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General theoretical approach to Coulombic three-body systems by the hyperspherical formalism
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Coulombic three-body systems are investigated using the hyperspherical adiabatic approach. By using
a suitable variable z =tan(a/2) in the angular differential equation for the determination of the potential
curves, we are able to obtain stable series-expansion solutions, valid for small and large values of the hy-
perspherical radius. The analysis of the mathematical singularities of the differential equations in the
variable z offers an insight into the physics of the problem and into the determination of stable converg-
ing solutions as well. In order to illustrate our investigation, we apply this study to several carefully
chosen systems: He, ddt, d2+, and excitons bound to a Coulomb center in different semiconductors.

PACS number(s): 31.10.+z, 03.65.Ge

I. INTRODUCTION

The study of three-body systems interacting via
Coulomb forces is of great importance due to a large
variety of physical systems found in atomic and molecu-
lar physics. In atomic physics the nuclear motion is
neglected and the system is approximately described by
the independent-electron model, where each electron is
subject to an averaged screening potential. In the case of
molecular physics, the traditional Born-Oppenheimer
(BO) approximation is mostly used. Due to the large
difference between the masses of protons and electrons,
the BO approximation is well suited. In this approxima-
tion each internuclear separation is taken as fixed for the
motion of the electron. These two approximate methods
have their own limitations [1]. In the nonrelativistic case
the hyperspherical approach [2] (HA) appears to be a
method to treat three-body systems in a rigorous and
transparent way. Normally the HA leads to a difficult
solution of a coupled system of differential equations of
infinite dimension. This problem becomes even more
severe if Coulomb forces are present [3]. A well-
established procedure [4—10] to handle such physical sys-
tems within the HA is the hyperspherical adiabatic ap-
proach (HAA). This is similar to the BO approximation
in diatomic molecules. The Schrodinger equation in hy-
perspherical coordinates is solved at each fixed hyperra-
dius R to generate a family of effective potential curves.
These potential curves, similar to the molecular poten-
tials, contain essential information about the structure of
the three-body system. As a result, we are required to
search for a procedure to obtain in an efficient way the
potentials U&(R) for the whole range of R and for a
variety of physical systems. The literature [4—10] is full
of works illustrating the use of the HAA from the atomic
to the nuclear scale. Technical problems involve the pro-
cess of obtaining Uz(R), mostly because of the slow con-
vergence of the hyperspherical harmonic functions. For

short-range forces, Uz(R) is successfully obtained by di-
agonalization procedures [8). However for long-range
forces this procedure appears not to be practical, mostly
because of the highly oscillating Jacobi polynomials
present in the hyperspherical-harmonic functions, gen-
erating slow convergence. This slow convergence is also
attributed to the fact that the asymptotic solutions are
not easily expanded in terms of hyperspherical harmon-
ics. A way to solve this difficulty is presented in this pa-
per. Instead of the diagonalization procedure, we look
directly for solutions of the angular differential equations.
This is partially accomplished by incorporating the prop-
erties of the differential equations in the small- as well as
large-R limits. These differential equations depend only
on the hyperspherical angle a and contain trigonometric
functions as coefficients of the derivatives. The hyper-
spherical radius R is also present but taken as the adia-
batic variable. In this paper we present a general formu-
lation of the Coulombic three-body problem in the spirit
of the authors of Ref. [7]. In that reference only the sim-
plest system, the He atom, was considered. By develop-
ing an analytical solution of the angular differential equa-
tions in a power-series expansion in a suitable variable,
namely, z=tan(a/2), we can transform the differential
equations to a form where the Cauchy theorem can be
applied. This basically implies that the above-mentioned
coefficients become rational functions in the new variable
z. Another resulting advantage of this transformation is
to incorporate the topological properties of the
mathematical singularities of the differential equations in
order to obtain physical insights and generate stable con-
verging solutions.

The next step after the precise determination of U~(R)
is to obtain the energies and wave functions of Coulombic
three-body systems. That is achieved by solving a one-
dimensional Schrodinger-type equation in the variable R.
In the HAA one makes use of a recently proved set of
basic inequalities [12], which provide for the first time a
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lower-bound —upper-bound relation for the ground-state
energies.

For the purpose of this work we use mass-weighted hy-
perspherical coordinates, to study Coulombic systems of
arbitrary masses. Concerning the location of the singu-
larities, we have carefully chosen several systems to illus-
trate our approach: He, ddp, d2+, and a three-particle
complex corresponding to an exciton bound to a
Coulomb center in a semiconductor. In the last case, re-
sults are calculated as a function of the mass ratio of the
hole and electron, for several semiconductor materials.

In Sec. II we outline the HAA. In Sec. III we discuss
how to obtain the potentials U&(R). In Sec. IV we study
several different Coulombic three-body systems, one of
them (excitons) of varying mass. Finally, in Sec. V we
present our conclusions. Some sections are divided into
subsections in order to make the article more pedagogi-
cal. An appendix is included for completeness of the sec-
tions.

