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Many-body perturbation-theory formulas are derived for one-particle —one-hole excited states of
closed-shell atoms. Both analytic results and Goldstone diagrams complete through third order are
presented, and a sample calculation of a transition energy in neonlike xenon is carried out.
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I. INTRODUCTION

Many-body perturbation theory (MBPT) provides a
systematic method for the calculation of atomic prop-
erties. However, the complexity of each order of MBPT
increases rapidly, and complete calculations beyond third
order in atomic physics have rarely been carried out. It
is also possible to sum infinite classes of MBPT diagrams
using various "all-orders" methods [I]. These methods,
except for very light atoms, are always incomplete, since
not all diagrams of a given order are in general included
by the methods. It is of interest to evaluate MBPT
through the highest possible order for two reasons. The
first is that such a procedure provides a guide for all-
orders methods. If such a method misses diagrams that
can be explicitly shown to be large, it must be modi-
fied to include them. A second reason is that MBPT
converges quickly for some systems, particularly highly
charged ions. In a series of works [2] on the lithium,
sodium, and copper isoelectronic sequences, it has been
shown that evaluation of MBPT through third order pro-
vides highly convergent results for the spectra of these
ions. It is the purpose of this paper to generalize the for-
mulas derived for atoms or ions with one electron outside
a closed shell [3] to excited states of closed-shell atoms
or ions. Specifically, we concentrate on particle hole exci--
tations, in which an electron is removed from one of the
closed shells, creating a hole, and excited into a valence
orbital, creating a particle. Such states have a richer
spectrum than the alkali metals previously considered,
and the formulas are correspondingly more complex. For
this reason we consider it of value to set these formulas
down analytically through third order along with their
graphical representation in terms of Goldstone diagrams.
We will in a later work present explicit calculations of a
number of isoelectronic sequences using these results.

The plan of the paper is as follows. Section II reviews
the second-quantized form of Rayleigh-Schrodinger per-
turbation theory. In Sec. III the first- and second-order
formulas are presented. Section IV contains the relatively
lengthy formulas for the third-order energy, and Sec. V
contains a discussion of how the formulas can be numeri-

cally evaluated along with a sample application to neon-
like xenon. Finally, angular reductions of the formulas
are given in an appendix.

II. FORMALISM

N N

V= —) U(r, )+)
i=1

where for the nonrelativistic case

h(r) = — 7' + V„„,(r) (3)

and for the relativistic case

h(r) = ca p + Prnc + V„„,(r).

The form of the potential is left arbitrary at this point.
It should be noted that the many-electron Dirac equation
has meaning only within the framework of field theory,
which provides a consistent set of rules for the treatment
of negative energy states. For most atomic structure cal-
culations it suffices to simply exclude negative energy
states when summing over a complete set of intermedi-
ate states, as the excluded terms are radiative corrections
that are generally quite small.

It is now straightforward to solve Hp@p = Ep@p in
terms of a Slater determinant formed from single-electron

For most atoms, an exact solution to the Schrodinger
or Dirac equation is not attainable because of the com-
plexity of the interactions between the electrons. How-

ever, a reasonable lowest-order approximation can fre-
quently be found in which each electron is assumed to
move independently in a central potential U(r) that
mocks up the efFect of the other electrons. The actual
interactions can then be accounted for in perturbation
theory by setting H = Hp + V, where

N N

Hp ——) h(r;) + ) U(r, ),
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e, =) grata, , (6)

V = — g gi~I laia~alak —g U,~aia~,
i,j,k, l i)2

where g,jbi are Coulomb matrix elements defined by

g,,bi =n, u, (r)u, (r )ub(r)ui(r),/

and U,~ are the matrix elements of the model potential,

orbitals u, (r) with energies s', obeying

[h(r) + U(r)]u;(r) = s;u;(r).

IIp and V can now be written in second-quantized form

(0phl = Fb~(0c~aba~,

where

Fb„= ) (—1)' '(JM~ j„m„,j —mb),

(16)

with atb now standing for at „,and similarly for a
Note that

a shorthand that ac stands for a„.„~ where n„ ii„and
m are the principal, angular momentum, and magnetic
quantum numbers, respectively, of the core orbital that
is being excited, and similarly for a„. The phase factor in
the definition of this wave function is required to make ac
transform properly under rotations, and the factor —m
in the Clebsch-Gordan coefficient accounts for the fact
that this is a hole state. We assume throughout that
there is no mixing of states, so j and j„are unique. We
define the complex-conjugate wave function as

Ui, —— d rut(r)U(r)u, (r). (9) F,„Fb b,bb„= 1.

