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Summation methods for dimensional perturbation theory
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We examine strategies for approximating the sum of a perturbation expansion for Coulombic systems
in inverse powers of the spatial dimension D using only the few lowest-order terms. Several summation
methods are tested on energy expansions of the following systems: the ground state of He, the ground
state of Li+, the first two excited S states and the lowest 'P' state of He, and the ground state of H&+.

The origin of' the expansions, the limit D~ ~, corresponds to a pseudoclassical limit, but lower-order
terms are strongly affected by poles at D~l, a hyperquantum limit. Two alternative methods are
recommended, weighted truncation and hybrid Pade summation, which exploit these poles to reduce the
summation error. In effect, these methods modify a semiclassical 1/D expansion by incorporating
corrections that are often large. Weighted truncation appears to be slightly more dependable at very low

orders, while hybrid Fade summation is preferable when more than the three lowest-order terms are
available or when the residue of the second-order pole at D=1 is known. We demonstrate that the
present methods are superior to the shifted-expansion method, which does not correctly model the

singularity structure.

PACS number(s): 31.1S.+q, 31.20.Di

I. INTRODUCTION

The large-dimension limit of the Schrodinger equation
[1—4] is a simple, yet in some ways remarkably accurate,
model for the physical three-dimensional solution. It
offers a clear and straightforward explanation for two
very subtle and widely studied effects of electron correla-
tion in the two-electron atom: the apparent moleculelike
behavior of the system, which was discovered by Kellman
and Herrick [5], from an analysis of the electronic energy
spectrum and demonstrated by Berry and co-workers [6]
using configuration-interaction calculations, and the ap-
proximate separability of the two-electron wave function
in terms of hyperspherical coordinates, first noted by Ma-
cek [7]. The molecular behavior of the atom becomes
quite obvious at large dimension. In the limit of infinite
dimension, with suitable dimensional scalings, the elec-
trons become fixed in a rigid symmetric configuration
with the radial vectors separated by an angle of 95.3'.
We call this the Lems structure. At large but finite di-
mension the electrons undergo small oscillations about
the Lewis structure, which we call the Langmuir Uibra-
tions. Although the analysis of Kellman and Herrick [5]
was based on the assumption of a linear but very floppy
structure, the spectrum can be explained just as well in
terms of the bent Lewis structure [8]. Within first-order
perturbation theory in 1/D, where D is the dimension
treated as a continuous variable, the Langmuir vibrations
are harmonic and therefore separable in terms of normal
coordinates. To a good approximation, the normal coor-
dinates can be considered to be a symmetric stretch, a
bend, and an antisymmetric stretch, with only a small
coupling between the symmetric stretch and the bend. In
the large-dimension limit the hyperspherical radius be-
comes equivalent to the symmetric stretch [9] and is
therefore approximately separable. This argument also

offers an explanation of the approximate separability of
the wave function in terms of the molecular coordinates
of Briggs and co-workers [10].

Despite these qualitative successes of the large-
dimension limit, the attempt to calculate energy eigenval-
ues by simply adding subsequent terms in the 1/D expan-
sion leads to remarkably poor results [1]. The key prob-
lem with dimensional-continuation techniques is to find a
way to rigorously and systematically connect the large-
dimension limit with the physical solution at D =3. The
source of the difficulty is the presence of singularities in
the energy when considered as a function of 1/D. In par-
ticular, a second-order pole at D=1 is a characteristic
feature of Coulombic systems [11,12] due to the diver-
gence of the Coulombic potentials at particle coales-
cences. A coincident first-order pole is often present as
well. These Coulombic poles greatly slow the conver-
gence of the 1/D expansion.

In this paper we present two alternative summation
methods for the 1/D expansion that explicitly incorpo-
rate information about the dimensional-singularity struc-
ture at D =1. We demonstrate the effectiveness of these
methods using energy expansions through fifth order for
the ground states of He and Li+, for three excited states
of He, and for the ground state of Hz+. The expansion
coefficients for most of these systems [13—17] have be-
come available only recently. They are the most complex
systems for which dimensional expansions have yet been
calculated beyond first order.

One of our methods, Pade summation of the hybrid ex-
pansion, was briefly described by us in a preliminary ac-
count of this work [13]. Here we discuss the procedure in
greater detail and compare its effectiveness with that of
earlier summation techniques. We show that it is the
method of choice in most of the cases considered here.
Our other method, weighted truncation, appears to be
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II. SUMMATION METHODS

A. Previous approaches

For Coulombic systems, asymptotic expansions of the
energy eigenvalues about the point 5=0, with 5—:1/D,
have the form [1]

E(5)=5' g E(,5" .
t(. =0

(la)

It is convenient to remove the prefactor 5 by absorbing
it into the energy units. This leads to a dimension-scaled
energy E,

E(5)=D E= g Ei, 5" .
Ic =0

The partial sums

(lb)

the best method to use at very low orders if the residue of
the second-order Coulombic pole is not known.