II. HYPERSPHERICAL ADIABATIC APPROACH

and

q+ =[m, (m, +m2+m3)/m2m3)

=[mz(m, +m2+m3)/m|m3]
(4)

The symbols q,- stand for the particle electric charges.
Notice that the use of Jacobi coordinates separated the
c.m. motion in the kinetic-energy operator. In this way
we can consider only the resulting Schrodinger equation
in the c.m. At this point it is appropriate to introduce
hyperspherical coordinates by defining a hyperspherical
radius R,

R =g+g
and a hyperspherical angle a,

g, =R sina,

(2=R cosa, 0(a m/2 .

The Schrodinger equation HV=E%' in hyperspherical
coordinates can be written as [7]

A. Hyperspherical formalism a2

BR

U(R, Q) —
—,
'

R
+e P(R, Q) =0,

Jacobi coordinates form an appropriate set for the
three-body problem. Let r, be the coordinate of particle i
in the laboratory frame, which has mass m;. Let p, be
the vector from particle 1 to particle 2 with reduced mass

p, =m&m2/(m, +m2). The second vector p2 is from the
center of mass (c.m. ) of particles 1 and 2 to particle 3,
with reduced mass p2= (m, +m 2 )m 3/(m, +m 2+ m 3 ).
This procedure can easily be generalized to N-body sys-
tems [11]. It is also useful to introduce a set of mass-
weighted coordinates g; =(p;/p)'~ p, , where p is an arbi-
trary mass. The choice of Jacobi coordinates is not
unique [11],but normally dictated by the nature of the
physical problem under consideration.

We can explicitly set down our choice of coordinates
used in this work:

go=(m &r, +m2r2+m3r3)/(m &+mz+m3)

where s=(2p/A )E, E being the energy eigenvalue, and
Q = [a, g', =(8„tp,), $2=(8z, y2) I. Notice that P(R, Q) is
the renormalized wave function given by
f(R, Q)=R ~ sina cosa'(R, Q). To define U(R, Q), let
us call

(7)

P'(a, 8)= q)q2

sina

+ q, q3/(sin a+ri+cos a
m& 2 2 2

+pp&

+g+sin2a cos8)'

U(0)= — + +
a sin a cos a

The quantities I;(g; ) (i = 1,2) stand for the usual
angular-momentum operators. Defining v = (2p/fi ) V
and V (R, Q ) = P'( a, 8) /R, where

1/2

m, r, +m2r2
g2 (p2/p ) r3

m&+m2
m2+ q2q3/(sin a+vs cos a

The Hamiltonian of our three-body system interacting
via Coulomb forces is written as

$2
V~

— (V~ +V~ )+ V(g', , g2),2 m, +m2+m3 ' 2p

(2)

where

sin2a cos8)'

and cos8= f & $2, we finally have a useful relation:

U(R, Q)= U(0)+R v(R, Q)= U(0)+Rv(a, 8) . (9)

B. Hyperspherical adiabatic approach

V(ki k)= |M)
1/2

qiq2 +
&pp, lki+n+41

To solve Eq. (6) we can use a procedure known as the
hyperspherical adiabatic approach with R treated as an
adiabatic parameter. A revision of the HAA can be
found in Refs. [4—11]. The idea is to expand f as follows:

m2 q2q3+
&pp, lk)

—g kl
(3) P(R, Q) =+F3 (R)4„(R,Q), (10)
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d

dR

Ug(R ) ——,
'

R
+sq F~(R)+gW«(R)Fq (R)=0,

(12)

where the nonadiabatic terms are given by

d~» =2P«(R) «+Q«(R),
where

(13)

dP~„(R)=4~ C&~.),

where the channel function 4& satisfies the eigenvalue
equation

U(R, Q)4q(R, Q }= Uq(R )4q(R, Q )

for fixed R. The set of quantum numbers required to la-
bel the channel functions, here represented by A., will be
discussed in the next section. Fz(R ) satisfies the equation

in an efficient procedure to handle the numerical calcula-
tion such that the Uz(R)'s are precisely obtained for the
whole range of R and a wide range of masses of the
three-body systems. In order to achieve it in an efficient
way let us first look at the kinetic term of Eq. (7). That
term has poles at a =0,vr/2 which are independent of the
masses of the system. On the other hand, the Coulomb
interaction term, given by Eq. (8), has poles at a =0 and
at (O, a)=(vr, a+) and (O, a ), where tana+=g+. Thus
the potential curves are obtained by considering regular
solutions in the three regions 0 a~a, a a~a+,
and u+ ~ a m. /2, and imposing continuity conditions at
those boundary points.