The Hartree-Fock potential is defined in terms of the
Coulomb matrix elements via

Applying Hp to Eq. (14) then gives

(19)
(VHF)'j = ) gicjc~ (10)

where

V=- g. 9'2kl aiagalak. +g.vv. a;a2. + vo,
i,j,k, l i)2

where

and

Vij = (VH F —U) ij &

Vp = ).(~VHF —U)ev.
d

(12)

We create a zeroth-order particle-hole wave function
with total angular momentum JM via

I0p~) = F-a.'a. l0c)

where

F „= ) (—1)~ (j„m„,j —m ~JM).

(14)

Here ~0e) is the closed-shell wave function and we adopt

where gU bi = g,jbi —g,jib and the sum over c is taken to
run over the filled core orbitals of the ground state of a
closed-shell system. As we are interested here in particle-
hole excitations, we adopt the convention that sums over
c, d, e, f will be only over core orbitals (including the hole
orbital), sums over m, n, r, s will be only over excited
orbitals (including the particle orbital), and sums over
i,j,k, t will be over all orbitals. The letters a and b will
be used to designate hole orbitals while the letters u and
tu will designate particle orbitals.

Using the definition of the Hartree-Fock potential, we
now rewrite Eq. (7) using normal ordering as

Ep=) sc. (20)

III. FIRST- AND SECOND-ORDER ENERGIES

Before proceeding, we observe that in deriving higher-
order corrections to the energy, there are two methods
which may be used. The first method is the direct al-
gebraic manipulation of creation and annihilation oper-
ators. The second method is that of diagrammatic tech-
niques. In the latter method, the results of perturbation
theory are represented by Goldstone diagrams. It is par-
ticularly valuable because it allows the rapid generation
of MBPT expressions through a set of straightforward
rules. In general, the advantage of the algebraic approach
is that it is extremely straightforward, being essentially a
direct application of Wick's theorem. This is associated,
however, with the disadvantage of a great deal of algebra.
The advantage of the diagrammatic approach is the fact
that an analytic formula can be obtained from a diagram
quite easily, and also that structures in perturbation the-
ory can sometimes be grasped in a very intuitive way, as
with the identification of the random-phase approxima-
tion with ring diagrams. A disadvantage of the approach
is that it is possible to miss diagrams with complicated
topology, and also that the rules for symmetry factors re-
quire some experience to apply in high order. Because of
the complexity of the results obtained in this paper, we
have used both methods in obtaining the results in order
to eliminate possible errors. Two independent algebraic
results were cross-cheeked and found to agree with each
other and a separate diagrammatic calculation.

We now choose the Hartree-Pock potential as the
model potential. The perturbing potential then simplifies
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to

g jkl ~ a a&alak ~

2
gcd d

i,j,k, l c$d and

(&)

2 ~-gc
c,d

(24)

E(') = (ophlvlo»)

It is straightforward to show that

(22)

While there are good theoretical reasons that favor the
use of this potential, its use is almost forced for the treat-
ment through third-order MBPT of particle-hole states.
This is simply because of the extremely large number of
terms in third order; we would more than double the al-

ready very lengthy expression for the third-order energy
given in Sec. IV without this simplification.

To determine the first-order energy, we need to solve

~(~) gatv b.

E(') = (oph~v]&ph)

where ~lph) is obtained from

(26)

While the first-order energy is simple to solve for, the
second-order energy, while still straightforward, requires
considerably more algebra. It can be expressed in terms
of the first-order correction to the wave function

~ lph) as

where

(23) ]~ph) = (&o —E"') '(E"' —I )Ioph).

