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A formulation of the spin-coupled model (a generalized valence-bond model) for calculating wave
functions based on the use of nonorthogonal orbitals is presented, permitting ground, valence excited,
multiply excited, and core-valence excited states to be obtained using a first-order iterative scheme.
A primary goal is to provide a simple single-configurational model combining visuality (e.g. , readily
yielding the one-particle density function) with accuracy, while allowing the variational minimum of
the single-configuration function for a given basis set to be obtained automatically for almost any kind
of state. The theory and its application to the ground-state properties of He, Li, and Be are presented
here using even-tempered and Clementi-Roetti basis sets. Uniform scaling of the basis exponents
leads to closely parallel energy profiles for both spin-coupled and full configuration-interaction (FCI)
calculations. The difference in energies as a function of scale factor is considerably smaller than the
corresponding diR'erence between restricted Hartree-Fock and FCI calculations. Each energy profile
displays a global minimum and one or more local minima, and, for the associated values of the scale
factor, the calculated atomic properties show little variation in magnitude.

PACS number(s): 31.20.Di 31.10.+z 31.15.+q 31.20.Rx

I. INTRODUCTION

A generalized form of the valence-bond (VB) wave
function —known as a "spin-coupled" wave function,
after Gerratt and Lipscomb [1] —has had successful
single-configuration applications combining accuracy and
a compact form. Removal of the orthogonality con-
straints between the singly occupied orbitals, pk (k =
1, 2, . . . , N), where N is the number of electrons, neces-
sarily leads to a VB multideterminantal wave function—
even at the one-configuration level —if the overall wave
function is to remain an eigenfunction of Sz. The fiexi-
ble forms of the pk impart a "split-shell" characteristic to
the spin-coupled wave function [2] important for improv-
ing the treatment of electron correlation. The alternative
procedure of regaining some of the lost correlation energy
in the Hartree-Fock model involves extensive configura-
tion interaction, with the loss of a compact, physically
suggestive wave function. Much has already been said
during development and subsequent application of the
single-configuration spin-coupled wave function with the
focus Grmly on the ground states of atoms and molecules—see, for example, the review by Cooper, Gerratt, and
Raimondi [3]. A multistructural approach within the spin
coupled formalism has been proposed by Gerratt and co-
workers for dealing with excited states [4]. However, the
nonorthogonality of the basis makes the evaluation of
matrix elements a nontrivial matter.

In the spin-coupled model, the main problem in deter-
mining the energy and other properties lies in the enu-
meration of the Nt permutations in the antisymmetrizer
which all yield contributions to each matrix element.
Gallup [5], Junker and Klein [6], and others have devel-

oped methods for handling this problem which involve
grouping the permutations together —typically by us-
ing some sort of coset expansion. Ladner and Goddard
[7], Harris [8], and Gerratt [9], on the other hand, prefer
to use slightly different group-theoretical techniques in
which each permutation is, in essence, considered sepa-
rately.

The method developed here is similar to that of the
latter authors, but differs in important practical details.
In this work, a simple first-derivative variational princi-
ple is applied to the optimization of a single-configuration
spin-coupled wave function. The procedure involves se-
lecting an orbital, P, , which is to be optimized and then
taking an expansion for this orbital over a set of prim-
itive atomic orbitals, ((~: j = 1, 2, . . . , m). It is an
important feature of the model that by working in a
mixed (~,pk basis (where pk span the set, (pk . k =
1,2, . . . , i —1, i + 1, . . . , N)), it is not necessary to ex-
pand over the same set of primitive atomic orbitals for
each P, in the iterative optimization procedure. The
determination of the optimum orbital expansion coef-
Gcients requires the evaluation of matrix elements in-
volving a mixed basis whose members are nonorthogo-
nal —this leads to an eigenvalue problem whose roots
form a "stack" of total N-electron energies, which are
upper bounds to the ground and singly excited states
of the same symmetry; each such state involves a prod-
uct of N —1 orbitals occupied in the ground state from
N —1 stacks and one orbital associated with the ith stack.
While the orbitals from the ith stack are not themselves
mutually orthogonal, orthogonality is an inherent prop-
erty of the previously described N-electron states associ-
ated with the ith stack.
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This situation is quite different from that described in
the work of Gerratt and co-workers who, evidently, main-
tain a more conventional self-consistent-field-like formal-
ism in which the orbital eigenvalue problem involves an
effective one-electron Hamiltonian —thus paralleling tra-
ditional approaches to single-configuration methods, but
differing from them in that each electron has its own ef-
fective Hamiltonian. The net result is that, unlike our
approach of using a mixed basis, the orbitals of a given
stack are mutually orthogonal, and their eigenvalues may
be regarded as orbital energies. However, this does not
automatically lead to an orthogonality condition between
the ground state and any of the possible singly excited
states. On the other hand, as in our approach, the or-
bitals belonging to different stacks are nonorthogonal.