In this kind of investigation it is important to select the
appropriate angles and the corresponding harmonic func-
tions as a basis for the problem. There exist different
ways for selecting those angles. This was well studied by
Smirnov and Shitikova [13]. Each possibility is identified
with a possible chain in which the group O(6) can have its
representation decomposed. We have chosen the chain

d2
Q~v~R~=(~~

dR

(14) O(6) ~O(3) XO(3)&O(3)&O(2)

[nl, l, ] [1, ] [1,) [L, )

Differentiating P«. (R} with respect to R, we can relate
P«. and Q«. by

dPu.
=Q«+R«.

where

which corresponds to the use of the tridimensional two-
particle spherical harmonics. The channel functions are
then written as

1]+1 12+1
@q(R,Q)= g (sina) ' (cosa) '

1, , 12

(16)
+ +I, I (kl E2) ~l I (R (18)

If completeness is assumed R&& =P&&., and this furnishes
a test for the completeness of the channel functions. The
solution of Eq. (10) will furnish the eigenenergies and the
wave functions of our system.

C. Adiabatic approximations and the
basic inequalities

The set of coupled equations (12) is still exact. If trun-
cation is done, the result is the so-called coupled adiabat-
ic approximation (CAA) [6). Neglecting the coupling
terms W«(R), AXE, ' in Eq. (12), the result is the uncou-
pled adiabatic approximation (UAA) [6]. In the UAA,
the neglect of W«(R) leads to the extreme adiabatic ap-
proximation (EAA) [6]. It can be proved [12] that the
basic inequalities cE~~ c. Ec~~ cU~~ hold for the
ground-state energies. The EAA is a lower bound while
UAA and CAA are upper bounds. An inequality similar
to that exists for the extreme Born-Oppenheimer approx-
imation (BOA) [12), namely, EBoz + e.

where P& &
is the usual two-particle coupled-orbital

1 2

angular-momentum function (
~ 1, —l z ~

~ L ~ 1, + l2 and
M=m, +m2). The basis functions 9& & (R,a) at each R

1 2

are obtained from the solution of Eq. (11).
The motivation for the choice given by Eq. (18) instead

of other possibilities (such as Euler angles [11] or the
canonical form used in nuclear physics [8]) is the follow-
ing. The decomposition into two O(3) groups preserves
the individuality of the effective particles with respect to
the angular motion in the (O„y,), (82,y2) manifolds.
However the introduction of the variables a and R will
account for the collective effects.

We note that the function 9& & (R,a) in Eq. (18) was
1 2

not further expanded in any basis and will be calculated
by a new method presented in this paper. In this point
our approach differs from the usual techniques which are
based on some kind of expansion using orthonormal poly-
nomials [4—6,8 —11] or another [11]set of functions with
faster convergence properties.

The use of any kind of polynomial set assumes the
separability of the variables o, and R, i.e.,

III. POTENTIAL CURVES 4~(R, Q)= g y„(( (R)P„(,(Q),
n, I I, 12

(19)

A. Basis functions

In order to solve Eq. (12) we first need to obtain the
eigenpotentials Uz(R) from Eq. (11}. We are interested

where the complete orthonormal set [ P„&& ] are hyper-

spherical harmonics [2]. The hyperspherical-harmonic
approach corresponds to the prescription
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ll + 1/2 12+ 1/2
0, I (R,a)=gy„,, (R)P„' ' ' (cos(2a)), (20)

ll + 1/2 12+ 1/2
where P„' ' ' is the usual Jacobi polynomial.
Thus the solution of Eq. (11}using (20} reduces the prob-
lem to a matrix diagonalization [6,8]. This way, although
quite straightforward, has its limitations. For instance, a
known limitation is due to the slow convergence because
asymptotic solutions are not easily expanded in terms of
'y„&

&
(Q). This problem becomes very severe for long-

range forces. However for short-range forces, such as the
I

ones encountered in nuclear physics, this procedure is
quite successful [8]. To overcome this problem in
Coulombic three-body systems, Lin and Liu [11] con-
sidered a new basis function set but it has the disadvan-
tage of not being an orthonormal set. In addition numer-
ical difficulties are not completely removed for large-R
values. The situation is in some sense dramatic if we no-
tice that for a truncated calculation, using Jacobi polyno-
mials, potential curves necessarily appear with wrong be-
havior for large R. In order to avoid these problems we
shall solve directly the infinite set of differential equations
obtained by substituting Eq. (18) into Eq. (11),namely,

d+2[(l
&
+ 1)cota —(lz+ 1)tana]

dc' GCX

—U~(R) —(I&+l2+2) QI I (R,a) Rgv—™,, , (a)Q, , (R,a)=0,
1 2

(21)

where Therefore the potential curves at R =0 have the form

1) —1) 12
—

12V, , (a) =(sina) ' '(cosa) '
11121'112

U&(0) =(2n+ j&+j2+2) (26)

y ( cyLilf
~

ELM ) (22)

An explicit expression for ( v ) is given in the Appen-
dix. To solve Eq. (21) we should be aware of the sym-
metries imposed in the hyperspherical-harmonic func-
tions 0, I (R,a). A discussion of this point can be seen

1 2

for instance in Refs. [7] and [11].