A short calculation gives

(27)

amana, a,
&cd —&ma

"
&cv &mn

m, n, c,d m)n)c
PV

I

+ ) umavucad + ) amac
l
loph),

cd &ma &vc &ma
m, c,d m, c

(28)

where s,~—:s, + s~, and the prime on the summation
above implies that the sum is over all values for which

the energy denominator is nonzero. In the above case,
this means all m and c are summed over except when

rn = u and c = a concurrently. Inserting Eq. (28) into

Eq. (26), we find

g bc

mc c m

~(2) ) ~ 9camb9urmvc

mc c m
(35)

and

where

D(g) y ~ gmamngmnvb

&va &mn
(36)

(Z)
I ) - 9cdmn9mncd,

cd —
m~nqc, d

E(z} ) 9tvcma9m1lvc

vc mn
j

gcdmv gmmcd

&cd —&vm
m, c,d

Here

PV

+(g) ~ gacmngmnbc ~ gcdmbgmacd
a J'

&ac —&mn d
cd —ma

mqn~c m) cqd

E(&) g(&) + g(~) + g(2) + g(2) + g(z) + L)(&)

(30b)

(30c)

At this order the general structure of MBPT for particle-
hole excitations can be discussed. Firstly, the terms la-
beled Eca„give the energy of the ground state. They
are always accompanied by the factors hab and 6v~ that
express the fact that the particle and hole states are un-

affected. This term drops out in any transition energy.
Secondly, the terms labeled E„are related to the energy
shift of a valence electron above a closed shell. They are
always accompanied with a factor b b, since the core elec-
tron is left unaffected. If one averages over the M values
and uses

Z(g) ) 9cdbvgamcd

cd —&va
c)d

(3i)
1

2J+1 ) +av+S~~ab = & (37)

~(2) ~ gcamv gmmbc

ac vm
7

~(2) ) -'9mcbm9amvc

vc ma
7

(32)

it can be seen that these terms are identical to those given
in Ref. [3]. Thirdly, the terms labeled E are closely re-

lated to the E„ terms, with the roles of v and a inter-
changed and the addition of an overall minus sign. This
is a great advantage in the actual calculation, since the
same code can be used to evaluate both terms. Finally,
the E „ terms involve both the core and valence elec-
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tron. We divide these terms into classes according to
the number of excited-state summations present, using
the notation Z for zero excited states, S for single, D
for double, T for triple, and Q for quadruple excitations,
with the latter two classes entering Erst in third order.

We now discuss the diagrammatic approach to the
second-order energy. There are a total of 30 Goldstone
diagrams in this order which are presented in Fig. 1. The
upgoing line with a double arrow represents the state v
when entering the diagram and tv when leaving it. The
downgoing line with a double arrow represents the state
a when leaving the diagram and 6 when entering it. The
usual Goldstone rules apply but must be supplemented
with the following additional rule. This is that an ex-
tra factor of —1 is to be multiplied whenever the v line
connects to the ut line, which occurs in conjunction of
course with the a line connecting to the b line. Thus, for
example, the fourth diagram in Sq, which has no loops
and one core line, would normally enter with a negative
sign, but the new rule makes the overall sign positive.

While 30 diagrams are shown in Fig. 1, there are only
11 analytic expressions in Eq. (30), which follows from
the use of antisymmetrized Coulomb matrix elements in
those expressions. Because of the very large number of
terms in third order, we will in the following only show
the "direct" diagram with all g,~tg ~ g,~g~. Another sim-
plification we will make use of is the fact that some terms
in MBPT are complex conjugates of each other, which
since the energy is real allows only one of them to be cal-
culated provided the result is doubled. In second order
this occurs with Ss and S4 . The diagrams are related
by a reHection through a horizontal axis, and the complex

conjugate of Ss can be shown to be equal to S4 when(&) (2)

multiplied by F~„Fy~ and interchanging dummy indices.
For this reason, we will in the following explicitly show
only one of the pair of related terms, writing "+c.c." to
indicate the other term, and likewise we will show only
one of the pairs of related diagrams.