It is clear therefore that models based on the use of
effective one-electron Hamiltonians for determining or-
bitals in spin-coupled theory lead to a fundamentally dif-
ferent way of handling excited states from that implicit
in the method described here. As will be discussed else-
where, the present work essentially provides an extension
of the work of Davidson [10) on the singly excited states
of two-electron systems.

The theoretical approach is described in the follow-
ing sections, where expectation values for spin-free and
spin-dependent operators are derived; an efficient scheme
for determining optimum wave-function parameters is de-
scribed in detail, and the resulting wave functions are
then used to determine radial moments and radial den-
sity functions from the appropriate spin or spinless one-
electron density functions. The optimum wave-function
parameters themselves are determined primarily by the
choice of scale factor: the approach adopted here requires
the initial study of ground-state energy profiles in order
to obtain the optimum compromise basis set for provid-
ing an adequate description of both ground and excited
states.

and f& denotes the number of linearly independent
(Kotani) spin functions, 8, associated with the chosen
value of S, the total spin quantum number.

A. Matrix elements of spin-free operators

For the wave function (1), the spin-free operator 0 has
a matrix element given by

(e~o~e) =) c;c,(Ae8,"~o~e8f )
j,I

= ) ) Ug (P) „,. C,"CI,(P"e!0!e),
j,k p6s~

where P = P"P~ acts on electron coordinates, and

f 1V

Pty8N ) UN(P) 8N

with (8P ~8f ) = bing (S, M assumed fixed).
The evaluation of (2) is an N! process, and its success

depends upon the efficient production and storage of both
the U(P) matrices and the relevant integrals (P"C ~O~e)
The approach used here depends upon the fact that each
P 6 S~ may be written as a product of transpositions,
and the problem reduces to finding a systematic way of
generating the sequence of P [or U(P)] in a prescribed
order from particular products of transpositions, (i, j).

Three choices for 0 are now considered: the unit op-

erator; a one-electron operator P, ~Oq(i) and a two-N

electron operator P,&.02(ij) to demonstrate how Eq.
(2) may be expressed in terms of permanent [2] expan-
sions.

The unit operutov'

Equation (2) may be written in the form

II. THEORY

The theory described in this section is based on the
use of a single spatial configurational wave function, but
with all spin couplings included:

(@~@)= ) ) Uz (p)» C;Cq(p"e~!e)
j,A: PCS~

=) C;CA,.A» = C dLC, (3a)

(1) where4'sM = v'N!Aee

where e = Pq(1)$2(2) P~(N), e& ——P~'~C~8~ and

1A=, ) ~pp
I'C S~

~»= ) Uf(p) „, (p"e~e)=+u» +s
&CSN

and +S is the permanent of overlap integrals:

(Sb)

~ll ~21 ' ' ~N1
S12 S22

~NN
i=1 j=1

N

) ~i1$j2 ' ' ~tN (4)

with elements S;z. ——(P, ~Pz. ); +U is the analogous per-
manent with elements U& ((i, j)). Dot notation is used

in (gb) as the ordered sets ( Us (P) s . . P e Srr ) snd

I

(P"O ~0~ O)r: P" c grv) may be regarded very loosely es

the "coordinates" of two vectors in the permutation vec-
tor space [11].Each term in the expansion (4) is charac-



46 SINGLE-CONFIGURATION DESCRIPTIONS OF ATOMIC. . . 5461

terized by an N-tuple of integers (i, j, . . . , t) correspond-
ing to the particular permutation whose inverse occurs
in the sum over P (P acts on electronic coordinates) re-
quired in the evaluation of b,k~. Equation (3a) thus in-
volves the simultaneous resolution of two permanents —a
process that can be performed in the same block of pro-
gram, even though the expansion of +M involves extra
column manipulations (see the Appendix).

8. One- and huo-electron operators

Consider the evaluation of the following expression:

o, (i) = ) U,"(p)(p"elo, (i) le)

If (4) is written in the form

Sl 1 S21

S1i S2i

S1N S2N

''' SNI

SN'

'''SNN

+21 ''' ~N1

q 2 (1) ' ' '
q N (')

then, 01(i) =+ M + P(i), where

Sll S21 ' ' ' SN1

+Pi =
$1(i) $2(i) PN(i)

Sll S21 ' ' ' SN1

01 02 ON'

S1N '''SNN

The elements of 01(i) may also be written as

N

(01(i))„t——) D1(P, ilk, l)O„,,

where, using (5),

where the D1(p, ilk, l) coefBcients, which are elements
of a supermatrix (spatial indices are to the left of the
vertical line and spin indices are to the right), are formed
from sums of Uf (P) z&

times a string of N —I overlap
integrals. Thus, the expectation value of a (spinless) one-
electron operator is given by

