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The integral equation originally derived by Sharp and Horton for the optimized effective potential
(OEP) is exactly transformed into an equivalent form from which it is manifestly clear that the OEP,
V„(r), is an implicit functional of only [n; ], the orbital densities of the occupied states [g; ], and the
corresponding single-particle exchange potentials [u; ]. Furthermore, the transformed OEP has exactly
the same form as one recently developed by the authors [Phys. Rev. A 45, 101 (1992)] from a more
heuristic approach, the only difference being that in the present work a term proportional to the gradient
of n; is added to each v; whose average value when taken over theio state is zero. This result leads to
the natural development of an iterative approximation for V„, with the zeroth approximation being
given by our previous result. The application of this technique to the calculation of the total energy and
highest-energy single-particle eigenvalue for selected atoms is presented. In addition, we note that our
results are applicable to the calculation of the OEP for any assumed exchange-correlation functional
E„,[[t(; ]],where u; is taken as the appropriate functional derivative of E„, In the ca. se that E„, is a
functional of [n; ] only, as in the case of the local-density approximation with self-interaction correc-
tion, the resulting V„, is a functional of the [n; ] only.

PACS number(s): 31.10.+z, 31.20.Sy, 31.90.+s, 31.20.Di

I. INTRODUCTION

Recently, we [1] have proposed an approximate solu-
tion of the optimized effective potential (OEP) equation
for the exchange-only case based on the utilization of cer-
tain conditions manifestly satisfied by the exact OEP,
V„. The resulting approximate solution V„(r) is identi-
cal to one that is analytically obtained [2] by making a
simple approximation [3] in the Green's functions in the
OEP integral equation [3,4].

The approximate potential V maintains many of the
fundamental properties of the exact potential V: It
reduces to the exact Kohn-Sham [5) result in the
homogeneous-electron-gas liinit, approaches —1/r as
r ~ ao [4], yields highest-occupied-orbital-energy eigen-
values s that satisfy Koopmans's theorem [6,7], and
exhibits an integer discontinuity when considered as a
function of fractional occupancy of the highest-energy
occupied single-particle state of a given spin projection o.

[8]. In addition, it very nearly satisfies Janak's theorem
[9].

Previous detailed numerical results obtained by ern-
ploying V„as the exchange-only potential for ten atoms
with closed subshells have yielded total energies, Hartree
potentials, single-particle expectation values, and c
which are in excellent agreement with both exact OEP
and Hartree-Fock (HF) results and represent a significant
improvement over the results obtained by employing oth-
er exchange-only potentials [1]. Similarly, the properties
of alkali-metal atoms have been calculated, including the
separate spin-up and spin-down densities, to obtain re-

suits in excellent agreement with those of spin-
unrestricted OEP and HF methods [1]. More recent
work [10] on all atoms with Z (54 gives further support
to the conclusion that the approximate OEP is a simple,
but remarkably accurate, representation of the exact, nu-
merically derived exchange-only OEP.

Nevertheless, the construction of the approximate
OEP poses some interesting questions with respect to the
fundamental form of the exact OEP as well as limitations
on the numerical accuracy of the approximate OEP. The
equation satisfied by V depends on the entire set of or-
bitals [l(; ] which are the eigenfunctions of a single-
particle Hamiltonian, whereas V depends only on the
orbital densities of the occupied states (both V„and V„
also depend on [ u; ], the single-particle exchange poten-
tials corresponding to the occupied states): It is therefore
natural to consider whether the equation for V„may be
inverted to yield solutions which do not require the in-
clusion of unoccupied states.