We find in general that summation methods that have
been designed to model the effects of the poles are much
more effective than the more conventional techniques of
partial sums or Pade approximants, which do not explic-
itly include the known singularity structure. One other
method lies between these two groups. This is the
shifted-expansion procedure of Sukhatme and Imbo [18],
which does place a singularity at D = 1, but a singularity
of the wrong form. Not surprisingly, we find that the
shifted expansion is more effective than the methods that
do not include any singularity at D=1, but is less
effective than those that include a singularity of the prop-
er form. The shifted expansion has been rather widely
used in recent years [19]. We suggest that it now be re-
placed by methods based on dimensional-singularity
analysis.

quite slow. At orders 0, 1, 2, 3, and 4 the accuracy is, re-
spectively, 44%, 74%, 89%, 95%, and 98%. The rate of
convergence of the first few terms for the He ground state
is almost identical until large-order divergence begins to
set in at fourth order.

The fact that the low-order convergence is similar in
both cases suggested [2] rescaling the 5 expansion by fac-
toring out the hydrogenic energy; thus one obtains a res-
caled approxirnant

5"."'=12EH
I [l2EH I

'(E()+E,5+E,5'+ . . +E„5")]

-(1—5) [E()+(E,—2E())5+(E~—2E, +E())5

+ +(E„2E„—, +E„~)5"], (5)

where EH is the energy of the one-electron atom given by
Eq. (4). On account of the scale factor ~2EH ~

', which is
proportional to (1—5), the power series within the
brackets in Eq. (5) represents a function that is regular at
5=1 and that can therefore be more accurately modeled
by a power series. The improvement in the rate of con-
vergence due to this rescaling is dramatic. The first-order
result from the rescaled expansion is in error by less than
1%, as compared to the 26% error from the unscaled
partial sums.

Another type of rescaled approximant is the shifted ex-
pansion, which was discovered empirically by Sukhatrne
and Imbo [18] before the dimensional-singularity struc-
ture had been elucidated. This method consists of recast-
ing the expansion parameter 5 —= I /D in terms of
(D (r )

—', where 0 is an arbitrary shift parameter. For
the ground state of He the optimal shift parameter was
found to be 0.=1, which leads to approxirnants of the
form

S(sh) (1 5)
—2 y E(sh)(D 1)

—i

i=0
g(ps)(5) —y E 5k

k=0
(2) where

E(5—I)-a z(1 —5) +a i(1 —5) (3)

greatly slow the rate of convergence of the partial sums.
The exact solution for E(6) for the one-electron atom is
[21]

EH(5)= —2Z (1—5) (4)

The physical solution 5= —.' is within the radius of conver-
gence so the partial sums of the 5 expansion are conver-
gent at that point. However, the rate of convergence is

form a sequence of approximants to E in terms of the in-
dex n. This is not a suitable summation method for di-
mensional expansions of systems with Coulomb poten-
tials, due to the approximants' inability to model the
dimensional-singularity structure of the function E(5).
The functions S„' '(5) are polynomials in 5, and there-
fore have no singularities at any finite value of 5, whereas
E(5) is known to have a rather rich singularity structure
[20]. In particular, the Coulombic poles [11,12] at 5=1,
which have the form

E(sh) —y ( 1)i
i=0

n+1
l

~ En -I (7)

(8)

For n =0, Eqs. (5) and (6) are identical, with a second-
order pole at 5=1, but they differ at higher order since
the shifted expansion adds additional higher-order poles
at 5=1. Singularity analysis [11] of the Schrodinger
equation shows that there are no poles at 5=1 of order
higher than 2. Therefore, we can expect that the shifted
expansion will be less and less accurate than the approxi-
mants of Eq. (5) as n increases. We will show below that
this is indeed what happens.

An alternative approach to the summation problem is
to identify a functional form for the singularity and then
subtract its 5 expansion from the expansion of the energy.
According to Eq. (3), the Coulombic singularities have
the form of a second-order pole and a confluent first-
order pole. Suppose the residues of these poles were
known. Then one could use an approximant of the form
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where

E,'=E, —.(i+1)a z
—a

This technique has been called the hybrid expansion [12],
since it can be thought of as the sum of a truncated
Laurent expansion about 5= 1 and a truncated Taylor ex-
pansion about 5=0. The summation in Eq. (8) is
equivalent to the nth partial sum of the function

This leads to the approximant

(wr, )
a 2 E„—(n+1)a

(1—5) 1 —5
n —1

+ g [E,+(n —i )a 2
E—„]5' .

i=0

C. Hybrid Pade summation

(14)

E '(5) —=E(5)—a ~(1 —5) —a, (1—5) (10)

This function is regular at 5=1, so we can expect that it
will be more accurately modeled by partial sums than will
the original function E.

B. Weighted truncation

hS„,=[E„(n+ 1)—p]5", (12)

which suggests that we choose p=E„/(n+1) so as to set
AS„1=0. In this way we can construct a new sequence
of approximants,

E„/(n+1)S' '= + g E; — E„5'.
(1—5)', '

n +1 (13)

We call this technique weighted truncation. Each of
these approximants is the OAA of a series that has been
weighted by subtracting out the expansion of a pole with
the residue chosen so as to minimize the asymptotic error
of the truncation. If the exact value of a z is known,
then weighted truncation can be used to determine a

The residue a 2 can often be calculated by solving the
Schrodinger equation at D=1. This has been done for
the one- and two-electron systems treated in this paper
[11,15,21,22], but the calculation may be more difficult
for more complicated systems. In principle, the residue
of the first-order pole a 1, can be calculated from pertur-
bation theory about the D = 1 solution, although in prac-
tice this is rather complicated. It would be useful to have
a method that could yield an accurate summation from
the expansion coefficients alone. Therefore, we require a
technique for estimating the residues using only the ex-
pansion coefficients.