(@IO11@)/(@I@)= (@I) O1(i) I@)/(@I@)
2=1

=) -

chic,

(o1)„,/(ele)
A:, t

= cto,c/ctac,

N N N

0, = ) +M .+ F(i) = ) O, (i) = ) D, (p, i)O„,
2=1 P)2

with [V1(p, i)]&& —— D1(y„, ilk, l) and D1(p, i)
ct171(P, i)c

A similar row insertion process (see also the work of
Jucys [2] where the use of the overlap permanent and
the technique of row insertion was initiated for a more
limited kind of wave function) can be used for evaluating
matrix elements of 02. for if +g(ij) is defined by

Sl 1

+&(ij) =
I

&1(i)

41(j)

S21

42(i) ".
S11 S21

& '(i) @ '(i) ".
Io.( j)le.( )m, (j) I

= I

V1, (j) V2, (j)

where Q1, (i) = $1(i)p, (i); V~(i) = f p&(j )02(ip )pz(Z)diaz, then 02(ij)'=+ M + Q(ij) and

~ ~

N

) 02(i/) @) (@~@)= (0~02~9)/(@~@) = C)02C/C)AC,
i,j=1

l
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vrhere

As far as the actual evaluation of the numerators of (6)
and (7) are concerned, it is possible to use either a simple,
but time-consuming, method or a more elaborate scheme
based on the hierarchical properties of density matrices.
In the former method, both numerators may be built

up from the overlap strings, OV = S,iSi,2Sgs ' ' 'Spiv,
which arise in the simultaneous permanent resolution of
+M + 8 (which is, itself, required in the evaluation of
(4'~4')). In particular, the various contributions to ei-

ther CtOiC or Ct02C may be found by multiplying

each OV by either CtU(P)C(P (1)~Oi(1)~gp(1))/S p or

C U(P)C(Q (1)$ (2)~O2(12)~gp(1)gg(2))/S pS b, re-
spectively, for all S p, S~b contained in the given overlap
string. This technique falters, of course, when any of the
S,~ are very small or equal to zero: situations which arise
in the single-configuration model only if either P, or P~
possess different symmetry characteristics —in such cases
it is more sensible to use a group function formalism from
the start.

Although the scheme just described is not very effi-

cient, it does provide a useful independent check on the
results of more elaborate calculations: notably, the hier-
archical density-matrix method which starts from N! of
the ¹h-order density matrices

Div(pi@2 piv, vrv2 var) = C Us (P)C/CtECN

where

Div P"[P„i(1)$„2(2) P„iv(N)].g„r (1)$„2(2) P„~(N)

N

) Dl(p~ v)Op@&

p, v=1
(8)

) D2(», a~) (pvl02lo 7.),

respectively; where, for example, from (5) and (2),

Dr(p, v) = ) C&CiDi(p, v~k, 1)/Ct&C
k, l

= Ct'Di(p, v)C/Ct&C.

The elements of D2 may be derived in an analogous way
to that used for de6ning the elements of D1.. for, from
(7)

(O2)A, i ) O2(ij)

N

) D2(pv, aT~k, l)(»~02~a7 )

is a component of the spinless Nth-order density func-
tion, piv. Successive integrations of those components
of piv, over the spatial coordinates of one electron, then
yields a sequence of relations between the density matri-
ces Div and Div i, . . . , D2 and Di as given by Eq. 3.11
of Pyper and Gerratt [12]. However, because the electron
labels occupy a fixed sequence 1,2, . . . , N, the orbital la-
bels defining each DN i will vary according to the choice
of Div and S„„„„.Repeated use of the recursion relation
for D (v = N —1, . . . , 2, 1) therefore enables (3a), (6),
and (7) to be written as

N

) Di(p, v)S„, ,

P, v=1

Thus,

D2(pv, av) = ) C&CiD2(IJv, a7. !k, l)/C AC
k, l

= CtV (», a~)C/Ct&C.

The construction of the hierarchy used here, for pro-
ducing the elements of Di and D2, is a little difFerent
from that of Gerratt [9], in that only those intermediate
DN (N g 1, 2) matrices are produced which are required
in forming all the density-matrix elements appearing in

(9). The particular choice of paths in this hierarchy is not
unique and may be chosen to minimize computer stor-
age requirements; however, because so few intermediate
density matrix elements are formed, the subset of paths
required for an (N —2)-electron system is not contained
in the N-electron hierarchy. On the other hand, if the
N and (N —1)--electron systems have the same values
of fg (N even), then it is possible to use the ¹lectron
hierarchy for both systems providing a null orbital is in-

corporated in the analysis for the latter system.
The detailed mode of construction of the hierarchy is

illustrated in Fig. 1 for the example of a five-electron sys-
tern, where fs, = 5. The 5! Ds(PQRST, 12345) elements
—designated in the figure by Ds(,12 345) —are
generated in a "natural" order, which is determined by
the generation of the U& (P) from +M: in particular, the
values of PQRST range from 12 345 to 54321. The sub-
set of 3(5!) D4 elements, required to form the necessary
D3, is formed from the D5 by successive application of
(8) with SN5, Siva, and Siv4, a further application of (8),
using SM4, SM2, and SMi (where T assumes, of course,
a different value in general for each element of D4) then
yields four blocks of D3 elements, each block containing
60 elements. Further reduction to D2, and then to D1, is
made using the overlap integrals indicated in Fig. 1. It is
clear, moreover, that each limb of the hierarchy involves
producing 5!/(5 —v)! elements of D„ i from each block
of D5 elements.



