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Single-channel quantum-defect theory
for the description of doubly excited states of helium
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A single-channel quantum-defect theory for the doubly excited states of helium is formulated
in hyperspherical coordinates. For doubly excited states associated with each excited He+(N)
threshold, the outer electron experiences asymptotically a combined Coulomb and dipole poten-
tial, —1/R+ a/R . The two independent solutions in the asymptotic region for energies below and
above the threshold are explicitly given for both the attractive and the repulsive dipole potentials.
Quantum defects for P' doubly excited states of the five channels in the N = 3 manifold and of the
dominant channels below the N = 2, 3 and 4 thresholds of He+ are calculated in a single-channel
hyperspherical potential, and the results are compared with quantum defects extracted from other
theoretical calculations and recent experimental results. Procedures for obtaining diabatic curves
from the adiabatic potentials are also discussed.

PACS number(s): 31.50.+w, 32.80.Dz, 31.20.Tz

I. INTRODUCTION

Over the years, the quantum-defect theory (QDT) [1]
has been shown to be the most powerful method for treat-
ing the structure of Rydberg states of atoms and positive
ions. It has been generalized [2, 3] to the multichannel
problems to deal with the spectra of complex atoms. In
the quantum-defect theory, one takes advantage of the
fact that in the asymptotic region the outer electron ex-
periences a Coulomb potential and its wave function can
be expressed as a linear combination of the regular and
irregular Coulomb functions. The mixing coefficient is
related to the quantum defect (or scattering phase shift)
which can be obtained either empirically [4] or by solving
the many-electron problem [5] in the inner region.

In this article, we are interested in calculating the
quantum defects of doubly excited states of helium con-
verging to an excited He+ threshold. It is well known

[6] that the outer electron in these states experiences a
dipole potential o./r in addition to the Coulomb po-
tential 1/r, where r —is the radial distance of the outer
electron from the nucleus. The coefffcient o, can be either
positive or negative. When cr is less than —4, one needs
to treat the two independent solutions of the potential

1/r +a/r~ care—fully. Otherwise, the two solutions are
complex functions and the resulting complex quantum
defect has discontinuity across the ionization threshold
[2, 7]. A pair of such independent solutions have been
obtained by Greene et aL [8]. In this paper we give an
alternative pair which are more concisely expressed and
easier to calculate.

In helium, for each L, 8, and z there are a number
of channels (or Rydberg series) converging to each ex-
cited He+ threshold. It has been shown [9, 10] from the
hyperspherical treatment that to a first-order approxi-
mation, each Rydberg series is associated with an adia-
batic hyperspherical potential curve. In this article, we
will calculate the quantum defects for doubly excited P'
Rydberg series in helium.

To carry out such calculations, a number of approxi-
mations have to be made. To begin with, it is known

[11] that each hyperspherical channel couples to other
channels asymptotically with a coupling proportional to
1/R. This undesirable long-range coupling is related to
the fact that in the asymptotic region the hyperspher-
ical coordinates are not suitable for describing two in-
dependent electrons. The "spurious" coupling will van-
ish if independent-electron coordinates are used. In this
article we neglect such coupling, under the assumption
that the hyperradius and the radial distance of the outer
electron is the same in the asymptotic region. This as-
sumption can be removed in the future by matching the
hyperspherical solutions in the large R region to wave
functions expressed in independent-particle coordinates
[12].

The other consideration is the local diabatic treatment
of the adiabatic potentials. It is known that there are
sharply avoided crossings in the calculated adiabatic hy-
perspherical potential curves. Since the diabatic curves
preserve the nature of electron correlation, the physi-
cal channel is better represented by treating the avoided
crossing diabatically. In most of the previous calculations
[13—15], this procedure was obtained by simply interpo-
lating the calculated potential curves and diabatic wave
functions were not obtained. In this article, we give a
brief description of the numerical procedure for obtaining
diabatic curves, the details of which are given elsewhere
[18].

To calculate doubly excited states converging to the
high-N He+ thresholds, the relevant potential curves
have to be calculated. Section II describes the meth-
ods with which these curves are calculated, after a sum-
mary of the hyperspherical approach is given. The proce-
dure for obtaining diabatic curves is also outlined in this
section. The quantum-defect theory for the combined
Coulomb and dipole potential is described in Sec. III. Re-
sults for the quantum defects from the single-channel cal-
culations are given in Sec. IV which are also compared to
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recent experimental results measured using synchrotron
radiation [17] and to results deduced from other theo-
retical calculations [18]. The limitations and further im-
provements of the present approach are addressed in Sec.
V. Atomic units are used throughout this paper except
that of energy, which is in rydbergs.