IV. THIRD-ORDER ENERGIES

or

8 = (1ph I
V I1ph) —&'"(1ptL I 1p&) (39)

We proceed by using Eq. (28) in Eq. (39). Separating out
the constant term in V from Eq. (21) allows us to write

1V1 + fold &

(3) (3) (3)

where

@I't(g (1phl(& —&.".I.)I1ph) (41)

@Iota = (@ @coIe)(1ph I 1pl'~ (42)

The subscript "fold" in Eq. (42) refers to the fact that
these terms are represented by "folded" diagrams [4] as
will be described in more detail later. The evaluation of
E~z~ requires a very lengthy algebraic manipulation. We

We now turn to the calculation of the third-order en-

ergy. It can be expressed as

Z~sl = (ophlVI2, h),

) IL l)(

( IL LI(
LL(

(2)
core

LL(

(2)
2

(2)
V

(IL i(
jIL

iIL
ih

(2)
0

JL LI(

(2)
3

(2)

(2)
(a} (b)

FIG. 1. Goldstone diagrams representing the second-order energy given in Eq. (30).
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express the solution as followers: (3) ~ ~ gecmbgdmvegmacd8=7. + C.C.,
(Scd —Sav) (Sce —Sam)

(47}1)

(43)

where Eca„,E„,Ea, and Eav are the third-order gen-(3) (3) (3) (3)

eralizations of the structures encountered in second or-
der. Because the expressions for E, „,E„,and E and(3) (3) (3)

their associated Goldstone diagrams have been treated in
detail in Refs. [1] and [5] we do not discuss them further
here. We note only that, as with the second-order en-

ergy, Ec(a~, can be dropped in calculations of transition

energies, and that the calculation of E is carried out in

exactly the same fashion as E( l with the replacement of
v with a and inclusion of an overall minus sign. The Ea(„}

terms break into five classes, with 1 zero-excitation term,
11 single-excitation terms, 26 double-excitation terms, 11
triple-excitation terms, and 1 quadruple-excitation term,

(3) ~ ~ gdembgcade gmmvc
9 + C.C. ,(«, —s )(s, —s )

~(3) ~ ~ ger embgcdve gmacd~1O- + C.C.)(s,d —s, )(s„,—s, )m) c)d)e

~(3) ~ I gmevbgcdme gamdc
~11 + c.c.

(s~ —s, )(s, —s,)

The double-excited state terms are

D(3l ) gdamngaccvd gmncb

„(s„-s„)(s d -s „)'
m)n)c)d

(47i)

(47j)

(47k)

(48a)

The second term in Eq. (40) breaks into nine terms,

(44) (sl
y

gcdvmgambngacncd

„(s,d —s„„)(s,d —s„)'

m)n)c)d

(48b)

9

fc/Q ( ccae) av bac )
The zero-excited state term is given by

b d d

(Scd ~av)(&ef &av)c),e,f

(45)

(46)

(3l
y

~ gadvmgcmndgacnbc

d (&ad —&vm) (&ac &vn)
m)n)c)d

D(3l y
~ gdacnbgcnmdgmacv

(s„,-s, )(s„d —s „)'
m, c,d

(48c)

(48d)

The single-excited state terms are

AV

(si ) Qecvmgadbegmaccd

(s,d —s„ )(s„—s„ )
'

(3) ~ ~ gcembgdmvegmacd
2 (s,d —s, )(s„—s, )'

(3) ~, gdemv gcade gmmbc
3 + C.C. ,„(&.-s. )(«.-s. )m)c, d, e

(3) ~ ~ gcemv gdmebgmacd
4 + C.C. )„.(s- —s-)(s.d —s-)

~(3) ~ gecmv gdmecgmadb
5 + C.C. )- (sce —Svm)(« —Sm)

(47a)

(47b)

(47c)

(47d)

(47e)

Art

(sl ) gcdnbgacnvmgmacd

(s,d —s, )(s~ —s,„)'
m)n)c)d

(sl ) ~ gacdmngcadbgmnvc

, (&- —& )(s.d —s )
'

m, n, c,d

(sl x - ' gadmn9cavbvgmncd
7 + C.C. ,

(s d —s „)(s,—s, )m)n)c)d

~(3) ~ ~ gcdvngambmgmncd
8 + C.C. )(s,d —s„„)(s„-s )m)n)c)d

~(3) ~ gctumbgdanv gmncd
2/9 + C.C. )(cad-s„„)(s„,—s, )m)n)c)d

(48e)

(48f)

(48g)

(48}1)

(48i)

g(3) ) ~ gcevmgmdebgmacd + (47f)(s„—s„)(s,d —s,„)