46 SINGLE-CONFIGURATION DESCRIPTIONS OF ATOMIC. . . 5463

(g) Five electron hierarchy x( . I3) D,(,12)

x( . . l4) D,(. . . , 123) x( - 12)D,(. . . , 13)

"( . I5) D,(,1234)

x ( I1) D3( . , 234)

x(. . 11) D,(,23)

x(. 13) D,(,24)

x( 12) D (,34)

D5(, 12345)

x(" 15) D, (. . . , 14)

x( I3) D, (. . . , 1235& x( 12) D, ( . , 145) x( 14) D,(,15)

x(" 14) D,("., 1245& x( "I1) D,(. . . , 235'

x( ~1) D (. . . 45)

x(" 13)D,( ",25)

x( . ~2) D, (. . . 35)

(b) Four electron hierarchy

D,("., 1234)

x ( "14) D, (. . . , 123)

x ( 13) D3(, 124)

x(."13) D, (. . . , 12)

x( ~2) D (. . . 13)

x( I2) D,(,14)

x(" I1) D, (. . . , 24)

x(" 14)D,23( )
x( "11) D, (. . . , 234)

x ( . I2) D, (. . . , 34)

FIG. 1. Possible four- and five-electron density-matrix hierarchy descent paths.

B. Matrix elements of spin-dependent operators

The matrix elements of one- and two-electron spin-
dependent operators may be expressed in terms of the
elements of the spinless density supermatrices, with ele-
ments Dq(y„, v~k, l) and D2(IJv, or[k, l), respectively, in-
troduced in the preceding section. Although Gerratt [9]
has considered the evaluation of such matrix elements

I

for one-electron operators —but using a slightly different
approach —he has not considered the explicit evaluation
of two-electron operators.

Consider, first, the one-electron operator
1V

O, =) O;(t)O", (t)
4=1

with expectation value, O~.

1V

0 =) ) 0„'C' ) (P"4[O"(')iC)(P 8„ iO ( )i8, )/C~bc

=) ) c„'c() ) v,"(P),„(P"bio",(~)le) (8floF(t)I8P)/c~~c
i k, l t= 1 Pespz

The matrix element over the spin functions may be evaluated by decoupling the last electron from the Kotani spin
functions, 8, using Eqs. 4.2 of Kotani and coauthors [13], and by using the identity

(8~"IOF(&)18'") = ((& ~)8r"IOf(~)l(& ~)8P)

the integration may be performed over the spin coordinates of electron 1V:
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(et"Io;(t)le, ) =) vs"((t, N)) «Us((t, N)), (e,"lo;(N)le„")
q, r

= (Us ((» N))) &'Us ((t N)) = [=-N(t)]t .
- tl

(12)

The form of the matrix N(i) clearly depends on the form of 01(N): for example, with 01(N) = S,(N), the
(diagonal) matrix 0 has elements

—M/(2S+ 2) for p = 1,2, . . . , fs
M/2S for p =f, +1, . . . , fsN

Thus, on using (5), (9), and (12), Eq. (11) may be written as

01 ——) CqCt ) ) D1(P, tlt, k) [=N(t)]tt 0„,/C) AC
kl p i t 1

=) [C 'D1(p, , i) )v(i) C] 0&,/C AC = ) D1(p, i)0» ——tr (D10) .

The expectation value for the two-electron spin-dependent operator follows in an analogous manner:

o, = (el) o;(ij)02(ij)l@)/(O'lc)

f,
=) .&~&& ) .) . ) . Us (P),k (P"c'102(tj)lc') (e 1o2(tj)le&")/C~&C

k, l t(j t=l (Pes~

This time the spin integration is performed after applying the permutation (i, N) (j,N) = Q,j, say, to the intergrand,
followed by a decoupling of the last two electrons in each e+. The full details are given elsewhere [11],and the result
may be written in the form

(e"I02(tj) leP) =) . Uf(q'&), Uf(q &), (e,"l02(N —1»)le,")
W

(U's (tj)) + Us (Q' ) = ["&(tj)]g
- tl

Hence, using (ll),

02 = ) C)'tC&D2(Pv, ijlt, k) [ &(ij)]t& (Q„Q~I02IP,Pi )/C AC
k, l, i,j,t,p, ,v

= ) . [c 'D2(u»tj)=)v(ta)c] (Wt ((' lozl4'4'j)/c &c = ) D2(w»ti)(4'1 4' Iozld'4'j) (14)
p, ,v,i,j P )v) i)2

Once again, the form of the (again diagonal) A2 matrix depends upon the choice for 02 (N —1, N): for example, with
02 (N —1,N) = S2(N —1)SZ(N),

02„= &

4(S+1}(2S+3) J ' ' "' ~ S+1

S+2M +1 N —2 N —2 N —2
4(2S+1)(S+1) P fS + '" fS+1 + fS

S—2M~ N —2 N —2 N —2 N —2
4S(2S+1) f» & = fs+1 + fs + 1, ..., fs+1 + 2fs

2M~ —S N —2 N —2 N
, 4s(2s —1) 'P =fs+1 + fs +1 " fs.
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Here the labeling of the fg spin functions, 8N, reflects
the parentage of the N-electron states.