II. CALCULATIONS OF DIABATIC
HYPERSPHERICAL POTENTIAL CURVES

A. Summary of the hyperspherical approach

Starting with the spherical coordinates (rq, Hq, Pq) and
(rz, H2, Pz) of the two electrons, the hyperspherical coor-
dinates are obtained by replacing rq and r2 by a hyperra-
dius R = (rz, +re) ~~2 and a hyPerangle o. = tan ~ (rq/rq).
The two sets of spherical angles and n are denoted alto-
gether by A. By treating R as the slow variable, the
two-electron wave function can be expanded as [10]

@(R,0) = ) F„"(R)4„(R;0)/(R sino. cosn),

where p, identifies the channel and n denotes the nth state
within that channel. The channel function C „(R;0) sat-
isfies the differential equation

1 ( dz Lf lz, + ', + ', +2RC(o, , H») l O„(R;0)Rz q do.2 cosz n sin2o,

= U„(R)4„(R;0), (2)

where C(o, , Hqz) is the effective charge which depends
only on o. and Hqz, with the latter being the angle be-
tween the two electrons with respect to the nucleus. In
Eq. (1) the hyperradial functions F„"(R)satisfy the cou-
pled equations,

z + 2
—U„(R)+W„„(R)+E„

l
F„"(R)

f' dz 1

+ ) W„„(R)F„"(R)= 0, (3)

where the coupling terms W» are defined as

tions generalized from the asymptotic limit (large R) [10].
With such a basis set, Eq. (2) reduces to an eigenvalue
equation at each R,

Hc„= U„(R)Sc„, (6)

where 8 is the overlap matrix, and H is the Hamiltonian
matrix. Diagonalization of Eq. (6) over a range of R al-
lows the construction of a family of potential curves for
each symmetry with fixed L, S, and vr. In the present
work we are interested in high doubly excited states of
H and He. These states are associated with the excited
states of H or He+, where the principal quantum num-
ber N )) 1. In this case the number of potential curves
is quite large and there are numerous avoided crossings
among the curves. A straightforward diagonalization of
Eq. (6) using a large basis set, as those carried out by
Sadeghpour and Greene [14],would result in a very com-
plicated set of potential curves. To simplify the calcula-
tion and to be able to isolate the important channels, we
carried out the diagonalization in two steps. First, Eq.
(6) is solved in a fixed (lqlz) basis set. Thus a set of hy-
perspherical harmonics and analytical channel functions
within each fixed (tqlz) is first used to diagonalize Eq. (6).
In this step, potential curves which converge to diferent
N in the asymptotic limit do not exhibit any avoided
crossings. The eigenfunctions thus calculated for differ-
ent pairs of (tqlz) then serve as the new basis functions
in the second diagonalization where only basis functions
belonging to the same N in the asymptotic limit are in-
cluded.

The two-step diagonalization procedure treats each N
manifold (defined for the curves which converge to the
same N limit at large R) separately. Thus potential
curves converging to different N are allowed to cross. On
the other hand, curves within each N do exhibit avoided
crossings.

In the first-step diagonalization, the basis functions
used are not orthogonal and there is the possibility of
numerical instability due to the linear dependence of the
basis set. The instability can be avoided [14] by first
diagonalizing the overlap matrix 8 with a unitary ma-
trix C. Upon removing eigenfunctions whose eigenvalues
are less than a prescribed value (0.0001 was used in this
work), the new secular equation (6) becomes stable.

C. Diabatic treatment at the local avoided crossing

B. The calculation of adiabatic potential curves

The partial differential Eq. (2) is solved by the eigen-
function expansion method,

where A is the antisymmetrization operator and Yj,t, L,M
is the coupled orbital angular momentum wave function.
The basis function u~&,

&
is expanded as a linear combi-

nation of hyperspherical harmonics and analytical func-

In the present approach, adiabatic potential curves are
obtained for those belonging to the same N manifold.
These adiabatic curves show localized avoided crossings
characterized by large values of P„„=(p~d/dR~v) be-
tween certain pairs p and v. It is desirable to remove
these sharp P» by transforming to a diabatic represen-
tation. This procedure is often taken by practitioners in
ion-atom collisions [19]where a transformation matrix C
is calculated by solving

dC +PC =0

with the boundary condition that
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Consider the two-channel problem. Let Ui(R) and
Uq(R) be the two adiabatic potential curves and C i(R; 0)
and C2(R; 0) be the two adiabatic functions. Transfor-
mation to a diabatic set Pi(R;0) and $2(R;0) can be
achieved by a matrix C such that