Furthermore, the construction of V is somewhat ad
hoc, being obtained from the exact solution of an approxi-
mate OEP integral equation. This approximate integral
equation is itself obtained by taking the orbital-density-
weighted average of the single-particle exchange poten-
tials u, shifted by orbital-dependent constants [11],
chosen so as to satisfy explicitly some properties of the
exact V„[7].This equation is identical to one obtained
by assuming all the energy denominators in the Green's
functions appearing in the OEP integral equation are
equal to the same constant [2,3]. However, the
equivalence of the two procedures does not guarantee
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that either paradigm is valid. Moreover, the method of
constructing V„does not lead to the possibility of any
systematic way of improving the approximation. We ad-
dress these issues in Sec. II. In particular, we show in
general that the OEP integral equation may be
transformed into an equation involving only the occupied
single-particle densities and the [v; ] [4]. Using this
form of the OEP equation, we derive the properties of
V„previously obtained by less rigorous arguments.
More significantly, we show that the OEP integral equa-
tion may be further exactly transformed into an equation
of the same form as that satisfied by V, , the only
difference being the addition of a term to each v; which
is zero when averaged over the io orbital. In addition,
we discuss a simple approximation for this term.

Finally, in Sec. III we apply this approximation to the
calculation of the ground-state energy E, and c of some
selected atoms. We find that the correction term ac-
counts for nearly all the small differences between V„
and V„ for atoms with Z~10 yielding total energies
which are within 0.0001 a.u. of the exact E for these
atoms with s that are generally closer to the OEP (and
HF) results [1,10]. For heavier atoms, the fractional
change in the energy using this approximation is less
significant but always an improvement over the V„re-
sults yielding total energies that are less than 2 ppm
above the exact OEP values with the c values nearly un-

changed, remaining only a few tenths of 1% from the
OEP and HF results [1,10].

where E " is the usual Hartree-Fock exchange energy
functional of the occupied orbitals.

For simplicity, we shall choose the lt; as real. In that
case

G, (r', r)=G, (r, r'),
and it then follows from Eqs. (2) and (3) that

=5(r —r') —g, (r)f, (r') .

Then, if we define g; (r, r') by

G, (r, r') =g, (r, r')g, (r)g; (r'), (6)

operating on Eq. (6) with [h (r) —s; ] and employing Eq.
(2) yields

—'V (I; (r)Vg, (r, r')= —[5(r—r') —n, ,(r)],
where

(7)

n; (r):—(P, (r)}

i.e., the orbital density for a fully occupied I', o., and

g, (r, r')=g, ,(r', r) .

In addition, it follows from the definition of G; in Eq. (3)
and the definition of g; in Eq. (6) that for all r',

g; r r' n; r ~=0, (9)

II. THE EQUATION FOR THE OPTIMIZED
EFFECTIVE POTENTIAL AS A FUNCTIONAL

OF THE OCCUPIED SINGLE-PARTICLE DENSITIES

The integral equation satisfied by the spin-unrestricted
OEP, V„(r), in the exchange-only approximation, is [1]

g f; fdr'[V„(r') —
v, (r')]G; (r', r)

Xg;*(r')g, (r)+ c.c. =0,
where f; is the fractional occupancy of the state de-
scribed by the wave function 1t; . Here p; satisfies the
single-particle Schrodinger-like equation

h p, (r ) —= —
—,
' V p, + [ V,„,+ VH + V„]Q;

(2)

with V,„,(r) and VH(r} the external potential and the
Hartree potential, respectively, and

(r') '(r)
GO (

. }
—gi 1 J

j Eju Eru

which can be employed to fix the value of g; which is
determined only up to an additive constant by Eq. (7).

Substituting the expression for G; given by Eq. (6) into
Eq.(1) yields

gf; fd r'[ V„(r')—v; (r') ]g; (r, r')

Xn; (r')n; (r)=0. (10)

so that it may be written as

Then, since g; is a functional of 8; only, the OEP in-

tegral equation for V„ involves only the (at least partial-
ly) occupied orbital densities, i.e., those for which f; %0,
and the single-particle potentials v; corresponding to
these states which are also functionals of the occupied or-
bitals only.