III. OPTIMIZATION OF WAVE-FUNCTION
PARAMETERS

As noted earlier, the orbitals P; are expanded over a
basis of m primitive atomic orbitals, (j, of the Slater
type:

0* = ).dj'4

in matrix notation:

Hd = SdE',

where the matrix elements of the Hamiltonian and unit
operators are given by

Hpq = (Tp~II~Tq) axld Spq: (Tp~Tq) &

respectively. Overlap may be removed from the problem
by transforming with S ij then defining d = S ij2d',

H'd' = d'E

and

No restrictions are placed on the expansion coefficients
dj, , other than that of orbital normalization. The pro-
cess of optimizing the orbital P, involves starting from an
arbitrary initial guess at the "other" dj„(r P i) then ex-
panding P, over its m basis functions, keeping the other
N —1 orbitals fixed

(d') tH'd' = Z,

or in homogeneous form

(H' —t)d' = 0;

for nontrivial solutions, d, it is required that

iH' —Zi = 0,

(15)

@ = +4'1 ' ' ' 4i 1—) dji(j 4'i+1 ' ' ' NNes = ) dj i' ~
~ ~ ~ ~ ~ ~

For a given choice of C, application of the first-order vari-
ation theorem to determine the linear parameters, dj, ,

leads to the standard expression for the secular equation
I

thus by diagonalizing H' the eigenvalues E' and eigenvec-
tors d are obtained.

The first step in determining the dj, involves substitut-
ing for the T& and Tq in the Hamiltonian matrix elements
above:

Hpq ) C U$ (P) C(P it'14'2 ' ' ' (p ' ' ' yN[+[4'l4'2 ' ' ' (q ' ' ' O' N) ~

PCS'

Matrix elements of this type are formed in an unconven-
tional mixed basis of P, 's and (p's, where the one- and
two-electron integrals, hk~ and gktI, t, respectively, ap-
pearing in the expression

Hpq = ) hklDi(k, t) + ) gqu lilD2(kt, k't')

are either partially or fully transformed from the t,
" basis

to the P basis, depending on whether or not they involve
the orbital P, , which is replaced by (p on the right and

(q on the left.
Solution of the secular problem yields new dj, . One-

and two-electron integrals are updated (in the P basis)
with the new dj, —a process which may be accomplished
in highly efficient "partial summation" stages involving
only those integrals that require the new coeScients. In
addition, the possibility exists within the formalism to
expand each of the P, over a difFerent subset of basis
functions. The two- and four-index transformation rou-
tines that embody these features are so efBcient that they
do not limit the speed of the calculation: the principal
limiting factor as N increases is concerned with the for-
mation of matrix elements.

The updated one- and two-electron integrals are used
in the formation of a new potential in which the next or-
bital, in turn, is optimized. Since this potential never
involves any contribution from the orbital being opti-
mized, no ambiguities are encountered in the formation of
the potential for an open-shell system: a situation which

should be contrasted with restricted Hartr""-Fock (RHF)
calculations where the constraint of orbital double occu-
pancy makes it necessary to form a suitably averaged
potential for the case of open-shell systems in order to
facilitate solution of the "pseudolinear" variational equa-
tions.

Each orbital optimization yields a "stack" of m N-
electron states —important properties of which are given
in the analysis below. As discussed in the Introduction,
each energy state on a stack is associated with an N
electron wave function which yields an upper bound to
an appropriate excited state —different stacks yield dif-
ferent excited states and it is only the lowest energy state
that is optimal for the spin-coupled calculation on the
ground state. Thus, for example, in the case of beryl-
lium four stacks are obtained with a structure as shown
in Fig. 2, and in a ground-state calculation the orbital
corresponding to the lowest eigenvalue of each stack is
occupied —it is these orbitals that define the new po-
tential in successive cycles of the iterative procedure.

It follows from the relation between d and d' that

dtSd = (d')tS '~ SS '~ d' = (d')td' =1
and, from (15),

dtHd = (d')tS '~ HS '~ d' = (d')tH'd' = E',

demonstrating that wave functions with a single orbital
replacement from orbitals in the same "stack" are orthog-
onal and satisfy the generalized Brillouin-like condition
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) CtTJ~(p)C(p p, A 4i'''41oldik~ "&~ '""&N) ~43'oii'

PgSN

where 0 = H, 1 —a set of conditions which also holds
for the optimum C.

