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closed-shell atoms. Both analytic results and Goldstone diagrams complete through third order are
presented, and a sample calculation of a transition energy in neonlike xenon is carried out.

PACS number(s): 31.10.+z, 31.20.Di, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Many-body perturbation theory (MBPT) provides a
systematic method for the calculation of atomic prop-
erties. However, the complexity of each order of MBPT
increases rapidly, and complete calculations beyond third
order in atomic physics have rarely been carried out. It
is also possible to sum infinite classes of MBPT diagrams
using various “all-orders” methods [1]. These methods,
except for very light atoms, are always incomplete, since
not all diagrams of a given order are in general included
by the methods. It is of interest to evaluate MBPT
through the highest possible order for two reasons. The
first is that such a procedure provides a guide for all-
orders methods. If such a method misses diagrams that
can be explicitly shown to be large, it must be modi-
fied to include them. A second reason is that MBPT
converges quickly for some systems, particularly highly
charged ions. In a series of works [2] on the lithium,
sodium, and copper isoelectronic sequences, it has been
shown that evaluation of MBPT through third order pro-
vides highly convergent results for the spectra of these
ions. It is the purpose of this paper to generalize the for-
mulas derived for atoms or ions with one electron outside
a closed shell [3] to excited states of closed-shell atoms
or ions. Specifically, we concentrate on particle-hole exci-
tations, in which an electron is removed from one of the
closed shells, creating a hole, and excited into a valence
orbital, creating a particle. Such states have a richer
spectrum than the alkali metals previously considered,
and the formulas are correspondingly more complex. For
this reason we consider it of value to set these formulas
down analytically through third order along with their
graphical representation in terms of Goldstone diagrams.
We will in a later work present explicit calculations of a
number of isoelectronic sequences using these results.

The plan of the paper is as follows. Section II reviews
the second-quantized form of Rayleigh-Schrédinger per-
turbation theory. In Sec. III the first- and second-order
formulas are presented. Section IV contains the relatively
lengthy formulas for the third-order energy, and Sec. V
contains a discussion of how the formulas can be numeri-
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cally evaluated along with a sample application to neon-
like xenon. Finally, angular reductions of the formulas
are given in an appendix.

II. FORMALISM

For most atoms, an exact solution to the Schrédinger
or Dirac equation is not attainable because of the com-
plexity of the interactions between the electrons. How-
ever, a reasonable lowest-order approximation can fre-
quently be found in which each electron is assumed to
move independently in a central potential U(r) that
mocks up the effect of the other electrons. The actual
interactions can then be accounted for in perturbation
theory by setting H = Hy + V/, where

N N
Ho =Y h(r:)+Y_U(r:), (1)
i=1 i=1
N N 62
V=—ZU(”)+ZF’ (2
i=1 i<j Y

where for the nonrelativistic case

R,
h(r) = —%V + Vauc(r) (3)
and for the relativistic case
h(r) = ca - p + Bmc? + Viue(r). (4)

The form of the potential is left arbitrary at this point.
It should be noted that the many-electron Dirac equation
has meaning only within the framework of field theory,
which provides a consistent set of rules for the treatment
of negative energy states. For most atomic structure cal-
culations it suffices to simply exclude negative energy
states when summing over a complete set of intermedi-
ate states, as the excluded terms are radiative corrections
that are generally quite small.

It is now straightforward to solve Hgyo = Egptg in
terms of a Slater determinant formed from single-electron
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orbitals u;(r) with energies ; obeying
[h(r) + U(r)]ui(r) = giui(r). (5)

Hj and V can now be written in second-quantized form
as

Ho = Z siazai, (6)
i
1
V= 3 ijzklgijklala}alak - ; Uijalaj, (7

where g;;x; are Coulomb matrix elements defined by
d3rd3r’
gisnt = / T O ), (8)
and U;; are the matrix elements of the model potential,

Uij = / d3rul (£)U (r)u;(r). (9)

The Hartree-Fock potential is defined in terms of the
Coulomb matrix elements via

(VHF)ij = Zgicjcv (10)

where §ijki = gijk1 — gijix and the sum over c is taken to
run over the filled core orbitals of the ground state of a
closed-shell system. As we are interested here in particle-
hole excitations, we adopt the convention that sums over
¢, d, e, f will be only over core orbitals (including the hole
orbital), sums over m,n,r,s will be only over excited
orbitals (including the particle orbital), and sums over
1,7, k,l will be over all orbitals. The letters a and b will
be used to designate hole orbitals while the letters v and
w will designate particle orbitals.