& Pi(R; 0) & &cos[e(R)] —sin[a(R)] & (Ci(R; 0) l
},$2(R;0) ) },sin[a(R)] eos[e(R)] ) (Cg(R; 0) )! '

(~)
where e(R) depends on R. Under such a tranformation
the diabatic potential curves and the off-diagonal poten-
tial matrix element are given by

Ui"(R) = Ui(R) cos [e(R)] + Uq(R) sin [c(R)], (10)

Uz(R) = Ui(R) sin [e(R)]+ Uz(R) cos [e(R)],

III. C}UANTUM-DEFECT THEORY
OF THE COMBINED COULOMB

AND DIPOLE POTENTIALS

To obtain the full solution of the two-electron problem
the coupled equations (3) in hyperspherical coordinates

U12 (R) Uzi (R) [Ul (R) U2 (R)] eos [t(R)] sin [~(R)].

(12)
The boundary condition Eq. (8) guarantees that the

two functions Pi(R; 0) and Pz(R; 0) are true diabatic in
that (Pi(R; A)!d/dR]gz(R; 0)) = 0 for the whole range
of R. However, it has the undesirable feature that the
resulting diabatic potentials in Eqs. (10) and (11) devi-
ate substantially from the adiabatic curves outside the
avoided crossing region [20] and that P&„has to be cal-
culated with fine mesh points in the avoided crossing re-
gion. In this work, we prefer a diabatization only in the
region Ri & R & R2 where the nonadiabatic coupling is
large. The detail of this method is given elsewhere [16].
Here we only outline the idea behind this diabatic trans-
formation procedure. To begin with one must determine
the range Rq & R & R2 where local diabatic transfor-
mation is to be performed. We choose Ri and R2 such
that the magnitude of Piz within the Ri & R & R2
region is greater than a predetermined value, say, 0.05.
Let @i(R2,0) and Cq(R2, 0) be the two adiabatic func-
tions at Rz, and Oi(Ri, 0) and 42(Ri, A) be the same
at Ri. We construct the two diabatic functions Pi(R; 0)
and Pg(R;0) in the Ri & R & Rg region as the linear
combination of these four functions. The R-dependent
coefficients are assumed to take simple functional forms,
but the resulting diabatie states are subject to the con-
ditions that they coincide with the adiabatic states at
Ri and Rz, and that the first-order and second-order
derivatives (with respect to R) are also continuous at the
boundaries. The diabatic states constructed in this way
have nonzero (Pi]~R]$2) in the Ri & R & Rq region.
The o8-'diagonal potential coupling U&& is also nonzero
in this interval. However, both are quite small and both
can be neglected in a single-channel approximation.

where the asymptotic expression of —0.25/R2+ U„(R)—
W»(R) is used and e};„ is the dipole moment in that
channel. In the close-coupling approximation, an equa-
tion identical to (13) is obtained (with R replaced by the
radial distance r of the outer electron) if the equations
are given in the dipole representation.

To apply multichannel quantum-defect theory
(MQDT) to express the solution of the coupled equations
(3), one needs to examine the two independent solutions
of (13). A pair of such independent solutions has been
given by Greene et al. [8]. Here we will give an alterna-
tive pair which is more concise and easier to implement
in numerical calculations.

Let A = gn„+ 1/4, e' = E+Z /N, and p = (Z —1)R,
and Eq. (13) can be expressed as

d2

dp2

(A - —,')(A+ —,') + —+s F„(p) = 0,
P P

where A —
2 is the effective angular momentum. This is

identical to the radial equation of the hydrogen atom for
a noninteger angular momentum. When o;„)—4, A is
real, otherwise A is imaginary.