Equation (10) may be significantly simplified by
defining

p; (r)—:fd~'[V„(r') —v,. (r')]g,. (r, r')n, (r'),

where the prime on the sum means the sum over j is re-
stricted to states for which c WE,- . The single-particle
potentials u; appearing in Eq. (1) are given by (for

f, %0)

gp; (r)n; (r)=0,

where

n; (r)=f, (g; (r))',

(12)

(13)

u,. (r}:—
f; f;*(r) 51tt; (r)

(4)
i.e., the orbital density of the io state. The differential
equation satisfied by p; is obtained by multiplying Eq. (7)
by
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f, [V„(r')—v; (r'}]n, (r')

and integrating over r', which yields

—,'V. [n, (r)Vp, (r)]
= —n; (r)[V„(r)—v,. (r) —(V„;—u; )],

so that if we require that V„(r)~0 as r ~ ao, since

v (r)~ f— lr as r~ 0D,

then

V„(r)~ f„—/r (20)

(14) and

where V; and U; are the expectation values of V„and
U, averaged over the io. state. Finally, it follows from
Eqs. (9) and (11}that

fp; (r)n; (r)d~=O,

which can be employed to determine the arbitrary addi-
tive constant left undetermined by Eq. (14).

Equations (14) and (15) completely determine p; (r)
once the terms on the right-hand side (rhs) of Eq. (14) are
assumed known and it is assumed that n; (r) decays ex-
ponentially to zero as r~ 00. This follows from the fact
that u; (r)~0 for r~~ and since V„ is determined
only up to a constant by Eq. (1), we can take V„~O as
r~ oo. Then it follows from Eq. (14) that Vp; (r) con-
verges as r ~ 00. Now suppose there are two solutions of
Eq. (14} corresponding to the same rhs. Then the equa-
tion satisfied by the difference between these two solu-
tions, q;, is

0 —0
Vx cpm Um cr (21)

Employing Eq. (14) to evaluate the first term in Eq. (23),
we obtain, after some rearrangement, the exact relation

Similarly, if there is some region 0 in space in which
the jcr orbital dominates the density, i.e.,
n; (r)lnj (r) «1 for iAj, then dividing Eq. (12) by ni
and performing the same operations as described above
with i replacing m, we obtain, after dropping terms of
0(n; ln ), the analogous result to Eq. (19), i.e., in Q~,

V„(r}~u (r)+( V„J—
u~ (22)

Equations (19)—(22) are identical to results previously ob-
tained by less rigorous arguments [1].

We may further transform Eq. (12) to explicitly display
V„by operating on it with V . Then,

gV [n, (r)Vp, (r)]+V [p, (r)Vn; (r)]=0. (23)

V [n, (r)Vq, (r)]=0. (16) gn; [u; +(V„;—v; )]

p (r)+ g (n; /n )p; =0. (18)

For sufficiently large r, n, In ~0 exponentially fast,
and since Vp; converges in this limit, it follows that each
term in the sum in Eq. (18) approaches zero exponentially
fast as r ~ &m. (Here for simplicity we are assuming g; is
nondegenerate for a given i o [1].)

Then, operating on Eq. (18}with

[
—2n (r)] 'V [n (r)V].

and employing Eq. (14) yields

Multiplying Eq. (16) by q;, integrating over a large
sphere of radius R, and taking the limit as R ~~ yields

I iVq,
' /'n, ' (r)dr=0, (17)

where the contributions from the surface integral vanish
because n; ~0 exponentially rapidly. It follows from
Eq. (17) that the two solutions of Eq. (14) differ by a con-
stant. Equation (15}then determines the value of this ad-
ditive constant.

The OEP equation given by Eq. (12) enables us to easi-

ly obtain the asymptotic behavior of V„(r). Dividing
Eq. (12) by n (r), the orbital density of the highest (par-
tially) occupied state, we have

m=1

Va (r) =
gn, '

l

yV (p,'.Vn,'. )

1+—
2

(24)

Equation (24) is still an integral equation but, unlike Eq.
(1), leads naturally to a method of successive approxima-
tions, i.e., to lowest order, we can take all p, =0 [which
satisfies Eqs. (12) and (15)] and obtain

gn; [v; +(V„;—u; )]

V„(r)=
gn;

(25)

where we drop the superscript 0 because the self-
consistent solutions for the [ g; ] obtained by using this
approximation to the OEP will not yield the exact opti-
mized [g; ].