Using the definition of the Hartree-Fock potential, we
now rewrite Eq. (7) using normal ordering as

1
V = 3 Z Gijkl :aIa;azak : +ZVU : alaj : 4+ W,

1,7,k,l 1,J
(11)
where
Vi; = (Var — U)yj, (12)
and
Vo= (3Var — U)aa- (13)
d

We create a zeroth-order particle-hole wave function
with total angular momentum JM via

|0pn) = FavalaalOc), (14)
where
Fa,‘l) = Z (—1)jn-ma(jvmu,ja _malJM), (15)
Mg, My

Here |0c) is the closed-shell wave function and we adopt
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a shorthand that a, stands for a,,x m, Where ng, k,, and
m, are the principal, angular momentum, and magnetic
quantum numbers, respectively, of the core orbital that
is being excited, and similarly for a]. The phase factor in
the definition of this wave function is required to make a,
transform properly under rotations, and the factor —m,
in the Clebsch-Gordan coefficient accounts for the fact
that this is a hole state. We assume throughout that
there is no mixing of states, so j, and j, are unique. We
define the complex-conjugate wave function as

{Oph| = Fouw{0c|a}auw, (16)
where
Foy = Z (_l)ja_mb<JM|jvmw7ja —-mp), (17)

Mp, My

with alt now standing for a! and similarly for a,,.

Note that ety
Fov Foubapbuy = 1. (18)
Applying Hj to Eq. (14) then gives
E® = Ey + ¢, — &, (19)
where
Ey, = Zsc. (20)
c

III. FIRST- AND SECOND-ORDER ENERGIES

Before proceeding, we observe that in deriving higher-
order corrections to the energy, there are two methods
which may be used. The first method is the direct al-
gebraic manipulation of creation and annihilation oper-
ators. The second method is that of diagrammatic tech-
niques. In the latter method, the results of perturbation
theory are represented by Goldstone diagrams. It is par-
ticularly valuable because it allows the rapid generation
of MBPT expressions through a set of straightforward
rules. In general, the advantage of the algebraic approach
is that it is extremely straightforward, being essentially a
direct application of Wick’s theorem. This is associated,
however, with the disadvantage of a great deal of algebra.
The advantage of the diagrammatic approach is the fact
that an analytic formula can be obtained from a diagram
quite easily, and also that structures in perturbation the-
ory can sometimes be grasped in a very intuitive way, as
with the identification of the random-phase approxima-
tion with ring diagrams. A disadvantage of the approach
is that it is possible to miss diagrams with complicated
topology, and also that the rules for symmetry factors re-
quire some experience to apply in high order. Because of
the complexity of the results obtained in this paper, we
have used both methods in obtaining the results in order
to eliminate possible errors. Two independent algebraic
results were cross-checked and found to agree with each
other and a separate diagrammatic calculation.

We now choose the Hartree-Fock potential as the
model potential. The perturbing potential then simplifies
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to 1
1 Ec(gx)-e = D) Z 9cdcd, (24)
Z giskt * alalaiak : =2 Geded (21) c.d
1,5k, l c,d and
While there are good theoretical reasons that favor the a _ =
use of this potential, its use is almost forced for the treat- Eay = Jawob- (25)

ment through third-order MBPT of particle-hole states.
This is simply because of the extremely large number of
terms in third order; we would more than double the al-
ready very lengthy expression for the third-order energy
given in Sec. IV without this simplification.