Thus the definition of the P, differs substantially from
that of Gerratt, since matrix elements of the operators H
and 1 are found to vanish between all spin eigenfunctions
diEering by a single orbital replacement at convergence.

The optimum spin-coupling weights are found by ex-
panding the wave function over the representation for the
chosen set of spin functions. By analogy with the orbital
situation, Hamiltonian matrix elements are of the form

H„q ——) [Ug (P)]pq (P'4 1H1@).
PGSN

The coefficients, C+Ug (P) C in (16) for all permuta-
tions P of the symmetric group, are re-formed with the
new coupling weights. In this work, energy minimization
is a two-stage process of spin-then-space optimization—
such a scheme allows the progress of the calculation to be
easily monitored as at each cycle in the iteration the total
energy is output N+ fz+ times. Instabilities such as lack
of monotonic convergence in the sequence of eigenvalues
at each cycle is usually indicative of inappropriate ini-
tial guessed form for the N orbitals. In practice, conver-
gence is facilitated by first permitting only the maximally
paired spin eigenfunction to be included. If convergence
is very slow, which is indicative of local minima in the en-
ergy hypersurface, then this can be ameliorated by first
selecting the second or third root of the Nth orbital sec-
ular problem to obtain a better set of starting orbitals.
The advantage of this latter procedure is that the tightly
bound (core) orbitals are then very close to their optimal
forms in the ground state.

IV. RESULTS

In this section, the variation in selected atomic prop-
erties with a single basis exponent scaling factor, a, is

I

investigated. The atoms He, Li, and Be are considered
(which include both open- and closed-shell systems) to-
gether with difFerent types of Slater-type orbital (STO)
basis set, and the results from spin-coupled calculations
are compared with those of RHF and full configuration-
interaction (FCI) calculations using the same basis sets.
The basis sets selected here are those of Clementi and
Roetti [14] (CR), where the exponents are individually
optimized for the ground-state RHF wave functions of
each atom, and even-tempered sets [15] (Um) of ls prim-
itives, where the exponents k, are defined in geometric
progression by the two parameters a and b,

k, =ah', i =1,2, . . . , m.

In the present calculations, b is assigned the value 1.5,
and medium and large basis sets are covered by the two
choices rn = 6 and m = 10: basis sets are referred to as
U6 and U10, respectively. Such an investigation is con-
cerned with the abilities of the basis to describe different
regions of an atom, with a primary goal of finding clues
as to the best compromise basis set for describing both
ground and excited states.

Spin-coupled total energies, Esc, for the ground states
of the three species under consideration, are given in Ta-
ble I for optimized values of a for each of the three ba-
sis sets used here; optimized energies, EFci, obtained
from full CI calculations using the same scaled basis sets
are also given in the table. The variation of Esc and
EFci with a shows that the two energies closely paral-
lel each other, thus displaying a similar pattern to that
observed in analogous calculations on the lowest sS ex-
cited states of heliumlike species [16]. Also, on going from
RHF to spin-coupled to full CI wave functions (i.e., as the
amount of electron correlation admitted by the model in-
creases) the position of the global energy minimum moves
to larger a —perhaps a result of the increased radial cor-

6s 1s'2s2s'

5s 1s'2s2s'

1s6s'2s2s'

1s5s'2s2s'

1s ls'6s2s'

ls ls'5s2s'

1s 1s'2s6s'

ls ls'2s5s'

4s1s'2s2s' 1s4s'2s2s' 1s1s'4s2s' ls 1s'2s4s'

3s1s'2s2s' 1s3s'2s2s' 1s1s'3s2s' ls 1s'2s3s'

1s 1s'2s2s' 1s1s'2s2s' 1s1s'2s2s' ls ls'2s2s'

'core-like excited states' 'valence-like excited states'

FIG. 2. A schematic diagram of stack ¹ lectron eigenvalues and associated orbital configurations obtained during the
spin-coupled energy minimization procedure for the ground state of the beryllium atom, with orbital occupation as indicated
by ~ .
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relation allowing the orbitals to become more spatially
contracted.

For each global minimum some properties of the spin-
less density, and in the case of lithium the spin densities,
in the ground state are shown in Table II. The proper-
ties include radial moments, the charge density at the
nucleus, p(r)„—o, and the density cusp ratio

The same properties are evaluated at each of the minima
appearing in the energy profile of the lithium atom using
a U10 basis, for both the n- and P-spin density functions
derived from the spin-coupled wave functions (Table III).