Equation (25) is precisely the same potential employed
in Ref. [1] to approximate V„by constructing the sim-

plest possible expression that would reduce to Eqs. (19)
and (22} in the appropriate limits, but here derived as the
leading term in an expansion of V . Moreover, we can
write Eq. (24) in the same form as that given by Eq. (25),

[ V„(r)—v (r) —( V„—u )]~0
exponentially fast as r ~~. Thus,

V„(r)~u (r)+(V„—v ), r~ co (19)

s.e.,

V„(r)=
gn, [v,

' +(V„,—v,
'

))

gn, ' (26)
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where

and

1

2ni a
(27)

v' ——v'i' io (28)

in agreement with Eq. (19), and consequently Eq. (26}
yields Eqs. (20) and (21), as it must since it is derived
from Eq. (12) without approximation. Moreover, it is
clear that the addition to v, in Eq. (27) may be
significant in the region near the nodes of n; since in this
region n; (r —ro ),—which leads to a term
-p; (r ro), whereas it f—ollows from Eq. (4) that near
a node of g, , U,. —(r —ro} '. The fact that these terms
are weighted by n, in Eq. (26) leads to a finite, nonzero
contribution to the sum at the nodes of n; and results in
pronounced bumps in the exact V in the intershell re-
gion in atoms, whereas the approximate V, which lacks
this additional term given by Eq. (25), leads to either a
significantly smaller bump or a plateau in this region.

Equation (26) could in principle be employed to obtain
the exact numerical solution for V by first calculating
the self-consistent solution of Eq. (25) and then iterating
Eq. (26) with p; obtained by solving Eq. (14) in terms of
these calculated quantities. This method is practical only
at most for one-dimensional problems, in which case Eq.
(14) may be reduced to an ordinary differential equation.

because the correction to v; given in Eq. (27) has zero
average value over the io. state, i.e., when this term is
multiplied by (f, ), the integral can be evaluated by the
divergence theorem and the integrand in the resulting
surface integral approaches zero exponentially fast in the
large-r limit so the contribution from the surface integral
at infinity vanishes.

It is therefore now apparent why Eq. (25) yields V„
which is close to the exact V, i.e., the difference be-
tween the approximate equation (25} and the exact equa-
tion (26} is completely accounted for by the differences in

v; and v which corresponds to terms whose value aver-

aged over the i 0. orbital is zero. Furthermore, if we make
the approximation in Eq. (14) that Eq. (22) is valid every-
where, then the solution p, =0 for all iver uniquely
satisfies both Eqs. (14) and (15) so that Eq. (26) reduces
to Eq. (25), in this approximation. It is interesting to
note that if the same approximation is employed in Eq.
(25), we have shown that the Harbola-Sahni [12]potential
may be derived as an approximation to V„[1].We also
note that in the homogeneous-electron-gas limit, V and

v; are constants so the rhs of Eq. (14) is zero which
yields p; =0. Thus, Eq. (25) can be considered an ap-
proximation to Eq. (26) in the slowly varying density lim-
it.

In addition, it follows from Eq. (18) that p —+0 as
r ~ ao exponentially fast and consequently so does Vp
Thus, from Eqs. (26)—(28) we find that in the large-r limit,
where n; /n ~0, i@m,

However, in such a case the highly accurate numerical
solution of Eq. (1) may be easily found by more direct
methods. The principal use of Eq. (26) is in generating a
better approximation to V„ than that given by Eq. (25)
by approximating p,. by a functional of the orbitals. We
may then solve for the approximate V„;—U,

'
in Eq. (26)

in exactly the same way as in Ref. [1).
If we treat Eq. (25) as the lowest approximation to Eq.

(26), i.e., Eq. (25) can be obtained from Eq. (26) by taking

p; =0 for all i, then the next approximation is to take p,.
as that functional which would yield Eq. (25) if substitut-
ed into the OEP equation given by Eq. (12), i.e.,

p, (r)=b [V„(r)—v, (r)—(V„,—U; )], (29)

where b is a constant independent of i Eq. uation (29) is
exactly the same result as obtained from Eq. (1) if all the
energy denominators in the expression for G, given by
Eq. (3) are set equal to a constant independent of i [2],
i.e., b . For consistency, the V„ in Eq. (29) is given by
the functional expressed by Eq. (25) and is therefore in
principle known as a functional of the orbital densities