~(3) ~ ~ gcdvngatumcgmnbd~1O- + C.C. ,
(&ad &mn) (&cd —~vn)

(48j)

~(3) ~ gecvm gmdcegambd + C.C.,(e„—s„ )(« —s„) (47g)

~(3) ~ gadvngctudmgmnbc + C.C. ,
d (&a —&mn)(~ad —& n)m, n, c,d

(48k)
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(3} ~ gdamv gcmnbgmndc + C.C. ,, ( ~
— ~ )( — ~ )m)A)c, d

(3} ~ gadbmgcmnd gnmcv~26— + C.C. ), ( — )( ~
— )m)A)c)d

(481) the triple-excited states terms are

(48z)

~(3} ~ ~ gmcbngdnmv gmadc~13— + C.C. )(s,g —s, )(s„,—c „)m, A)c)d

D(3} ~ g~dbngcamd gmncv + C.C. )„(s„,—s „)(s„g—s,„)m)A)c)d

(48m)

(48n)

T(3) )~ gcanrgrsrvmgmnbc

ac mn ac nr

2 (3) ) grscmrgar bngmnvc

(s„,- s „)(s„,- s „)'
m)A, r,c

~(3} ~ - gcanf grnvmgurmbc
3 + c.c.,

mnrc

(49a)

(49}))

(49c)

(3} ~ gcdmngmnbvgmacd 48 i)15— + C.C. ) ( o~)

„(sc~—s m)(sa —sn)
m)A, c,d ~(3} ~ ~ gmcrbgarnmgmnvc

&vc &mn vc &ar
(49d)

(3} ~ gcdvngnmmbgamcd
16 =- ~. + C.C. )„(s„)—s„„)(s,g —s, )m)A, c)d

(48p)

y(3) ) grvarbgcrmngmncv

&vc —&mn &v —r
(49e)

D(3} ~ gcdnmgmacd gmnbv
17 + c.c.,„(s„)—s,„)(s,„-s „)m)n)c)d

All Ar

D(3) ) ~ gcdmngmacbgrvnvd

„(s,—s )(sg —s„)
m) A, c)d

(48q)

(48r)

2 (3) ) gcamr grvrnbgmncv

m A r c vc &mn &ac &mr

PIP ~IV

T(3) ) gacmr grsrncgmnbv

m n r c ~av &mn &ac mr

(49f)

D(3) ~ gcdnv9nrvmd9macb
1S — g. + C.C. )

„(s.~ —s-)(s. —s )m, n, c,d

(3) & 9 dmng~ab gmnvd
LJ2p + C.C.)

„(s,g —s )(s, —3„)
m, n, c,d

D(3} & - gadmn gcmdbgmnvc + C.C. )„(s„,—s „)(s q —s „)m, A)c)d

(48s)

(48t)

(48U)

AV

Z (3) ) - gcarmgmrbngrvnvc

&ac mr

~(3} ~ gcamrgmrcngmnvb
Cg + C,C. ,(s„—s „)(s,—s„)

T(3) ) gear bgrsrnm9mncv

mnrc c mn c

(49g)

(49}1)

(49i)

(4»)

Aal

~(3} ~ gadmn gcnbd gmmcv
~22 + C.C. ), (s" —s-)(s.—s-)m)n)c)d

(48v)
le@

y(3) ) glcmr garnc9rnnvb

m n r c &av &mn &cv &mr

~(3} ~ gcdmbgamndgmncv
~23 + C.C. ,(s,q —s )(s„,—s „)m)n)c)d

(48w)

and the quadruple-excited state term is

q(3) ) ~ grsarsgrsmngmnvb

(49k)

(50)

~(3} & gadbmgcmndgmnvc~24— + C.C. )„(&--s )(s~-s )m, n)c, d

~(3} ~ gcdbmgamnd gnus cv~as- + C.C.,
(sc~ —sam) (sc —sn)m, n, c,d

(48x)

(48y)

In the above equations we have ordered the matrix ele-
ments for each term such that the first matrix element
corresponds to the upper interaction of its Goldstone di-
agram, with the second and third matrix elements cor-
responding to the middle and lower interactions, respec-
tively. Finally, the folded terms are
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gmcbmgamv c
~1 =