B. Small- and large-R behaviors

we obtain

4l, (l, +1) 4l2(l~+ I)
da' 16 sin (a'/2) 16cos (a'/2)

+ —,'U~(0) Qi t (O, a)=0,

which compared with the canonical form of the Jacobi
equation [14]

d2

dcx

1 —4a 1 —4b

16sin (a'/2) 16cos (a'/2)

It is remarkable that Eq. (21) admits exact solutions in
the limit R =0. For instance, in that limit and using a
new variable a =a'/2 and the transformation

I]+1 12+191"
&

(R,a)=(sina) ' (cosa) '
9& I (R,a),

and the 0 functions are given by

1)+1 12+ 1

Q„~ (O, a)=(sina) ' (cosa) '

I& + 1/2 12+ 1/2XP„' ' ' (cos(2a))5I J 5I J (27)

The prime symbol on 4& and U& indicates the derivative
with respect to R of those quantities. Multiplying Eq.
(28) by 4&.(0, Q) and integrating over d Q we obtain

& 4&(R,Q }I v(a, 8)1@q(R,Q) )z

Since there are no spin interactions, the spatial wave
function has well-defined quantum numbers, L, M, spin
S, and parity. At R =0, we see explicitly from Eqs. (26)
and (27) that the potential curves are labeled by
X=(n,jl,j2). For notational simplicity we have omitted
the conserved quantum numbers, L, M, S, and parity.
The allowed values of j1 and j2 are dictated by the tri-
angular relation with L and the required symmetry of the
problem imposed by the parity. There is no restriction
on the integer values of n. If the nonadiabatic couplings
W~z (R) [see Eq. (12)] are neglected, k=(n, j&,jz) will be
conserved.

The inclination of the curve U&(R) at R =0 is obtained
by calculating the derivative of Eq. (11) and using Eq. (9).
As a result, we get

v(a, 8)4&(0,Q)+ [ U(0) —Uz(0) ](4&)z

=(U~)~ v@~(O, Q) . (28)

a+6+1
2

6I' '(cosa')=0 (24) +(@~(R,Q)l[U(0) —U„(R)]l@q(R,Q) )„=0

has the regular solution
For A, '=A, ,

= ( Ux )z =05vx (29)

al&' '(cosa') = [sin(a'/2)]'+'~ [cos(a'/2)]

XPz' '(cosa'),

where Pz' ' are Jacobi polynomials.

(25)
( U~ )~ =0= & @~lv(a ~)I@g)~=0

where A, =(n, j&,j2).
For A, 'AA, , using Eq. (14), we have

(30}
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(@,~v((z, g}~4 ) = —(U„.—U )„oP~ (0) (31)

or equivalently,

P, ,„(0)= —(4,, v(a, O) ~4, )„=o/(U, , —U, )„=,. (32)

The analysis for large R is discussed in Refs. [4,7,11].
Re z

C. Set of difFerential equations
with rational coefBcients

Although solutions for Eq. (21) in the variable a (for
fixed R) exist, the form of that equation is not appropri-
ate for the use of the Cauchy theorem. The reason lies in
the nonpolynomial structure of the trigonometric func-
tions which appear there and the intractability of the
series expansions of such functions. Thus we have
searched for a new variable which can transform Eq. (21)
into a form whose coefficients are rational functions.
Therefore analytical solutions can be obtained in the usu-
al power-series expansion. That variable is z =tan(a/2).
As a result, the expansion coefficients given by recursion
formulas can be calculated numerically for fixed values
of R. In the variable z, Eq. (21) reads

+P( ( (z) +Q( ( (R,z) 9( ( (R,z)
d

dzz 12 dz 12 1 2

+R g A( (, ( (, (z)Q', ", (, (R,z)=0,
1 122 12

I
l I2

where

(33)

P( ( (z)=
(l(+1)(1—z ) 4(lz+1)z

z+
1+z z 1 —z

(34)

Q( ( (R,z ) = —4[(l(+lz+2) + Uz (R)]/( I+z )

1/2
2

V(Vz (1+ z)
(35)

and

4 2z
, (z}=-

(((I(zlz ( 1+zz)2 1+zz 1+z

+X
Qpp I (22

m2
qzq36( (, ( (, {z)

Qpp 1122 {36)

The expressions for 6+ and 5 are given in the Appen-
dix. The singular points of Eq. (8) occur at
z+ =tan(a+/2). The singular points of Eq. (33) are
z =0, +1,+i. The singular points are drawn in the
complex-z plane shown in Fig. 1. As 0 ~ a ~/2, it is im-
plied that 0 ~z ~ 1. Thus only the region Re(z) ~0 is of
physical interest in the solution of Eq. (33). That equa-
tion can be solved by a local power-series method for the
function Q( ( (R,z) in each interval [O,z ], [z,z+ ], and

I 2

[z+, 1]. Its solution has an exponential behavior [7] for

FIG. 1. Complex-z plane showing the singular points of Eq.
(33).