[n; ] and the [U; ] since Eq. (25) may be solved exactly
for V in terms of these quantities. The constant b

may be determined by multiplying both sides of Eq. (14)
by p;, integrating over all space, and summing over the
occupied orbitals to obtain the exact result

= g f n, (r)p; (r)[V„(r)—U, (r)

—(V„;—U; )]d7 . (30)

(31)

Approximating p; by p; given by Eq. (29) with b given

by Eq. (31), we can solve Eq. (26) for V„;—U as an ex-
plicit functional of the [n, ] and [v,. ], i.e. [1],

m —1

V„,. —U = g (& '),.J(V„' J
—

U,
'. ),

j=1

i=1, . . . , m =1 (32)

where

(A )i;=5,; f, 'M,'; ', — .

n, (r)n, (r)
i,j=1, . . . , m —1

(33)

(34)

and V„' is the Slater potential [13]given by

Then, substituting p, given by Eq. (29} into this expres-
sion (and approximating V„, etc. , by the solution of Eq.
(25), i.e., by the V„corresponding to the approximation

p; =0), we obtain

2g f n, (r)[V„(r)—U; (r) —(V„;—U; )] dr
b

g f n, (r)~V[V„(r)—U, (r)]~ dr
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(35)

Here (n, ) are the self-consistently determined single-

particle densities in this approximation and V„appear-
ing in Eq. (31) is obtained from Eq. (25) with V„;—u;

given by Eq. (32) with I uj. I replaced by I u, I.

0.9

0.6
o

0.3

Neon
/ -- KLI—G

KLI
LSD

III. NUMERICAL RESULTS

We have performed self-consi. stent calculations for
V„"', the potential obtained from Eq. (26) by approximat-

ing p,
o by Eq. (29) with b given by Eq. (31) for selected

atoms. We find that the inclusion of this correction term

results in V„'" being significantly closer to the exact nu-

merical solution of the OEP equation in the region near
the bump in the OEP potential between maxima in the
electron density corresponding to the n=1 and n =2
states. Figure 1 displays the results for neon. We see

that the result previously obtained [1],i.e., using Eq. (25),
yields V, which closely approximates V„, the exact

OEP, everywhere except near the potential bump. How-

ever, V'" is clearly a much better approximation with a
potential bump of almost exactly the correct size slightly

shifted to lower r. Figure 2, which displays the difference

between the various approximate potentials and the exact
OEP, clearly shows the significant improvement of V„"'

over V for r & 1 a.u. and also exhibits the result that the

LSD approximation significantly underestimates the
strength of the exchange potential by =0.5 a.u. in the re-
gion in which the p-state density peaks, which explains
why the LSD single-particle energy eigenvalue cpp is

significantly too small in magnitude. For heavier atoms
we find similar results obtain, i.e., V„'"makes a significant
improvement over V„ in the region from r =0 through

0.0

—0.3
0.01

I

0.1

I
/I

1

I

I

r(a. u. )

10

FIG. 2. The difference in the approximate exchange poten-

tial, V„{r), and the optimized effective potential V„(r) (in a.u. )

for neon, vs r, the distance from the nucleus (in a.u.). The ap-
proximate potentials are the same as those given in Fig. 1.

the first bump in the OEP potential corresponding to the
intershell region between the n =1 and n =2 states. For
larger r, V„'" is very close to V, both potentials closely

approximating V„.
As a consequence of this behavior, the total energy for

atoms with Z~10, calculated by employing a Slater
determinant whose elements are states that satisfy Eq. (2)
with V'" replacing V„, is very close to E, the result ob-

tained by employing the exact V„. More specifically,
Table I shows that the result of employing V„"' yields an

overestimate of the exact E which is 0.0001 a.u. for
atoms with Z ~10, corresponding to a small fraction of
the overestimate of E " provided by E . For heavier
atoms, the improvement becomes a smaller fraction of
the overestimate of E, being approximately 50% for Ar
and decreasing to 20%%uo for Xe. From Ca to Xe the de-

a5
—2

~ &

e —4
0
9

TABLE I. Comparison of overestimates of the OEP total en-

ergy E, calculated in various approximations, compared vvith

the overestimate of the spin-unrestricted Hartree-Fock total en-

ergy by E (in ma. u. ) for selected atoms. Here, E corresponds
to the result obtained by employing V„given by Eq. (25), and
E"' corresponds to the results obtained by employing V„"'. The
latter is obtained from Eq. (26) with p; given by Eq. (29).