Aeeording to Seaton [2], the two independent solutions
of Eq. (14) are y(z, A, z) and y(r. , —A, z), where

and

c = 1/r, —z = 2p/r

(~z)*+')z exp( —z/2)
y(~, z, z) =

r(*+ -,
' - ~)

X
.r(z+ -' —r. +n)z"2

r(2x + 1+n) n! (16)

It is convenient in the following discussion to de6ne

r(~+ A+ —,')
~»r(~ —A+ -')

A(i/k, A) e=k2) 0.
g(s A) i ~ —2m

jhow

—i2~(}+1/2} & 'I

A(v, A), e= —1/v &0,

(18)

have to be solved with proper boundary conditions. Since
hyperspherical coordinates do not describe the asymp-
totic region exactly (where independent-particle coordi-
nates are the proper ones) there exists weak nonadiabatic
couplings between channels. To achieve higher accuracy
one may need to rnatch the solution in the outer region to
wave functions expressed in the independent-particle co-
ordinates. This is a task for future development. In this
article, we will focus on solving the coupled equations (3)
within the hyperspherical formulation. We assume that
the nonadiabatic coupling terms can be neglected outside
a certain hyperradius Ro.

For R )Ro, the radial equation for each channel }Li is

N

d~ n 2(Z —1) Zz
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A{i/k, A)

H(S A) g2ee/lsgi2ee(A+1/2)

A(v, A), s (0. (19)

We next consider the properties of these independent
solutions.

A. A ——is real but not an integer

This corresponds to the case of a repulsive dipole po-
tential. The two independent solutions of Eq. (14) can
be cast into two new independent functions

B(s,A)»'
s(~, A, z) = '

y(~, A, z),

t'

+2B(s A)'/z (
A(z, A) cos(22rA) y(/r„A, z) —y(tc, —A, z)

sin(2s. A)

( 1 1/2si, , z ~ sin p ~ oo (22)

The functions s(z, A, z) and c(z, A, z) have the desirable
asymptotic forms:
Fore) 0

cos[m(v —A+ s')] /'2p& "
p

(2v)'/smK(v, A) ( v ) v

+ sin[n (v —A+ —,')]

x
/

—
f

K(v, A) /

—
[

exp
(v'l (2p&

"
p~

E2) ' Ev)

c(ijk, A, z) ~ ~ cos((),
ivrk)

where

p -+ oo (23) p ~ oo (26)

( = kp+ —ln(2kp) —2n. (A —~~) +arg[I'(A+ 2
—i/k)].

(24)

Fore&0,

K(v, A) = [v'r(v+ A+ —,')r(v —A+ —,')]-'/'.

B. A is imaginary

(27)

s(v, A, z) =

K(e, A) I

—
~

exp (
——),

t'2pl p

(vp v

p ~ oo (25)

sin[2r(v —A+ 2)] (2pl "
p

(2v)'/snrK(v, A) ( v p

—cos[2r (v —A+ —,'))

( s) 1/2

xi —'
E»

This corresponds to having an attractive dipole poten-
tial. The two independent functions in Eqs. (20) and
(21) become complex. This will result in a complex reac-
tion matrix such that the MQDT parameters cannot be
easily defined. Furthermore, the complex s(z, A, p) and
c(z, A, p) functions make the numerical calculation very
difficult.

When s ( 0, it can be seen from Eqs. (20) and (21) that
the correct Coulomb functions for imaginary A should be

B(s,A)'/2
s(v, A, z) = '

y(v, A, z)+cc. 2 cos(n'A),

1 t A(v, A) cos(27rA)y(v, A, z) —y(v, —A, z)
~2B(s A)'/2 ( sin(27r A)

' ' '

)
2 cos(mA),

(29)

B(., A)&/&
c(v, A, z) = — '

y(v, A, z) —c.c. 2 sin(xA).

(30)

where c.c. denotes complex conjugate. After a careful
derivation, one can prove that Eq. (29) can be simplified

l

Equations (28) and (30) can be rewritten as

Re B(s, A) ~/~y(v, A, z)

~2 cosh [2r Im(A)]

Im B(s, A)»2y(v, A, z)

~2 sinh[7r Im(A)]

(31)
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K(v, A)
~

—
~

exp (
——),

/'2pl p

Ev) V

The asymptotic forms of s(e, A, p) and c(v, A, p) are

sin[a (v + -')] /'2p) "
ps(v»z)

(2v)~/s~K(v A)
I v I

exP

—cos[~ (v+ ~)]

( s) 1/2

x i—

where

P(p P) 1 ]& (y y &- [2/%+2 t (A)l)

n y+e ~~2/I —2™(~) (37)

c(v, A, z) =

p ~ oo (33)

K(v, A)
~

—
~ exp( ——),&2pl" p

P

p ~ oo. (34)

cos[~(v+ —,')] /'2p1 p
exp

(2v)'/2+K(v, A) ( v )
—sin[sr(v + z')]

xi—

When s ~ 0, P(s, A) ~ 0.
The functions in Eqs. (35) and (36) have the same

asymptotic forms as those in Eqs. (22) and (23) except
for the expression of the phase

( = kp+ —ln(2kp) + 4vr+ z( arg[I'(A+ ~~
—i/k)]

—arg[I'(A + z' + i/k)]).