To determine the first-order energy, we need to solve

While the first-order energy is simple to solve for, the
second-order energy, while still straightforward, requires
considerably more algebra. It can be expressed in terms
of the first-order correction to the wave function |1,4) as

o E® = (0pn|V|1pn), (26)
EY = (Oph|V|0ph>~ (22)
where |1pn) is obtained from
It is straightforward to show that
E® = FouFou(8atbuu EG + EG)), (23) |pn) = (Ho = E@)"HE® = V)[0pn). (27)
where A short calculation gives
J
l1pn >= F. 1 Z inzsd__at ! alagacaq + Z _9mnve al alaqac
P w2 ! €cd — Emn €cv — Errm "
m,n,c,d m,n,c
ﬂ'_"ﬂ_alﬂalacad + ‘q"iwc alac )|0ph), (28)
moed €cd — Ema me €vc — €ma
[
where €;; = €; + ¢;, and the prime on the summation S _Z JwevmGambe (34
above implies that the sum is over all values for which 3 - €e—Em )
the energy denominator is nonzero. In the above case, m™e
this means all m and ¢ are summed over except when
m = v and ¢ = a concurrently. Inserting Eq. (28) into (2) z gcambgwmuc (35)
Eq. (26), we find —Em
E® = FouFyu (6at6vwEZ), + 6abEP + 6, EP + E()),  and
(29) D® = _ JwamnGmnvb (36)
where mn Eva T Emn
) 1 Gedmnmned At this order the general structure of MBPT for particle-
EQ. = 32 T (30a) hole excitations can be discussed. Firstly, the terms la-
mne,d o4 Emn beled E.ore give the energy of the ground state. They
@ _ JwemnImnuve Gedmvdmwed are always accompanied by the factors 6,4 and 6,,, that
B = €ve — Emn €ed — Eom | (30D) express the fact that the particle and hole states are un-
m.m,e 3 m,cd _ affected. This term drops out in any transition energy.
E®@ — _ Jacmngmnbe Ggedmb9macd (30¢) Secondly, the terms labeled E, are related to the energy
@ e €ac — Emn o €ed — Ema shift of a valence electron above a closed shell. They are
@) @ @) @ always accompanied with a factor 845, since the core elec-
E® =2® 4?4 g+ 52 1+ 5% + DD, (30d) tron is left unaffected. If one averages over the M values
and uses
Here
7@ = _ " Jedwdawed 31 FayFouwbap = 1 (37)
c,d €cd — €va (31) 2']+12 v
- . it can be seen that these terms are identical to those given
ng) _ M}Mg, (32) in Ref. [3]. Thirdly, the terms labeled E, are closely re-
e Eac T Evm lated to the E, terms, with the roles of v and a inter-
changed and the addition of an overall minus sign. This
5 ! Guwchm is a great advantage in the actual calculation, since the
53 = Y JucbmIamue (33)  same code can be used to evaluate both terms. Finally,

m,c

Eve — €ma

the E,, terms involve both the core and valence elec-
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tron. We divide these terms into classes according to
the number of excited-state summations present, using
the notation Z for zero excited states, S for single, D
for double, T for triple, and Q for quadruple excitations,
with the latter two classes entering first in third order.
We now discuss the diagrammatic approach to the
second-order energy. There are a total of 30 Goldstone
diagrams in this order which are presented in Fig. 1. The
upgoing line with a double arrow represents the state v
when entering the diagram and w when leaving it. The
downgoing line with a double arrow represents the state
a when leaving the diagram and b when entering it. The
usual Goldstone rules apply but must be supplemented
with the following additional rule. This is that an ex-
tra factor of —1 is to be multiplied whenever the v line
connects to the w line, which occurs in conjunction of
course with the a line connecting to the b line. Thus, for
example, the fourth diagram in S;, which has no loops
and one core line, would normally enter with a negative
sign, but the new rule makes the overall sign positive.
While 30 diagrams are shown in Fig. 1, there are only
11 analytic expressions in Eq. (30), which follows from
the use of antisymmetrized Coulomb matrix elements in
those expressions. Because of the very large number of
terms in third order, we will in the following only show
the “direct” diagram with all §ijix — gijri- Another sim-
plification we will make use of is the fact that some terms
in MBPT are complex conjugates of each other, which
since the energy is real allows only one of them to be cal-
culated provided the result is doubled. In second order
this occurs with S’§2) and Sf). The diagrams are related
by a reflection through a horizontal axis, and the complex

RN o [l
b N [ I
X Zm\/_’j\

(2)

S\ (a)
FIG. 1.

conjugate of ng) can be shown to be equal to Sf) when
multiplied by Fj, Fp,, and interchanging dummy indices.
For this reason, we will in the following explicitly show
only one of the pair of related terms, writing “+c.c.” to
indicate the other term, and likewise we will show only
one of the pairs of related diagrams.