Atom EsUHF (a u ) EO EHF E EO E(&) EO

0.01 0. 1

r(a.u. )

FIG. 1. Exchange potential (in a.u. ) vs distance from nucleus
(in a.u. ) for a neon atom. Included are the results for the opti-
mized effective potential {OEP), the potential given by the solu-
tion of Eq. (25) (KLI), the potential given by the solution of Eq.
(26) with the approximation for the gradient term given by Eq.
(29) (KLI-G), and the exchange potential in the local-spin-
density approximation (LSD).

Li
Be
B
C
N
0
F
Ne
Na
Mg
Ar
Ca
Xe

7.432 75
14.573 02
24.529 31
37.69000
54.404 55
74.813 63
99.410 84

128.5471
161.8590
199.6146
526.8175
676.7582

7232.1384

0.25
0.59
0.97
1.09
1.15
1.55
1.62
1.7
2.3
3.0
5.3
6.3

17.3

0.07
0.15
0.23
0.26
0.36
0.41
0.47
0.6
0.7
0.9
1.7
2.2
6.0

0.03
0.08
0.10
0.07
0.07
0.09
0.04
0.04
0.14
0.25
0.85
1.2
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crease in the overestimate of E remains nearly constant,
varying from 0.0010 to 0.0012 a.u. For all atoms we find

that our overestimate of the exact E is less than the
larger of 0.0001 a.u. or 2 ppm. Similarly, as can be seen
from Table II, the highest-occupied single-particle eigen-
values e are generally closer to the e (and to s ") when
V„'" is employed, as compared with the results obtained
using V„. As in the case of the total energy, the most
significant changes occur for Z 10, with the changes in

for heavier atoms being a small fraction of the
difference between these eigenvalues and s (or s ").

Finally, we note that although this analysis was origi-
nally motivated by studying the exchange-only case, all
the analytic results are directly applicable to finding the
optimized effective potential V„, corresponding to any
exchange-correlation energy functional E„,[ [P, ] ]
[14,15]. This follows from the fact that for any E„„Eq.
(1) is the correct equation for the optimized effective po-
tential if V„ is replaced by V„, and v; is

defined

b the
generalization of Eq. (4), i.e.,

Atom

Li
Be
B
C
N
0
F
Ne
Na
Mg
Ar
Ca
Xe

SUHF

0.3927
0.6185
0.6219
0.8711
1.1418
1.0187
1.3475
1.7008
0.3644
0.5061
1.1820
0.3911
0.9146

OEP

0.3926
0.6185
0.6194
0.8705
1.1423
1.0153
1.3469
1.7014
0.3642
0.5061
1.1815
0.3913
0.9128

0.3924
0.6177
0.6191
0.8698
1.1409
1.0138
1.3449
1.6988
0.3640
0.5048
1.1786
0.3901
0.9109

0.3925
0.6181
0.6185
0.8698
1 ~ 1416
1.0129
1.3455
1.7001
0.3641
0.5049
1.1788
0.3902
0.9109

TABLE II. Values of c (in Ry), the single-particle eigen-
value corresponding to the highest-energy occupied state calcu-
lated by employing various exchange-only approximations as
described in Table I for selected atoms.

Thus, the entire analysis may be repeated provided only
that v ~0 as r~~. If, in addition, v ~ f /r as-
r —+ ~, then all the results obtained for the exchange-only
case also obtain for E„,[ [ P; ] ]. This result is of consid-
erable practical importance because it is much simpler to
obtain accurate exchange-correlation functionals which
depend on [P, j rather than simply on n, as required in

a spin-density-functional theory. Moreover, if E„, is ap-
proximated by a functional only of the [n; ], as is the

case in the local (or gradient expansion) spin-density ap-
proximation with self-interaction correction, then it fol-
lows from Eq. (26) that V„, can also be written as a
functional of [n; ] with Eq. (25) providing a highly accu-
rate approximation to the exact result.
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