V. DISCUSSION

The discussions on this paper may be grouped into
three main areas —those of theory, implementation, and
results. In the theory sections, permanent expansions
are used for evaluating the matrix elements of spin-
dependent and spin-free one- and two-electron operators.
The variational procedure involves the construction of a
hierarchy for producing the one- and two-electron den-
sity matrices; the choice of hierarchy is not unique and
this may be exploited in maximizing the computational
efficiency of the calculation. The method is computation-
ally different from both the generalized VB methodology
of Leasure and Balint-Kurti [17] and the previously cited
spin-coupled approach of Gerratt and co-workers. Cen-

TABLE I. Global and local energy minima in the functions of spin-coupled, restricted Hartree-Fock and full-CI ground-state
energies (Esc ERHF and EFci, respectively) with scale factor a for the atoms helium, lithium, and beryllium using
Clementi-Roetti [14] (CR) basis sets and even-tempered sets of six and ten 1s STO's (U6 and U10, respectively). The scale
factors for the global minimum are shown boxed.

Basis

CR

Atom

He

ERHF (a u )
—2.86167927
—2.86167936
-2.86167991

0.3529
0.6169
0.9994

Esc (a.u.)
-2.87787867
—2.87798745
-2.87796885

0.4075
0.6100
0.9814

EFci (a.u. )

—2.87894321
—2.87897476

0.6111
0.9771

Li -7.43272569
—7.43173544

0.9993
1.8064

-7.44645289
-7.44663593

0.7605
1.7783

-7.44691569
—7.44740592

1.0396
1.7933

Be —14.57302076 0.9994 —14.58924957
—14.58950307

0.7751
1.2384 —14.59179248 1.2109

U6 He —2.86167931
—2.86167973
—2.86168000
-2.86167997

0.4229
0.6607
0.9461
1.4056

-2.87798444
—2.87799653
—2.87799671

0.5590
0.9262
1.3794

—2.87898820
—2.87900494

0.9933
1.3780

Li —7.43267577 0.5922 —7.44715918 0.6220 -7.44807703 0.6181

U10

Be

He

Li

—14.57190851

—2.86167936
-2.86167991
—2.86168000
—2.86168000
-2.86168000
—2.86168000
—2.86168000
—2.86167998
—7.43272403
-7.43272624
—7.43272582
—7.43272534

0.7705

0.0829
0.1390
0.1894
0.2829
0.4228
0.6318
0.9432
1.4039
0.1336
0.2297
0.3720
0.5750

-14.58980868

-2.87798939

—2.87799669
-2.87799680
—2.87799681
—2.87799681
—2.87799680
—2.87799677
—7.44755385
-7.44756520
—7.44756616
—7.44756637

0.7914

0.1067

0.1797
0.2770
0.4160
0.6205
0.9251
1.3765
0.1688
0.2735
0.3783
0.5751

—14.59089389

—2.87902283
—2.87902371
—2.87902366

—7.44864496
—7.44865465

0.7881

0.6475
0.9254
1.3711

0.3937
0.5760

Be —14.57301857
—14.57302289
—14.57302263
—14.57302225

0.1915
0.3159
0.4900
0.7541

—14.59049589

—14.59051131
—14.59050961

0.2306

0.4841
0.7422

—14.59175732
—14.59176696

0.5052
0.7426
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TABLE II. Radial moments (r ), charge density at the nucleus p(r) =0, and the density cusp ratio of the spinless density
functions for the atoms helium and beryllium, using Clementi-Roetti [14] (CR) basis sets and even-tempered sets of six and
ten Is STO s (U6 and U10, respectively) scaled to optimize the respective spin-coupled ground-state energies. In the case of
the lithium-atom ground state, the properties of the n- and P-spin density functions are tabulated. The scale factor for the
global minimum is chosen for each case.

Atom
He

Li (n)

Li (P)

Be

Basis
CR
U6
U10

CR
U6
U10

CR
U6
U10

CR
U6
U10

a
0.6100
1.3794
0.6205

1.7783
0.6220
0.5751

1.7783
0.6220
0.5751

1.2384
0.7914
0.4841

(r ')
12.0371
12.0382
12.0381

15.3619
15.4026
15.3954

14.8278
14.8573
14.8610

57.6513
57.6483
57.6682

9')
1.8681
1.8681
1.8681

4.4350
4.4124
4.4500

0.5756
0.5755
0.5753

6.1272
6.1355
6.1573

(r')
2.4181
2.4179
2.4179

18.0199
17.7558
18.2156

0.4515
0.4513
0.4508

17.2440
17.3424
17.5562

(" )
4.0297
4.0269
4.0273

92.5009
89.9554
94.5782

0.4560
0.4506
0.4490

62.2055
63.0948
63.7846

(~ )
8.2422
8.2208
8.2238

547.58
524.03
568.93

0.6108
0.5559
0.5440

261.39
268.82
281.57

P(r)„-0
3.6266
3.6303
3.6296

6.9155
7.0634
7.0411

6.6942
6.8236
6.8153

35.4338
35.4221
35.4638

Cusp
1.9944
2.0041
2.0023

2.8113
3.0249
2.9825

2.8137
3.0161
2.9824

4.0072
4.0031
4.0075

tral to the effectiveness of the first-order iterative pro-
cedure described in this paper is a method for partially
updating the one- and two-electron integrals.