IV. THIRD-ORDER ENERGIES

‘We now turn to the calculation of the third-order en-
ergy. It can be expressed as

E® = (0pu|V|2n), (38)
or
E® = (1pn|V]1pn) — E(l)<1phllph>' (39)

We proceed by using Eq. (28) in Eq. (39). Separating out
the constant term in V from Eq. (21) allows us to write

3 3
E® = E{), + Egu, (40)
where
E®) = (Lpal(V = EQ)|1pn) (41)

and

Eqa = —(B® = EQL) (Lol Lpn). (42)

The subscript “fold” in Eq. (42) refers to the fact that
these terms are represented by “folded” diagrams [4] as
will be described in more detail later. The evaluation of
E.y, requires a very lengthy algebraic manipulation. We

Goldstone diagrams representing the second-order energy given in Eq. (30).
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express the solution as follows:

Eﬁ/)l = FovFow (‘Sab5 Ec(ﬁ%e + 5abEz(;3) + 5vwE£3) + Ez(;?;))v

(43)

where EéEZQ, ) E¢(,3), and ES are the third-order gen-

eralizations of the structures encountered in second or-
der. Because the expressions for Eégze, E,(,a), and Et(,a) and
their associated Goldstone diagrams have been treated in
detail in Refs. [1] and [5] we do not discuss them further
here. We note only that, as with the second-order en-

ergy, Eéﬁle can be dropped in calculations of transition
energies, and that the calculation of E$ ) is carried out in
exactly the same fashion as E( ) with the replacement of

v with a and inclusion of an overall minus sign. The E, ®
terms break into five classes, with 1 zero-excitation term,
11 single-excitation terms, 26 double-excitation terms, 11
triple-excitation terms, and 1 quadruple-excitation term,

E® = FouFyu(EY + EY + E + ES + EY).
(44)

The second term in Eq. (40) breaks into nine terms,

9
ES) = ~(EW ~ EQ),) FaFou > Fu. (45)
i=1

The zero-excited state term is given by

gefvbgcdefgwacd (46)

Z® = — .
(5cd - €av)(&ef - 6.av)

c,d.e,f

The single-excited state terms are

5(3) - _ GecumJadbe Jmwed ’ 472
! m%,e (6cd - 6'um)(ece - 6'um) ( )
5(3) Z gcembgdwvegmacd (47b)

medse (€cd - Eam 5ce - sam)

S(S) Z . 9demv9cade Jwmbc +ecec., (470)

myed,e (5ac - €vm)(5de - Evm)

(3) GeemvJdwebTmacd
+c.c., 47d
mge (Ece — €vm)(Ecd — €Eam) (47d)
S(3) Jecmv9dwecGmadb +ce., 47e
mg e (Ece - Evm)(ed - E'm) ( )
(3) Z JeevmImdebGwacd +ec., (47f)
myed,e ( ce ~ Euvm (Ecd €av)
S(S) JecvmGmdceJawbd +eec., 47
m% . (Ece - svm)(sd - 51)) ( g)

gecmbgdmvegwacd

Sg & +c.c., 47h
m;,e (Ecd - eav)(ece ~ Eam) ( )
5(3) - _ GdembYcade Gwmuvc +ec., 4T
° m%ye (€de — €am)(€c — €m) (47
, ~ ~
S(S) — GwembcdveImacd +ec., AT
10 m,Ec,;,e (ecd - sam)(eue - 5a.m) ( J)
(3) JwevbgedmeJamde
+ c.c. 47k
mge ( €ed — 5am)(5e - Ea) ( )
The double-excited state terms are
D(3) JdamnGwcvdmnch , 48a
mg: 4 (€ac — €mn)(€ad — emn) ( )
(3) GedvmGambnJunecd 48b
m;: d (Ecd - €vn)(6cd - evm)’ ( )
(3) JadvmemndGwnbe 48¢
m;: d ( €ad — 6.vm (eac - 5vn) ( )
(3) GawnbfcnmdGmacy 48d
Z (5uc - 6'am)(evd - 8an)’ ( )
D(3) — GednbGwnvmImacd , 48e
5 m,Xn,;:,d (Ecd - Eam)(scd — Ean) (48¢)
(3) JwdmnJcadbImnuve
, 48f
mgzc d (svc - sm11)(5-z,'al - emn) (48f)
D(3) GadmnJcwbvImned +ec. 48
mEn:c d (€ad — Emn (ec —€&a) i (48¢)
(3) JedvnJawbmImned
+ c.c., 48h
mg:c d (€cd — €vn)(Ev — €m) (48h)