(38)

Re B(s, A) ~/sy(i/k, A, z)

v 2 cosh[a Im(A) + p(s, A)]

Im B(s,A)'/zy(i/k, A, z)ci k, A, z
v 2 sinh[vr Im(A) + p(s, A)]

(35)

(36)

Similarly, one can find that the correct Coulomb func-
tions for e & 0 are

/' f l Icos& sing'l &sl

q
—g) I

—sin P cos Py pep
(39)

when A is real, P = 0. When A is imaginary,

The two independent solutions, f and g, given by
Greene et at. [8] can be connected to s and c by a unitary
transformation matrix, e.g. ,

—tan ~ (tanh[m lm(A)]arg[B(s, A)~/z/I'(1+ 2A)]}, s ( 0
—tan ~ (tanh[n Im(A) + p(s, A)]arg[B(s, A)~/~/I'(1+ 2A)]},s ) 0

(40)

where P is well described by P = Po + Pys for Rydberg
states.

For a single-channel problem, if the quantum defect
induced by the short-range interaction is p„ the hyper-
radical wave function is

IV. RESULTS FOR iP' DOUBLY EXCITED
STATES OF He

A. Diabatic curves

E(p) = cos(7rp, )s(r, A, z) + sin(vrp, )c(r, A, z). (41)

Using the boundary condition at p -+ oo, the effective
principal quantum number of a discrete state of the chan-
nel is given by

v„= n —p, —mod[2 —Re(A)]. (42)

Det~U„sin(7r[v„+ Re(~~ —A„) + p, ]}]= 0.

Thus there is an additional quantum defect pg = mod[2-
Re(A)] induced by the dipole potential. When A is imag-
inary, this additional quantum defect is z.

For a multichannel problem, the transform matrix U&
and eigenquantum defects p, where n denotes the eigen-
channels in the small A region, can be obtained by the
standard QDT procedure. The bound states are then
determined by the equation

Using the two-step diagonalization method described
in Sec. II, we have calculated the adiabatic potential
curves for ~P' doubly excited states of He. In Fig.
1, the potential curves for all the channels that con-
verge to N & 5 of He+ are shown. We define a R-
dependent effective principal quantum number n&(R)
where U„(R) = Z /n„(R)—, for each potential U„(R)
(for He, Z = 2). Thus n&(R) approaches the principal
quantum number N in the asymptotic limit, R ~ oo.

In the two-step diagonaliztion procedure, potential
curves belonging to different manifolds were diagonalized
separately and thus can cross, but curves within the same
manifold were obtained in the same diagonalization and
the resulting curves display avoided crossings, as can be
seen in Fig. 1. The avoided crossings between the + and
—curves are well known and the diabatization procedure
can be applied to each pair of curves. In our calculation,
the local diabatic treatment is carried out by selecting
Aq and Aq in the Rq & B & B2 region where
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TABLE I. Dipole parameters and quantum defect parameters for the five P' channels of He that converge to the N = 3
threshold of He+. Each channel is labeled with the (K, T) quantum number, together with the dipole moment n, the quantum
defect from the dipole part, pg. The quantum defect pp and its derivative pi are defined according to Eq. (46).

1—
1+
2—
2+
0

(K, T)

(»o)
(1,1)+
(0,0)
(—1, 1)+
(-2 o)'

—6.462
—0.924
4.804
8.924
15.658

0.5
0.5

0.252
0.471
0.512

0.072
0.657
0.133
0.511
0.321

0.23
0.78
0.26
0.52
0.39

Po

0.25
0.80
0.57
0.76
0.36

0.25
0.82
0.60
0.80
0.38

p, c

a
—0.967
-1.382
2.096

—2.054
—1.179

'Present results.
Lipsky et al. , Ref. [18].