large R, which can be built in. The resulting series is
therefore rapidly convergent. Another aspect of Eq. (33)
is its behavior at small R. In order to get a polynomial
form at R =0, we should introduce [7] a factor (1+z )',
where s=l&+lz+2 —QU&(0), and U&(0) is given by
Eq. (26). That series-expansion procedure generates an
algebraic set of recursion relations for the series
coefficients. To obtain the recursion relations from Eq.
(33) is straightforward but tedious, so a computer code
was written to extract it algebraically without performing
floating-paint operations. The same code also generates a
FORTRAN program to solve the relations on a pVAX
computer. One of the advantages of this method is to iso-
late two types of error. One comes from the truncation
of the solution of Eq. (33) through the series-convergence
procedure for a maximum number N of terms, and the
other appears in the successive inclusion of angular-
momentum channels until a limit value l,„.Thus the
coefficients are numerically calculated in an exact way.
That can be verified afterward using quadruple precision
floating-point arithmetics. The procedure of calculation,
once the truncation limits are stated, begins with a tenta-
tive value for the potential Uz(R) at a point R, selected
in practice by the application of the Newton forward-
difference method [14] to the previously calculated
points. Once a good tentative point is selected, the recur-
sion relations are solved for arbitrary initial conditions in
the regions [0~ ] and [z+, 1). The singular behavior of
the differential equation in those points are then exactly
incorporated in the algorithm without causing any error
or instability. Finally the equations are solved in the in-
termediate region by imposing continuity conditions
which will simultaneously select the regular combination
of the already calculated independent solutions and the
potential curve. The determinantal condition which
emerges from the procedure described above is used for
the update of the value of Ux(R } and the process contin-
ues until a desired precision (machine precision) is
reached. The same strategy is then repeated for the next
value of R. As a result we have controlled truncation er-
rors. The fundamental property of the chosen variable z
is that the differential equation can undergo an arbitrary
translation transformation without losing its polynomial
character. This fact allows us to select smaller grids in
the z space different from the natural ones of the three re-
gions. Hence the method described above can also be
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combined with finite-difference techniques without losin
ts "exact" structure. This will be particularly important

for systems with very different masses.
The singularities of Eq. (33) are shown in Fig. 1. The

poles at +1 and +i define a convergence circle of unity
radius in which a regular solution at z=0 exists. De-
pending on the constituent masses of a given Coulombic
system, the singularities z+ and z will move along
Re(z) defining two inner circles, in which Eq. (33) must

1e solved. Pole locations for several systems are shown in
Table I. We can see that for systems with large mass

+
ass ra-

io (m2/mi »1), like di, singularities will be pushed to
the border limit, causing the known "large-mass" prob-
lem I9] in the calculation of the potential curves.

We should stress that machine precision in the trunca-
tion procedure was obtained with typical N values be-
tween 50 and 200 depending on the system, allowing us to
carefully analyze the convergence trends in the angular-
momentum expansion.

The solution of Eq. (33) will then give Ui (R) in a pre-
cise way. With this information at hand we can finally
solve Eq. (12), by standard procedures, to obtain the ener-
gies and wave functions of the problem.

IV. APPLICATIONS

A. He

In order to appraise the accuracy of our approach, we
present in Fig. 2 the potential curve for the helium
ground state, calculated by our method and by matrix di-
agonalization. In the second method, the channel func-
tions are expanded in 16, 20, 25, and 40 Jacobi polynomi-
als, respectively. We can see that matrix diagonalization
furnishes slow convergence even in the intermediate
range of R. In addition, the asymptotic values of

0( &/ are not correct, i.e., the truncated curves
cross the ionization limit, resulting in unphysical results
at large R.

In Table II we give the values of Uo(R) at its minimum
as a function of l,„=1,. . . , 30, and N=70, 90, 130. The

TABLE I. Pole locations for several physical systems. Only
(a,a+) and (z,z+) are listed.

System

He
ddp
d2+
InSb
ZnSe
Cds
ZnO
CdSe
pdp

m/4
1.406 77
1.559 13
1.317 51
1.182 85
1.15026
1.141 10
1.132 22
1.437

a+

m/2
a
a
m/2
m/2
~/2
m/2
m/2
1.308

0.414 21
0.848 09
0.988 40
0.774 11
0.671 62
0.648 23
0.641 74
0.635 49
0.874

z+

z+
1

1

1

1

0.767

e give and discuss below the numerical results for
several carefully chosen physical systems. This choice
was mainly concerned with the topological locations of
(z,z+) when compared with the border singularities
(O, 1).

ci Ep -4-
CIJ

0

-6-O

-B-

-9
04

I

1.B
I

5.2
I 1

4.7
a(o.U.)

l6 x 16

20x 20

25x 25
—--- 40 x 40

Dif ferential Eq.

I

6.1 76

FIG. 2. Convergence trends of the solutions obtained by the
diagonization procedure and by the solution of the angular
differential equations for the He atom. The second method

4

gives precise convergence. For each curve, obtained by the di-
agonization procedure, matrix dimensionality is given.