, = ~ ~
Dé3) - E Gewmb9danvImnecd +ec., (481)

mome,d (Ead - 6vn)(suc - 6'am)

gcdvngawmcgmnbd .
+ c.c. 48
Z (5ad - 5mn)(€cd - evn) ’ ( J)

m,n,c,d
(3) gadvngcwdmgmnbc
+c.c
mnzc d (€ac — Emn)(sad — Eun) '
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gdamugcmnbgwndc

D¥) = — +c.c.,
12 m,g,:c,d (5cd - Eun)(ead - 5um)
(481)
(3) JwebnGdnmuvFmade
+c.c.,
mnzc d (€cd — €am (Evc - 5an)
(48m)
Dgi) _ ' GwdbnJcamdImncy +ec.,
mome,d (Evc - E‘mn)(eud - Ean)
(48n)
D(S) - _ GedmnGunbvgmacd +cec., (480)
15 mg,d (Ecd - 5am)(€a - 511,)
gcdungnwmbgamcd
D = +c.c.,
16 m%,d (5cd - 5un)(€cd - 5am)
(48p)
D(3) - _ JednmGwacdImnby +ee.,
17 'm.;:,d (Ecd - sav)(aa‘u - Emn)
(48q)
(3) gcdmngmacbgwnud
+c.c., (48r)
T2 T e o)
(3) gcdnugnwmdgmacb
+ c.c., 48s
mnzc d (Eca — €vn)(ec - 6‘m) ( )
D(3) - _ JedmnGwabcGmnud tee., (48t)
0 m%,d (Evd - Emn)(sc - 511)
D(3) - _ admnJewdbFmnvc +ee.,
2 m%,d (evc - Emn)(Ead - 6rnn)
(48u)
D(3) — gadmngcnbdgmwcv +c.c., 48y
2 m,zn;:,d (5ad - 5mn)(€c —€m) ( )
D(3) - _ JedmbJawndImney +c.c.,
23 m%,d (ecd - €am)(5vc — €mn)
(48w)
(3) Jadbm JewndImnve
= +c.c., 48x
24 mg:cd (5vc - Emn)(ed - Em) ( )
(3) Z Gedbm9amndInwev +ec., (48y)

mome,d (ecd - Eam)(sc - 5n)

JadbmGemndnwey

(3)
+ c.c.
m;:d (ed - Em) Ec— 6n.) ’
the triple-excited states terms are
T(3) JeanrJwrvmGmnbe
mmre (Ea,c - Emn)(aac - sn'r),
T(3) _ Gwemr Garbnmnvc
D =

mr.c (€ve — 6'mn)(evc - Emr),

(3) Z JeanrGrnvmJuwmbe +ecec.
(e ’

m,n,rc ac — Evm)(sac - s17,1')

gwcrbgarnmgmnuc

T(3) —
4 Z (evc - Emn)(evc - Ear)

m,n,r,c

+ c.c.,

T5(3) - _ Z /( JwarbgermnGmncv fec,

mmre Eve — Emn)(sv - Er)

T6(3) - _ gcamrgwrnbgmncu +cc.,
mare (Evc - 5mn)(5ac - Emr)
T7(»3) JacmrGuwrncGmnby +ee.,
mmre (eav - Emn)(eac - smr)
(3) Z JearmGmrbnGwnve +ee
mnrc( ac = €mr)(€c — €n) ,
T(3) - _ JeamrGmrenGunub tec
o mm,rc (sac - em'r)(ea - en) ’
(3) Z JearbGurnmGmney +ec
m,n,r,c (Evc E€mn (EC - 6,.) ’
T(3) _ GwemrGarncGmnvb +ec
.C.,
mn,r,c (sav - 5mn)(5cv - 5mr)
and the quadruple-excited state term is
Q(S) _ _ Z GwarsGrsmnImnuvb )
mor,s (Eav - Emn)(eav - 57-3)
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(48z)

(49a)

(49b)

(49¢)

(49d)

(49e)

(49g)

(49h)

(49i)

(49))

(49k)

(50)