&VC &am
(5la)

gcdmbgmacd
~2 — Uvm 2)(s,d —s )z

m)c, d

(51b)

gcdbv gamed

„(s.d —s-)" (51c)

gcambgmmvc

)z
+ C.C. , (51d)

gwcmngmnvc

vc mn
(51e)

~ ~ gmamngmnvbx'6= g av —&mn,
(51f)

gacmn gmnbc,
&ac —&mn

(51g)

gcdmvgmtocd
8 — Uab ~ -„(s,d —s„)

m, c,d

(51h)

gcamvgarmbc

ac vm
(5li)

~(3) ~ gadmn gcmbv gmncd
~7a + c.c.~,(s.d- = )(s d-s )m, n, c,d

(52)

and

~(3) ~ ~ gadmn gcur bv gmncd~7b- + c.c.
, (s.d —s )(s.—s )m)n) c)d

(53)

which have identical nurnerators but denominators that
can be simplified using

1 (1 11 1

A+B (A B AB (54)

Before turning to the Goldstone diagram represen-
tation of the above expressions we make the following
remarks. The first is that in calculating the double-
excitation terms, certain energy denominator simplifica-

tions have been made. For example, the term D7 came
from combining two terms,

tra term. The same manipulation has been used for

D8, D9, D&5, D&7, Dzs, and D20 although when no(3) (3) (3) (3) (3)

restriction on the summation is present there is no extra
term generated by the manipulation. In all, three extra

terms are generated, which have been absorbed in Ef
as discussed below.

Turning to the Goldstone diagrams representing these
results, we note that while there are 520 diagrams as-

sociated with E,„) in the above expressions, we show in

Figs. 2(a)—2(e) only 50 diagrams. This relatively com-

pact form is made possible because, as discussed above,
each diagram is the first of either two, four, or eight

diagrams generated when one, two, or three antisym-

metrized Coulomb matrix elements are present in the
corresponding analytic form. Furthermore, each analytic
form with a "c.c." is associated with a diagram obtained
through reflection in a horizontal plane that is not ex-

plicitly shown. Finally, the diagrams associated with the
double excitations discussed above have the special fea-

ture that two orderings are possible. One could treat the
orderings separately, but here we have combined them,
which is indicated by a cross on the ambiguous vertex.

The terms Fq through Fs are obtained by the evalua-

tion of the second term on the right-hand side of Eq. (39).
In diagrammatic language, they correspond to the so-
called folded [4] or backwards [6] diagrams. These di-

agrams exist only for open-shell systems and only for
third or higher order. Brandow [4] has proposed a di-

agrammatic representation of these terms in which an
intermediate state is replaced by an initial state, and the
usual ordering of the associated interactions is reversed.
These diagrams are shown in Fig. 3. Had we not com-
bined denominators in the double-excitation terms the

F, terms could be obtained from the second-order en-

ergy expressions (excluding Ec~„~,) by squaring the energy
denominators and changing the sign. Because we have
combined denominators, the three extra terms mentioned
above must be added in, and their effect is to change the
signs of F7, Fs, and F9.

V. DISCUSSION

Compared to the already somewhat complex formulas
needed for one-electron outside closed-shell atoms, we see
that MBPT for particle-hole states leads to very lengthy
expressions. It has proved, however, relatively straight-
forward to create computer code to explicitly evaluate
these formulas. The most important simplifying device
is the treatment of terms involving g,~b~ as one object.
Because up to three of these antisymmetrized Coulomb
matrix elements can enter in third order, each third-
order Goldstone diagram shown represents up to eight
diagrams. However, all eight can be evaluated simulta-
neously by using the identity

However, care must be taken with this manipulation be-
cause it is necessary to first separate out from D7 the
part of the sum where a = c, which leads to an ex-

g,,b~
= ) ZL, (ijkt) JI,(ijkt),

where

(55)
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2( IE
TABLE I. MBPT contributions to the (2p 3s2i2) J—Q~ 2p transition energy in neonlike xenon: units a.u.

Term

ss

Fs

s

(I g
Fs

E(o)
E(1)
E(2)
E(3)
gg(1)

g(2)

/ED
Sum
Experiment

'Reference [9].

159.347
-4.341
-0.091
0.004

-0.287
0.044
0.030

154.706
154.721(5)

FIG. 3. Folded diagrams associated with Eq. (51).