The advantage of the present scheme is that it provides
a computationally attractive approach to the determina-
tion of electronic wave functions for both ground and ex-
cited states- -"specially core-valence excited states. Con-
ventionally, such excited states require either the inclu-
sion of ficticious particles to inhibit variational collapse
or the use of multiconfigurational formalisms, thus losing
the physically appealing form of a single-configurational
wave function.

An important aspect of this approach is that, unlike
multiconfigurational schemes, it permits the use of dif-
ferent basis sets for different electronic states: this is a
useful requirement, as the results show that the optimum
ground-state wave function is associated with a basis set
which is likely to be too contracted for an acceptable de-
scription of excited states. The implementation of the
method does not require the formation of an effective
one-electron Hamiltonian to determine the optimum or-
bitals —as in the work of Gerratt [9]; instead, the use of
a mixed basis yields N stacks of ¹lectron energy states
at convergence; these have the property that the asso-
ciated wave functions are noninteracting on each stack.

In addition, each stack energy is an upper bound to an
appropriate singly excited state.

The results presented in this paper indicate that cal-
culated atomic properties are relatively insensitive to the
choice of optimum scale factor, and are of good qual-
ity (accuracy of the kind obtained by Jitrik and Bunge
[18] of Hylleraas quality is not an objective). However,

by a physically motivated extension to the model, dou-
bly excited structures involving orbitals of higher l, or
terms involving the interelectronic coordinates, may be
incorporated into the wave function to provide angular
correlations.

VI. CONCLUSION

In summary, a single-configuration spin-coupled for-
malism is presented for ground states. Calculations on
He, Li, and Be show how ground-state properties are rel-
atively insensitive to scaling of the atomic basis-set expo-
nents. The combination of this feature with the stability
of the formalism against variational collapse opens the
way for an extension of its application to physically mo-
tivated good-quality calculations of valence-excited, mul-

tiply excited, and core-excited states.

TABLE III. Radia1 moments (r"), charge density at the nucleus p(r)„=o, and the density cusp ratio of the n- and P-spin
density functions using an even-tempered basis set of ten Is STO s (U10) scaled to optimize the spin-coupled energy at local
minima in the energy Esp for the ground state of the lithium atom. The scale factors for the global minimum are shown boxed.

Spin a
0.1688
0.2735
0.3783
0.5751

0.1688
0.2735
0.3783
0.5751

(r ')
15.3997
15.3950
15.3961
15.3954

14.8655
14.8604
14.8616
14.8610

(")
4.4498
4.4498
4.4498
4.4500

0.5753
0.5753
0.5753
0.5753

(r')
18.2119
18.2149
18.2119
18.2156

0.4509
0.4508
0.4508
0.4508

(r')
94.5186
94.5792
94.5170
94.5782

0.4514
0.4492
0.4491
0.4490

(r')
568.0936
568.9626
568.0237
568.9297

0.6201
0.5478
0.5449
0.5440

p(r) „=0
7.0599
7.0401
7.0482
7.0411

6.8351
6.8139
6.8220
6.8153

Cusp
3.0235
2.9896
3.0132
2.9825

3.0264
2.9888
3.0125
2.9824
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APPENDIX: EXPANSION
OF THE PERMUTATION PERMANENT

OF ORDER FOVR

The resolution of the permanent of transpositions

E (12) (13) (14)
E E (23) (24}
E E E (34)

does not yield the set of permutations for the sym-
metrizer if the expansion is carried out in the normal

way; however, a mode of resolution —analogous to that
achieved by a left-coset expansion of the symmetrizer-
is achieved by the following procedure: in the process of
the usual resolution, if the ijth element in the current row
from which the expansion is being made has an entry (i j)
other than E, then columns i and j are interchanged in
the rows beneath (it is important in this row interchange
procedure to note that the column labeling is global, in
the sense that although column i may have been moved
into the position of column 1, it is still treated as column
i insofar as the interchange procedure is concerned); the
final multiplication of transpositions is taken in reverse
order. This latter procedure is necessary to ensure that
the permutations defined through the N-tuples in the
expansion of the overlap permanent, are exactly paral-
leled in the expansion of the permutation permanent—
thereby ensuring that the Ug (P) matrices are generated
in sequence required.

The expansion of the permanent associated with the
group of permutations S4 therefore takes the form

E (23) (24) E (23) (24) (23) E (24) (24) E (23)
=- E E E (34) + (12) E E (34) + (13} E E (34) + (14) (34) E

g g g E E E E

E (34) 23
E (34) (34) E

+(12)E E {E + (12)(23) E {E + (12)(24)

+(14)(24) E + (14)E E E + (14)(23)

= E + (34) + (23) + {243)+ (234) + (24) + (12) + (34)(12) + (132) + (1432) + (1342)

+(142) + (123) + (1243) + (13) + (143) + (24)(13) + (1423) + (1234) + (124)

+(134) + (14) + (1324) + {23)(14).
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