In the above equations we have ordered the matrix ele-
ments for each term such that the first matrix element
corresponds to the upper interaction of its Goldstone di-
agram, with the second and third matrix elements cor-
responding to the middle and lower interactions, respec-

tively. Finally, the folded terms are
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! gwcbmgamuc

F =-S5 Jucbmdamve 5la
! e (svc - Eam)z ( )
gcdmbgmacd
F,=-6 51b
2 rw Z (Ecd _ Eam ( )
m,c,d
gcdbvgawcd
F =
3 Z (6cd - €av)2’ (51C)
Fy = gcambgwmvzc +ee., (51(1)
2 (eo—em)
JwemnImnve
Fs = —6,4 T—_ 5le
5 a ";mc (Evc — €mn)2 ( )
JuwamnImnub
Fr = e, 51f
0 m,n (sav - Emn)2 ( )
JacmnJmnbe
Fy=—6 JacmnImnbe
7 vw Z (5ac — Emn)2, (slg)
m,n,c
gcdmugmwcd
Fg = -6 5
8 ab Z (Ecd _5vm)2 ( 1h)
m,c,d
Fg _ gcamvgwmbc (511)

c (eac - Evm)z .

Before turning to the Goldstone diagram represen-
tation of the above expressions we make the following
remarks. The first is that in calculating the double-
excitation terms, certain energy denominator simplifica-

tions have been made. For example, the term D;a)

came
from combining two terms,
D(3) — JadmnJcwbvImned +ec. 52
7a m,nz,c,d(sc‘i - Emn)(ea.d - emn) ( )
and
(3) E ! Gadmngewbvgmnecd +cec. (53)

mome,d (Ecd - 5mn)(5c - E':a)

which have identical numerators but denominators that
can be simplified using

1 1 + 1y 1 54
A+B\A ' B) AB’ (54)
However, care must be taken with this manipulation be-

cause it is necessary to first separate out from D(3) the
part of the sum where a = ¢, which leads to an ex-
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tra term. The same manipulation has been used for
Déa), Déa), Dg), DS), (3), and Dé?,), although when no
restriction on the summation is present there is no extra

term generated by the manipulation. In all, three extra

terms are generated, which have been absorbed in E f(ol)d

as discussed below.
Turning to the Goldstone diagrams representing these
results, we note that while there are 520 diagrams as-

sociated with E,(,?,) in the above expressions, we show in
Figs. 2(a)-2(e) only 50 diagrams. This relatively com-
pact form is made possible because, as discussed above,
each diagram is the first of either two, four, or eight
diagrams generated when one, two, or three antisym-
metrized Coulomb matrix elements are present in the
corresponding analytic form. Furthermore, each analytic
form with a “c.c.” is associated with a diagram obtained
through reflection in a horizontal plane that is not ex-
plicitly shown. Finally, the diagrams associated with the
double excitations discussed above have the special fea-
ture that two orderings are possible. One could treat the
orderings separately, but here we have combined them,
which is indicated by a cross on the ambiguous vertex.

The terms F; through Fy are obtained by the evalua-
tion of the second term on the right-hand side of Eq. (39).
In diagrammatic language, they correspond to the so-
called folded [4] or backwards [6] diagrams. These di-
agrams exist only for open-shell systems and only for
third or higher order. Brandow [4] has proposed a di-
agrammatic representation of these terms in which an
intermediate state is replaced by an initial state, and the
usual ordering of the associated interactions is reversed.
These diagrams are shown in Fig. 3. Had we not com-
bined denominators in the double-excitation terms the
F; terms could be obtained from the second-order en-
ergy expressions (excluding Eégze) by squaring the energy
denominators and changing the sign. Because we have
combined denominators, the three extra terms mentioned
above must be added in, and their effect is to change the
signs of F7, Fg, and Fy.

V. DISCUSSION

Compared to the already somewhat complex formulas
needed for one-electron outside closed-shell atoms, we see
that MBPT for particle-hole states leads to very lengthy
expressions. It has proved, however, relatively straight-
forward to create computer code to explicitly evaluate
these formulas. The most important simplifying device
is the treatment of terms involving §i;x; as one object.
Because up to three of these antisymmetrized Coulomb
matrix elements can enter in third order, each third-
order Goldstone diagram shown represents up to eight
diagrams. However, all eight can be evaluated simulta-
neously by using the identity

Gige = 3 Z1(ijkl)JL(i5kl), (55)
L

where
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FIG. 2. Goldstone diagrams representing ES given in Egs. (46)-(50).