Zr [tjkt) = Xi(ij kt) + (2L+1)) j' jkL'

xXL, (jikl).
(56)

I

Here Jr, (ijkl) is an angular factor given in the Appendix,
where we present the explicit angular reductions for the
first- and second-order energies. The radial matrix ele-
rnent Xr, (ij kl) is defined as

TL
Xz, (ijkl) = (—1) Cr„(ik)CL, (jl) dr dr' i+& [g, (r)gj2(r) + f, (r)f12(r)][gz(r')gi(r') + f~(r') f&(r')], (57)

where g and f are the upper and lower components of
the Dirac wave functions and

Lg(tj ) = ( 1}i'+'t g(2j, —+ 1)(22) + 1) t

(58)

where the parity selection rule that C J(ij ) = 0 if J+l,+i~
is odd is understood.

While this reduced considerably the amount of coding,
the number of terms was still so large that two com-
pletely independent angular reductions and codings were
performed. In addition, in one of the codings two differ-

ent angular reductions were done by reversing the orders
of one or more of the g factors. The sums over inter-
mediate states were carried out with standard basis-set
techniques [7].

To illustrate the behavior of MBPT, we show in Table
I the results of a calculation through third order of the
(2p 3s) is) g 2 ~ 2p transition energy in neonlike xenon,
where the hole is a 2psis state and the particle a 3s)is
state. Because relativistic and /ED effects are enhanced

TABLE III. Contributions to the (2p 3s2/2)J=2 ~ 2p
transition energy of the third-order S and T terms for neonlike
xenon: units a.u.

E(2)
E(2)
2(')
s'"

1
S(2)

2
S(2)

3
S(2)

4
D(2)

-0.0317
-0.0566
0.0100

-0.0019
-0.0482
0.0154
0.0154
0.0070

TABLE II. Contributions to the (2p 3s2i2)q-2 —E 2p
transition energy in second order for neonlike xenon: units
a.u.

Term

Term

S(3)
1

S(3)
2

S(3)
3

S(3)
4

S(3)
5

S(3)
6

S(3)
7

S(3)
8

S(3)
9

S(3)
10

S(3)
11

-0.00030
-0.00585
0.00008

-0.00018
-0.00018
-0.00014
-0.00043
0.00094

-0.00014
0.00040
0.00000

Term

T(')
1

T(')
2

T(3)
3

T.(')
T(3)

5
T(')

6
T(3)

7
T(3)

8
T(3)

9
T(3)

10
T( )

11

-0.00113
-0.00175
0.00007
0.00041

-0.00165
-0.00012
-0.00009
-0.00010
-0.00014
-0.00046
0.00047

Sum -0.0906 Sum -0.00706 -0.00446
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TABLE IV. Contributions to the (2p 3sii2)q=2 ~ 2p
transition energy of the third-order D terms for neonlike
xenon: units a.u.

TABLE V. Summary of E calculation of
the (2p 3sig2) J—2 ~ 2p transition energy in neonlike xenon:
units a.u.

Term

D(3)
1

D(3)
2

D(3)
3

D( )
4

D(3)
5

D(3)
6

D(3)
7

D(3)
8

D(3)
9

Sum

0.00058
0.00015

-0.00004
-0.00465
0.00236
0.00100
0.00000
0.00049

-0.00013

Term

D(3)
10

D( )
11

D( )
12

D()
13

D()
14

D()
15

D( )
16

D(3)
17

D( .
18

-0.00002
-0.00002
-0.00002
0.00119
0.00093
0.00021

-0.00004
-0.00007
-0.00109

Term

D(3)
19

D(3)
20

D(3)
21

D(3)
22

D(3)
23

D( )
24

D(3)
25

D(3)
26

0.00030
0.00037

-0.00001
0.00021
0.00099
0.00114
0.00121

-0.00005

0.00499

Term

@(3)
~(3)
g(3)
g(3)