'Moccia and Spizzo, Ref. [21].
Ho, Ref. [22].

where the energies are given in rydbergs, and Eth is the
energy of the threshold. In Table I, the dipole moment n
and the quantum defect p~ from the dipole part for each
channel are listed. The calculated quantum defect po for
each channel and its first-order derivative pi with respect
to energy from a single hyperspherical channel are also
shown, and the results are compared to those extracted
from the calculations of Lipsky, Anania, and Conneely
[18], and of Moccia and Spizzo [21], and of Ho [22]. The
latter two calculations are much more elaborate, but even
then the calculated quantum defects for the states cannot
be easily fitted to Eq. (46). From the comparison one can
draw the conclusion that the quantum defects extracted
from the one-channel approximation are not quite ad-
equate. To achieve higher accuracy, channel couplings
should be included.

C. Quantum defects along the double
Rydberg series

TABLE II. Calculated quantum defects po and the deriva-
tives p, & with respect to energy obtained &om a single hyper-
spherical channel potential. Notations are as in Table I where
the experimental quantum defects pz" are derived from Ref.
[17].

—1.2
2.0

—0.924
—6.836

0.5
0

0.5
0.5

th
Po

0.645
0.041
0.657
0.849

ex

0.71
0.147
0.796
0.351

th
px

—0.175
—0.624
—1.382

1.870

Using the single-channel approximation, we have also
calculated the quantum defects for the various doubly
excited states of He converging to the various excited
thresholds. These results are to compare with the quan-
tum defects derived from recent high-resolution data of
Domke et al. [17] using synchrotron radiation. For dou-
bly excited states associated with N )5 thresholds, ex-
perimental data show strong modulations in the observed
spectra, indicating strong channel interactions due to
states belonging to different manifolds. Thus we limit

the calculation of single-channel quantum defects to the
dominant channels below the N = 4 threshold. The re-
sults are summarized in Table II. We note that the quan-
tum defects for the N = 2 and 3 channels are good to
within about 0.1 as compared to those derived from the
experimental data. For the (2,1)+ channel associated
with the N = 4 threshold, the discrepancy is quite large.
It is not clear whether the difFerence is due to the channel
couplings among the N = 4 manifold, or due to channel
interactions with other manifolds. One needs to perform
coupled-channel calculations in the future to resolve the
origin of the discrepancy.

V. SUMMARY AND FUTURE
DEVELOPMENTS

In this article we calculated the quantum defects of
doubly excited states of helium using single-channel hy-
perspherical potential curves. Explicit expressions for
the two independent solutions of the second-order dif-
ferential equations in the combined Coulomb field and
the dipole field are given. It is shown that the quantum
defect can be decomposed into contributions from the
dipole potential and from the remaining short-range in-
teraction potential. The calculated quantum defects for
each Rydberg series from a single hyperspherical channel
are compared to those derived from experimental data
and from other theoretical calculations. We showed that
the single-channel results are acceptable but not ade-
quate. Improvement on the present results would require
a more careful inclusion of the coupling among the chan-
nels within the same manifold, and probably the coupling
with channels in other manifolds as well.

We have discussed a procedure for transforming a
pair of adiabatic potential curves into a pair of dia-
batic curves. The transformation is carried out only
in the sharp avoided-crossing region such that the dia-
batic curves coincide with the adiabatic curves except
in the narrow region where the transformation has been
applied. Further discussion on this procedure is given
elsewhere [16].

In closing we remark that a somewhat different ap-
proach may be needed in order to treat the channel cou-
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plings among the hyperspherical channels. The present
results reveal the inadequacy of approximating a Ryd-
berg series by a single hyperspherical channel. The ac-
curacy of the calculated quantum defects, while not un-

acceptable, are by no means comparable to the accu-
racy from the state-of-the-art results [21, 22]. The dia-
batic transformation discussed here applied to each pair
of states locally only. In order to achieve high degree of
accuracy, coupling among many channel may be needed.
In the immediate future it is desirable to calculate quan-
tum defects by including the couplings among the chan-
nels within the same manifold, for example, among the
five channels in the N = 3 manifold. Couplings among
channels belonging to different manifolds are needed for
doubly excited states converging to the higher N thresh-
olds. The latter can be seen clearly from the recent ex-
perimental data where the Rydberg series for N ) 5

show modulations due to the perturbation from isolated
states belonging to higher manifolds [17]. Despite the
deficiency of the one-channel approximation used in the
numerical application, it should be emphasized that the
quantum-defect theory presented in this article can be
applied easily to multichannel cases and computational
procedures for carrying out such calculations are being
developed.
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