5485



5486

FIG. 3.

Folded diagrams associated with Eq. (51).
Zp(ijkl) = Xp(ijkl) + (2L + 1 A }
w(ik) = Xafigk + 0L+ S { 2%

XXLI(]'Lkl)
(56)
J
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TABLE 1. MBPT contributions to the (2p°3s1/3)s=2
— 2p® transition energy in neonlike xenon: units a.u.

Term

E© 159.347
E® -4.341
E® -0.091
E® 0.004
B®W -0.287
B® 0.044
QED 0.030
Sum 154.706
Experiment® 154.721(5)

*Reference [9)].

Here J1,(ijkl) is an angular factor given in the Appendix,
where we present the explicit angular reductions for the
first- and second-order energies. The radial matrix ele-
ment X1,(ijkl) is defined as

,,.L
Xy (ijkl) = (~1)XC(ik)CL (1) / dr / &' 7 190kl + O g ar) + 50 A (57)

where g and f are the upper and lower components of
the Dirac wave functions and

C(ig) = (~1Y+1/2, /(25 + 1) (23 + 1) ( e _”:) ,

(58)

where the parity selection rule that C;(ij) = 0if J+1;+;
is odd is understood.

While this reduced considerably the amount of coding,
the number of terms was still so large that two com-
pletely independent angular reductions and codings were
performed. In addition, in one of the codings two differ-

=

—

ent angular reductions were done by reversing the orders
of one or more of the § factors. The sums over inter-
mediate states were carried out with standard basis-set
techniques [7].

To illustrate the behavior of MBPT, we show in Table
I the results of a calculation through third order of the
(2p°3s; /2)J=2 = 2p8 transition energy in neonlike xenon,
where the hole is a 2p3/, state and the particle a 3s;/;
state. Because relativistic and QED effects are enhanced

TABLE III. Contributions to the (2p°3s1/2)s=2 — 2p°
transition energy of the third-order S and T terms for neonlike
xenon: units a.u.

TABLE II. Contributions to the (2p°3s1/2)s=2 — 20°  Term Term
transition energy in second order for neonlike xenon: units <@ 0.00030 ® 0.00113
a.u. 1 e 1 e
53 -0.00585 ¥ -0.00175
Term s 0.00008 T 0.00007
EP -0.0317 53 -0.00018 TS 0.00041
E® -0.0566 s -0.00018 ™ -0.00165
z® 0.0100 s -0.00014 T -0.00012
5@ -0.0019 S -0.00043 T -0.00009
52 -0.0482 5 0.00094 7 -0.00010
s 0.0154 5% -0.00014 ™ -0.00014
52 0.0154 s® 0.00040 T -0.00046
D®@ 0.0070 s 0.00000 T 0.00047
Sum -0.0906 Sum -0.00706 -0.00446
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TABLE IV. Contributions to the (2p®3s;/2)s=2 — 2p°
transition energy of the third-order D terms for neonlike
xenon: units a.u.

TABLE V. Summary of E®  calculation of
the (2p°3s; /2)J=2 — 2p° transition energy in neonlike xenon:
units a.u.

Term Term Term Term

D 000058 DY  -000002 D 0.00030 E® 0.00025
D 000015 D 000002 D 0.00037 E® 0.00340
D  -0.00004 DS  -000002 D  -0.00001 z® -0.00050
D 000465 DY 000119 DY 0.00021 s® -0.00706
D® 000236 D 000003 DY 0.00099 D® 0.00499
D® 000100 DY 000021 D  0.00114 T -0.00446
p® 000000 D® 000004 DY 000121 Qi; -0.00017
D® 000049 DY -000007 D  -0.00005 Etola 0.00708
p®  -000013 D& -0.00109 Sum 0.00353
Sum 0.00499

in highly charged ions we have included the lowest-order
Breit interaction B(!) (including frequency dependence)
and the first-order Coulomb correction to it, B(?), along
with an estimate of QED effects from Grant’s multicon-
figuration Dirac-Fock (MCDF) program (8] and a com-
parison with experiment [9]. For highly charged ions the
nth level of perturbation theory is accompanied by a fac-
tor Z2~™. As can be seen from Table I, this leads to a
relatively small value for E®), while E(? is large enough
so that it must be quite accurately calculated in order
to compare with experiment. Its detailed breakdown is
given in Table II. The largest contributions to E(? are