T(3)
qi~l

(3)
Eo1d

Sum

0.00025
0.00340

-0.00050
-0.00706
0.00499

-0.00446
-0.00017
0.00708

0.00353

in highly charged ions we have included the lowest-order
Breit interaction Bi'i (including frequency dependence)
and the first-order Coulomb correction to it, Bi~i, along
with an estimate of @ED effects from Grant's multicon-
figuration Dirac-Fock (MCDF) program [8] and a com-
parison with experiment [9]. For highly charged ions the
nth level of perturbation theory is accompanied by a fac-
tor Z2 ". As can be seen from Table I, this leads to a
relatively small value for Eisl, while El~i is large enough
so that it must be quite accurately calculated in order
to compare with experiment. Its detailed breakdown is

given in Table II. The largest contributions to Ei2i are

seen to come from E, and S2, although the only very(2) (&)

small contribution is S, . A high-accuracy evaluation

of Ei l, with large basis sets and an accurate treatment
of the partial-wave summations, can be carried out in a
matter of minutes on an IBM RISC/6000 workstation.

Turning to the third-order calculation, we present the
breakdown of the S and T terms in Table III, the D
terms in Table IV, and the complete set of contributions

to Eisl in Table V. As can be seen from Table V, El
continues to dominate E„.However, significant contri-

butions also come from a large number of E,„ terms as(3)

well as Efi &id, and we have not been able to identify any
one class of diagrams that dominate the result. However,
the complete third-order calculation can be carried out in
a few hours, with the bulk of the computation involving
the quadruple excitation terms.

The comparison with experiment in Table I shows a
0.015-a.u. discrepancy, which is three times the exper-

imental error bar. Given the rapid pattern of conver-
gence of the E(') terms, it is unlikely that E( ) could
account for this. More likely is some combination of the
neglect of Bisi or the fact that the @ED term was ob-
tained phenomenologically. We are at present examin-
ing with the formulas derived in this paper the helium,
beryllium, neon, and magnesium isoelectronic sequences
and working on identifying a dominant part of B( ) and
calculating /ED effects from first principles. When this
has been done it should be possible to extend the un-
derstanding of the physics of one-valence electron ions
studied in Ref. [2] to the richer spectrum of particle-hole
excitations of closed-shell systems.
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APPENDIX

Before any of the formulas presented in this paper can
be evaluated, it is necessary to first perform an angular
reduction. This involves summing products of the angu-
lar factors Jl, (ijkt) over all magnetic quantum numbers,
where

J (' 'g) ) ( y)|,+J +L M
i

2 i JA
i i

2J + 2I

)
i (

i
—m, M mA, . ) i —m~ —Mmi (A1)

That summation can be carried out with the graphical techniques described in Ref. [1]. The results for the first- and
second-order energies are

E = —) (—1) +~ +" ." . Zl, (vava) (A2)
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and

g( ) 1 g.+g.+g +g. 1 1

2L+ 1 2j„+1
[m,n, c], ,I

XL(vcmn) ZL(rnnvc)

&eu —&mn
(A3)

+,+ + 1 1 XL(cdvrn)ZL(vmcd)
2L+ 1 2jv + 1

[m, c,d],L
(A4)

g(&) ) ( I )
ja+je+jna+jn

2L +12j~+1
[m,n„c],L

) ( l )jo+je+j a+jm 1 1

2L+12j +1
[m, c, ,I

XL (camn) ZL (rnnca)

ac —mn

XL (edam) ZL (made)

cd &ma
(A6)

J+j +j j, J j„Lz L1 J XI„(cdva)ZL, (vade)
Jv

[c,d],I &,La

(A7)

( 1)j-+j.+j.+j-
1 ) . (2J+1)&

[m, c]

Zq(camv) Zq(vmac)

ac mv
(A8)

g( ) 1 ja+js+jc+j~I. . . 1

(2J+ 1)z
[m, c]

Zq (macv) ZJ(vearn)

ec &ma
(A9)

)z+L+j +j +I +j 1 j„j, J ZL(cvmv)ZL(maca)
2L+ 1 j~ j„L c —m

[m, c],L

(A10)

(z) ) j+j yj j J j Lz L1 J XL (nmva)ZL, (vamn)
L1 jn LZ Ja Jv Jm Smn ~av

[m, n],Lg, Lg

(A11)

A square bracket in the above equations indicates that the magnetic quantum number has already been summed over.
It is a straightforward, though lengthy exercise to do the angular reductions of the third-order energy.
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