B. Excitons

The behavior of excitons trapped by ions in semicon-
ductors can be treated as the motion of dressed electrons
and holes under the influence of the ion field in a medium
of dielectric constant c. Changing the semiconductor
material, we can create different Coulombic systems with
distinct mass ratios mz/m3. In Table III we list the
properties of several semiconductors. In Fig. 3 we plot

2Uo(R ) /R for several semiconductor materials. The

O
C4

K
O

-1.00
i!
'i
I .

-1.06—

l

-1.12-

-1.18
0

R (a.u. )

20 50

FIG. 3. Plot of Uo{R)/R vs R for several semiconductor
materials. The material "crit" is defined in the text. Units are
in fi=e /c, =m, =l.

agreement between N=90 and 130 is of a few parts in
810. No difference can be observed in the potential

curves if a larger value of N is taken. Numerical errors
have been searched for using REAL+16 precision and no
difference was observed. The exponential factor men-

tioned in the preceding section causes a regular and
stable behavior at large R even with a small number of
terms in the series expansion. The angular-momentum
convergence up to 30 channels is also shown in Table II.
The convergence is much slower and we expect correc-
tions of few parts in 10 if more angular-momentum
channels are considered. The computation time is rough-

ly proportional to Nl m».
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TABLE II. Calculated values of Uo(R) (in eV) at its minimum as a function of N (the maximum
number of terms of the power-series expansion) and 1,„[maximum value of the angular momentum

1, = /2 (l. =0)] for He.

70 90 130

2
3

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

—8.482 315 532 11019
—8.489 208 645 993 10
—8.490957 921 633 46
—8.491 591 462 81478
—8.491 873 637481 07
—8.492017 669 19034
—8.492 098 663 479 05
—8.492 147 629 963 51
—8.492 178 945 377 02
—8.492 199892 651 77
—8.492 214428 870 31
—8.492 224 829 528 50
—8.492 232 465 960 52
—8.492 238 198436 34
—8.492 242 586 660 84
—8.492 246 008 891 60
—8.492 248 733 649 87
—8.492 250 964 559 25
—8.492 252 865 365 12
—8.492 254 565 467 63
—8.492 256 148 091 78
—8.492 257 633 187 29
—8.492 258 976017 81
—8.492 260 096094 08
—8.492 260 927 508 91
—8.492 261 460 166 71
—9.492 261 745 28647
—8.492 261 866 502 40
—8.492 261 902 349 78

—8.482 315 532 110 19
—8.489 208 645 993 10
—8.490957 921 633 46
—8.491 591 462 814 78
—8.491 873 637481 07
—8.492017 669 190 17
—8.492098 663 47691
—8.492 147 629 945 65
—8.492 178945 268 49
—8.492 199892 203 62
—8.492 214427 625 26
—8.492 224 827 097 76
—8.492 232 462 354 39
—8.492 238 193733 97
—8.492 242 579 383 34
—8.492 245 992 084 67
—8.492 248 687 221 91
—8.492 250 843 761 33
—8.492 252 589 713 38
—8.492 254018 432 37
—8.492 255 199480 88
—8.492 256 186 304 52
—8.492 257 022 029 73
—8.492 257 743 90441
—8.492 258 386068 01
—8.492 258 979 708 37
—8.492 259 549 876 91
—8.492 260 109798 49
—8.492 260655 852 92

—8.482 315 532 110 192
—8.489 208 645 993092
—8.490 957 921 633 461
—8.491 591 462 814 778
—8.491 873 637 481 055
—8.492 017 669 190 149
—8.492 098 663 476 909
—8.492 147 629 945 638
—8.492 178 945 268 362
—8.492 199892 202 962
—8.492 214427 621 516
—8.492 224 827 078 434
—8.492 232 462 276 760
—8.492 238 193 504 505
—8.492 242 578 877 736
—8.492 245 991 220 818
—8.492 248 686 020 558
—8.492 250 842 335 194
—9.492 252 588 186 838
—8.492 254 016755 217
—8.492 255 196956057
—8.492 256 180 500 316
—8.492 257 006 698 077
—8.492 257 705 790 296
—8.492 258 301 298 996
—8.492 258 811 709 149
—8.492 259 251 683 967
—8.492 259 632 955 843
—8.492 259 964 987 300

word "crit" [17]appearing in Fig. 3 stands for a fictitious
material for which there is no bound state. In the last
two columns of Table III we show the calculated ioniza-
tion energies in the EAA. We compare them with varia-
tional calculations done by other authors. The bound
states of those systems are very close to the ionization
threshold. They get closer to it as the mass ratio
m =mz'/m, ' decreases. Notice that m,' and ms' are the
dressed masses of the electron and the hole, respectively.
The calculated energies, as we have proved elsewhere
[12], should satisfy the basic inequalities. This is verified
in Table III with the exception of InSb. In this case the

considered number of angular-momentum channels was
not large enough to achieve energy convergence. On the
other hand a precise calculation concerning this problem
was done for ZnSe where up to ten angular-momentum
channels (I =0, 1,2, . . . , 9) were considered in order to
achieve convergence. The results for ZnSe are shown in
Fig. 4. In Table IV the convergence is also studied for
ZnSe for N =80, 100, 120 and l up to 9. As we expect, the
convergence is in general slowed when the mass ratio
departs from unity and the singularities approach the
convergence limit. We can see that a relatively large
number of channels should be considered in order to

