by
P„t(a)=P„t(b)=0 and the momentum
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ing the screened hydrogenic model (see, e.g., More [2] for
details) as a zero-order estimate. It assumes that the en-

ergies

TABLE I. Inner-shell energies of Ar+ in Ry. Present results
are compared with different versions of self-consistent-field cal-
culations [9].

E(o)=E =+W ——Q2
nl n n

2n
(6} State

are hydrogenlike with

QQ„=Z— g o(n, m)N„„S'„=g z
cr(m, n},

m ( n) m ( n)

1s
2$

2p
3$

3p

238.3
25.7
20.2

3.42
2.09

233.7
24.0
19.3
3.06
1.97

Hartree-Fock HFS-X [8]

229.4
22.6
17.8
2.58
1.53

This
calculation

239.4
24.4
20.5
3.91
2.83

noloN„=g&N„&'', and screening constants o(n, m); a good
set of screening coefficients was given by More [2] and is
used in the present work. The corresponding potential is
V' '(r)= —W„+Q„/r. With these zero-order expres-
sions E„'&' and V' '(r), we obtain

obtained by adding the exchange potential

taken here in the local-density form
1/3

(12)

P (0)—
nl

Q.' 2Q.

n

(I +—')
2

3 noEOV„'",(r)=a —p ''(r)
0 0 7T

(13)

The normalization constants A„i in Eq. (5) are obtained

by setting cos ( )=—,
' in the normalization integral [7]

and using the derivative of Eq. (1) with respect to n to
determine the remaining integral; this leads to

2 BE„
Bn

2Q„
n.n

(9)

Note that the terms r}W„/r}nand (r}Q2/r}n )/(2n ) cancel
each other. Averaging the shell densities p„&(r)by setting
again cos ( ) =—,', one obtains

Q2
p„,(.) = (~„,(r)'/(4~) &

=
4~'n'r'P„', (r)

' (10)

and, performing the integration in Eq. (3) after insertion
of Eqs. (10) and (4), an analytic expression for the electro-
static potential is obtained in the form

nolo

V„'
&

(r)= —Z ——g Q„&(r)
r 77 2

n, l

The results are not strongly dependent on the strength
parameter a, and a good overall fit to the data discussed
in the next section was obtained with a =0.5. This is less
than the value a = 1, which is commonly used [8],but one
should note that one part of the exchange interaction just
compensates for the self-interaction of the electrons and
that this self-interaction is already explicitly excluded in
the present model.

III. RESULTS AND COMPARISON

The potential of Eq. (12), inserted into Eq. (2), is now
used to calculate energies E„i,solving Eq. (1) by numeri-
cal integration and iteration; such a scheme is rapidly
converging. In Tables I-IV, we give some sample ener-
gies and compare with values taken from the literature.
In Table I, we compare present results with different ver-
sions of self-consistent-field calculations for inner-shell
energies of Ar+, taken from Ref. [9]; it is seen that the
general agreement is good and, in particular, that the de-
viations of the present results from the Hartree-Fock
(HF) results are not larger than the differences of the

with

em fOr e„l& —1

—nrP„&Io(r) +( Qr n)arcsin8„&(r)—

TABLE II. Inner-shell energies of Au' + including the rela-
tivistic correction of Eq. (14); the deviations are with respect to
relativistic HFS calculations of Yabe and Goel [10].

+—(Q„r+n ) for ~8„&~~1

rrg„r for 8„&& 1

and

Q„r8„,(r)= 1—
n

1/2
(I + 1/2)

n

The total potential, felt by an electron in the nolo orbit
and used in Eqs. (1) and (2) to calculate its energy E„&,is

0 0

State

1s,j =-,'

2$J=
2

3d'J 2

4$sJ 2
1

4d, j =—
4f,i =-,'

Energy (eV)

81 507

14 863

14462
4040.3
3831.3
3217.7
1397.6
1303.4
1112.6
889.1

Deviation (%)

0.35

1.75

0.68

3.4
2.4
4.5
5.7
4.8
3.3
8.7
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TABLE III. Inner-shell energies of different iron ions; devia-

tions are given with respect to HF calculations quoted in [11].
TABLE IV. Ionization energies of excited states in Ar atoms

in Ry units; values of the present model are compared with ex-
perimental and HF values [11].

Ion States Energy (eV) Deviation (%)

Fe'+

Fe +

1s
2s

2p
3$

1s
2$

2p
3$

3p

7356
1065
974
304

7258
960
866
219
188

0.2
3.2
1.0
2.5
0.04
3.0
1.0
1.8
4.4

Fe'+ 1s
2$

2p
3s

3p

7167
865
771
141
110

0.1

5.2
0.6
6.6
0.2

various self-consistent-field methods among themselves.
In Table II, inner-shell energies of the high-Z ion

Au + are given, including relativistic corrections ac-
cording to Somrnerfeld's formula

&E„(i=—„',[3/(4n) —1/(j +—,')]Q„/(2n3); (14)

deviations from relativistic Hartree-Fock-Slater (HFS)
calculations [10] are generally below 5% except for the
least bound level with 8.7%.

Results for different Fe ions are shown in Table III.
Differences between the semiclassical results obtained in

Configuration

3p'6p
3p'6s
3p'5d

Present
model

0.0565
0.0705
0.0400

Hartree-Fock

0.0538
0.0670
0.0440

Experiment

0.0495
0.0631
0.0409

this paper and the HF results quoted in [11] are again
below 5% and become smaller for higher ionization de-

grees. Even for highly excited states in neutral Ar, the
accuracy of the present model is not worse than corre-
sponding HF calculations when comparing with experi-
mental results; this is shown in Table IV. It is concluded
that the simple semiclassical description for nl-shell ener-
gies developed in this work agrees quite well with much
more time consuming HF calculations, especially for
highly ionized ions and tightly bound electrons.
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