seen to come from El(l2) and Séz), although the only very

small contribution is 5'}2). A high-accuracy evaluation
of E® with large basis sets and an accurate treatment
of the partial-wave summations, can be carried out in a
matter of minutes on an IBM RISC/6000 workstation.
Turning to the third-order calculation, we present the
breakdown of the S and T terms in Table III, the D
terms in Table IV, and the complete set of contributions

to E® in Table V. As can be seen from Table V, ES¥
continues to dominate El(,s). However, significant contri-

butions also come from a large number of Et(l?,) terms as
well as Ef(:l)d, and we have not been able to identify any
one class of diagrams that dominate the result. However,
the complete third-order calculation can be carried out in
a few hours, with the bulk of the computation involving
the quadruple excitation terms.

The comparison with experiment in Table I shows a
0.015-a.u. discrepancy, which is three times the exper-

J

JL(ijkl)=Z(—1)j=+ij+L—me-m1—M( g L

—_m;
M (2

Jji L 5
—-m; —M m; )’

Mmk

imental error bar. Given the rapid pattern of conver-
gence of the E® terms, it is unlikely that E4 could
account for this. More likely is some combination of the
neglect of B®) or the fact that the QED term was ob-
tained phenomenologically. We are at present examin-
ing with the formulas derived in this paper the helium,
beryllium, neon, and magnesium isoelectronic sequences
and working on identifying a dominant part of B® and
calculating QED effects from first principles. When this
has been done it should be possible to extend the un-
derstanding of the physics of one-valence electron ions
studied in Ref. [2] to the richer spectrum of particle-hole
excitations of closed-shell systems.
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APPENDIX

Before any of the formulas presented in this paper can
be evaluated, it is necessary to first perform an angular
reduction. This involves summing products of the angu-
lar factors J (ijkl) over all magnetic quantum numbers,
where

(A1)

That summation can be carried out with the graphical techniques described in Ref. [1]. The results for the first- and

second-order energies are

B = _ 37(—1) 450t { Jv Ja

J
VA
T Ja  Jv L} L(vava)

(A2)
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and

E®@ — (=1)3v+ietim+in 1 1 Xi(vemn)Zy(mnvc) (A3)
v [mnc]L 2L+12jv+1 Ew_emn

— 3 (c1yetetivtin 1 1 Xip(cdvm)Zy(vmed) (Ad)
L 2L +12j,+1 €ed — Emu ’
AP | 1 Xp(camn)Zp(mnca)

E(z) _ — -1 Jatietim+in - A5

e [mg} L( ) 2L +12j, +1 €ac — Emn (AS)
e 1 1 Xip(cdam)Zr(madc)

-1 Jatictiatim , A6

+[m§]L( ) 2L 4+12j,+1 €cd — €ma ‘ (AS)

20— ¥ (c1)IHets ja I gu| [L2 L1 J } X1, (cdva)Zy, (vadc), (A7)

oL Ly je Lo Ja Jv Jd €cd — Eav
Y@, L1,L2
yioad 4 1 Z y(camv)Z j(vmac)

3(2) — —1)ativtictim , A8
£= > BT et (A8)
@ _ ! 1)iativtictin 1 Zj(macv)Z j(vcam) A9

-3 ST e (A9)
@ , o2 _ VI +Ltjativtictim_ L [dv Ja J\| ZL(cvmv)Zi(maca) A10

S3 +S4 2[mz]:L( 1) 2L+1{ja jv L} €c— Em ’ ( )

sCly
@ _ _ _\tetiv [ Ja I G| [L2 Li J } X1, (nmva)Zy, (vamn) All
D m n]ZL L ( 1) {L1 In L2} { Ja Jv  Jm Emn — Eav ( )
)y 41,402

A square bracket in the above equations indicates that the magnetic quantum number has already been summed over.
It is a straightforward, though lengthy exercise to do the angular reductions of the third-order energy.

* Present address: DRF/Service de Physique Atomique,
CENG, Boite Postale 85X, F-38041 Grenoble CEDEX,
France.
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