TABLE III. Binding energies for several semiconductors. ED is the dissociation energy. The superscripts refer to variational cal-
culations. Notice that e is the static dielectric constant of the material and the values are taken from Ref. [15].

Material m,*(amu) mi, (amu) m,*/mI*, ED(meV) E—ED(meV) (E —ED ) /ED(%)

InSb
ZnSe
CdS
ZnO
CdSe

'See Ref. [15].
See Ref. [16].

16.80
9.10

10.33
8.50

10.66

0.02
0.10
0.20
0.24
0.13

0.30
0.60
1.00
1 ~ 14
0.59

0.067
0.167
0.20
0.21
0.22

0.9641
16.43
25.50
45.19
15.56

0.0893
0.751
1.161
2.357
0.486

0.0993'
0.676'
1.0b

19
0.348'

9.26
4.57
3.60
3.35
3.12

10 30'
4.12'
3.10
2.70
2.23'
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TABLE IV. The same as Table II for ZnSe, but energies are in meV.

80 120

46

—18.286 645 253 633 47
—18.490 819440 687 19
—18.611 726 842 749 93
—18.686 108 420 91153
—18.733 710953 01742
—18.765 394 594219 11
—18.787 314724 301 17

—18.286645 324 11643
—18.490 819927 211 56
—18.611 725 415 043 15
—18.686 084 527 574 57
—18.733 600636 11852
—18.765 079 124 516 75
—18.786 635 961 872 30

—18.286 645 324 932 39
—18.490 819951 06005
—18.611 725 662 805 09
—18.686085 623 484 81
—18.733 602 574 767 91
—18.765 076 931 027 69
—18.786 613 260 292 23

reach convergence. With our results, the variational cal-
culations [15,16], and the knowledge of the basic inequal-
ities [12], we can establish lower- and upper-bound rela-
tions for those systems. However one should have in
mind that the lower-bound character of the EAA will
only be granted if convergence in the angular momentum
is achieved.

C. ddt andd2+

Muon catalyzed fusion [18—20] has in part motivated
us in the calculation of the potential curves of the quasi-
linear dd p molecule. Jacobi coordinates (g'&, g'2) are
chosen such that one of them, namely, gt, is taken as the
nuclear separation (deuteron-deuteron distance). With
the use of this "Born-Oppenheimer"-type approximation,
the potential curve goes to zero as R gets large as it
should. The convergence trend of the potential curve is
shown in Fig. 5. The graphs are for 1 —5 channels. In
this case, due again to different masses, the convergence
is achieved only with a precision of 10 eV. The con-
sideration of dd p and d2 in this work is due to the fact
that they are the ones most troublesome to analyze
within the HAA. Therefore this is a crucial test for the

use of the present techniques. The ddp system can only
be handled by the present approach if the finite-difference
technique mentioned in the last section is used. In Table
V we give the values of Uo(R)/R at its minimum as a
function of N and I,„.

As a final example we give the preliminary results for
+the dz molecule. The potential curve for Uo(R)/R is

shown in Fig. 6. We have chosen the system d2+ because
it illustrates well the topology of the problem. Its singu-
larity (z =z+) is very close to z =1 (see Fig. 1), causing
slow convergence in the series, requiring therefore more
computer CPU time. The inclusion of more channels
should improve the results, as it happened for the dd p
system. We are presently working on this calculation.

V. CONCLUSIONS

We present in this paper a general method of handling
the troublesome Coulombic three-body systems through
the hyperspherical adiabatic approach. For long-range
forces no rnatter what method is chosen we might face
convergence problems in the determination of the solu-
tions. This may not be different even if the exact HAA is

Ea~-IOAs —'~ ——————————————————
0

~ -1700--

O

1-"—-- 2
———3---—4

5
~ ~

-19
40 160

R(A)

t

280

FIG. 4. Potential curves as a function of the number of angu-
lar channels for ZnSe. Graphs here are given for 4—8 channels.
Note that convergence requires the use of a large number of
channels in the calculation. The deeper the curve the larger the
number of channels required.

-5400
00

I

4.5
R (ll)

9.0

FIG. 5. Potential curves as a function of the number of angu-
lar channels for ddp. Graphs here are given for 1 —5 channels.
Note that convergence requires the use of a large number of
channels in the calculation. The deeper the curve the larger the
number of channels required. The abscissa is the hyperspheri-
cal radius multiplied by (2m, /mD)' in order to establish a
correspondence with the internuclear separation [see Eq. (1)]. R
is in units of%' /m eP
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TABLE V. Calculated values of Uo(R)/R at its minimum f t' f N hinimum as a unction of N 'the maximum number

of terms of the power-series expansion) and I 'm

&= 2( =0)] forddp.
an, „&maximum value of the angular momentum

150 250 350 450

2816.118270 341
3154.341 168 834
3219.416 388 365
3237.506 651 807
3244.219 681 145

2816.118270 612
3154.340 757 821
3219.397 817 965
3237.413 893 992
3244.050 239 226

2816.118270 612
3154.340 757 821
3219.397 819028
3237.413 849 613
3244.049 625 397

2816. 118270 612
3154.340 757 821
3219.397 819024
3237.413 846 365
3244.049 383 539

used. However by using a suitable variable, namely,
z =tan(a/2), Eq. (11)can be transformed into the impor-
tant E . &33&q. & &, which can be solved by a power-series ex-
pansion, giving rise to a stable and converging solution
valid for small and large values of the hyperspherical ra-
dius R. The solution of Eq. (33) furnishes simultaneously
and in a precise way Uz(R), which is basically the ulti-
mate physical goal in the calculation of the Coulombic
three-body systems. Analysis of the mathematical singu-
larities of Eq. (33) offers an insight into the physics of the
problem and in the determination of stable converging
solutions as well.

The approach presented here is exact, theoretically
transparent, and general enough to be used successfully
in the description of three-body systems. Although
developed here for long-range forces, it can be applied to
intermediate- and short-range forces as well. This ver-
sion of the HAA permits the exact calculation of poten-
tial'a curves, binding energies, resonances, and possibly
scattering states. In order to illustrate our approach we

He, dd d +
have considered several Coulombic three-b dee- o y systems:

e, p, 2, and excitons bound to a Coulomb center
in different semiconductors.

The theoretical description of Coulombic three-body
systems is no longer hampered by lack of an efficient

method for calculating potential curves and channel
functions. The approach presented in this work, in our
view, will prove to be useful.
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APPENDIX: EVALUATION OF THE
CHANNEL MIXING COEFFICIENTS

To calculate the matrix elements of U in Eq. (22), be-
cause of the form of Eq. (8), we first need to evaluate the
tensor

7LM+ (& ) f dg dg [ ELM (g
1 122

X(sin a+rt+cos a

+rlzsin2acos8) ' P (g g )

(A 1)

-10.0— th f
Notice that the square-root term can always b 'ttys e wri en in
te orm

f(1+t +2tx) ', x =cose, (A2)

where the expressions for f and t are given in Table VI.
We also know by the definition of the Legendre poly-

nomials [14] that

(1+t'+2tx) '"= g (+) t P (x), its&1.
L'=0

(A3)

-17.0
0.0 0.5 1.0

R(a)
1.5

Because of the selection rules used below, the cond ion
t~ (1 is not mandatory. Using the addition theorem for

PL (x) and the fact that

FIG. 6. Plot of Uo(R)/R' vs R for d2+. Horizontal lines
represent some of the lowest bound states supported b U (R).

ey are below the dissociation energy Ez = —13.605 eV. The
0

abscissa is the hyperspherical radius multiplied by (2m, /mD )'
in order to establish a correspondence with the internuclear sep-
aration [see Eq. (1)]. R is in units of A' /m„e'.

l)l~ 41 42)= X &&Ill)m, l ~, ) I (g) ) (g)
Pl i, %12

(A4)

we obtain, after some straightforward algebra, the expres-
sion
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u interval

TABLE VI. Expressions for t and f appearing in Eq. (A2).

(+) sign (—) sign

0~a~a
e ~a~a+
a+ +a+m/2

(g+cosa)
(g+cosa)

(sina)

tana/g+
tana/g+
g+cota

(g cosa)
{sina)
(sina)

tana/g
cota
cota

where

1/2
q&qz m&

Sino 1 12 2 Qpp

mz
q2q3I I I I I1122q, q35. ., . , (a)+1122+pe (A5)

, (cr) =g(+) C 2)*(o,)
1 122

(A6)

and

l) l )
L' lq l2 L' l) lq L

C . ., . , =( —)
+ [(2l, +1)(21I+1)(2l2+1)(212+I)]'i (A7)

where the usual 3-j and 6-j symbols appear. The 2)L ~ terms are given by

(tana/rl+) (ri+cosa) ', 0~ a ~ a
/+, (cr) = (tana/71+ ) (q+cosa) ', (rl cota) /sina, a ~ a ~ a+

(ri++cota) /sina, a+ ~ a ~ n/2, .
(A8)

where tana+=ri+. In terms of the variable z, 2)L.(z) can easily be obtained by noticing that tana=2z/(I —z ),
cota=(1 —z )/2z, (sina) '=(1+z )/2z, and (cosa) '=(1+z )/(1 —z ).
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