The partial sums for the He ground state at first steadi-
ly approach the correct value but then, after a certain
point, become steadily worse. This behavior is typical for
divergent asymptotic series [23]. An estimate of the error
in the nth partial sum is given by the term in the expan-
sion of order n+1, that is, E„+,5n+'. The partial sum
for which this error estimate is smallest is called the op-
timal asymptotic approximation (OAA) [23]. If 5 is
sufficiently small, then the OAA will be the point of
closest approach to the correct value. We can use the
asymptotic error estimate as a criterion for fitting the
residues. Consider an approxirnant of the form

n

S„= + g [E; (i +1)p—]5',
(1—5);=o

with p treated as a variable parameter. The error esti-
mate for S„,is

The techniques we have described thus far only at-
tempt to model singularities at 5=1; however, analysis
[15—17,20] of the large-order behavior of dimensional ex-
pansions for Coulombic systems has indicated in addition
the presence of a singularity at or near 5=0, which ulti-
mately causes the partial sums for He and H2+ to
diverge. The form of the singularity at the origin is rath-
er complicated, and to characterize it from the expansion
requires the knowledge of the expansion coefficients
through rather high order. Fortunately, since the effect
of this additional singularity on the low-order coefficients
is often not very large, one can expect that for the pur-
poses of summation at low order a very accurate charac-
terization is not necessary.

Pade summation [24] is a simple and often very suc-
cessful technique for modeling functions whose singulari-
ty structure is not known. Fade approximants are ratios
of polynomials,

PP+P15+PP5 + ' ' ' +PL5
S(L,rM](5)

1+q15+q25 + +q 5
(15)

a ~= lim(1 —5) E(5),
6~1

a, = lim(1 —5)[E(5)—a 2(1 —5) ] .
6~1

(16a)

(16b)

L and M are non-negative integers chosen such that
L+M=n, where n is the order through which the ex-
pansion coefficients are available. The p, and q; are as-
signed by expanding Eq. (15) in powers of 5 and then
equating it order by order with the energy expansion.
The function S(I&M)(5) has poles at the zeros of the
denominator polynomial, which gives it some flexibility
for describing functions with singularities.

We find that in the case of dimensional expansions the
convergence of Fade approximants with increasing n

tends to be rather slow and uneven. However, their rate
of convergence can be improved considerably if they are
used in conjunction with the hybrid expansion of Eq. (8).
The Pade approximants of the E converge quite well
even at low order. At low order the Fade approxirnants
of the full energy expansion Eq. (lb) use much of the lim-
ited amount of information at their disposal to model the
poles at 5=1, so they are not able at first to accurately
model the complicated singularity at 5=0. The Pade ap-
proximants of the hybrid expansion, which we call hybrid
Pade approximants, can immediately devote their full at-
tention to modeling the singularity at the origin.

If the residues are not known, then they too can be es-
timated using Pade approximants. The residues can be
expressed in terms of the 5 expansion according to
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We can expand Eqs. (16) in powers of 5 and then calcu-
late the residues from Fade approximants evaluated at
5=1. The values for the residues obtained in this way
are not extremely accurate, but they are usually accurate
enough to remove the poles at 5=1 from the Pade ap-
proximants for E '. We find that the rate of convergence
for the energy approximants using these approximate
residues is almost as good as the rate of convergence ob-
tained using the exact values for the residues.

III. RESULTS
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We now compare the convergence of the various sum-
mation methods discussed above by applying them to
some prototypical systems. The energy expansions that
we will use were calculated using the moment method
[25], a recursive procedure that yields an exact solution
for the expansion coefficients subject only to the numeri-
cal precision of the computer. We will only consider here
expansions through order 5, at which point roundoff er-
ror is not yet a problem. Analysis of the large-order be-
havior of these expansions is presented elsewhere
[15—17,20].

The expansion coefficients are shown in Table I. The
results for the ground state of H2+ [14,15] and for the
ground states of the two-electron atom isoelectronic se-
quence [13,16] come frotn perturbation theory about the
ground state of the vibrating Lewis structure. The He
1s2s triplet and singlet states correspond to one quantum
of excitation in the antisymmetric-stretch and
symmetric-stretch normal modes, respectively [17]. The
He 2p P' state at D =3 is a doubly excited bound state
embedded in the continuum. However, it is exactly de-
generate with the D =5 He ground state [26,27]. The re-
sults we present for the doubly excited state were ob-
tained by evaluating the ground state 5 expansion at
5= —,'. The H2+ expansion was calculated [15] within the
Born-Oppenheimer approximation with the internuclear
distance scaled by the factor D(D —1)/6.

Figure 1 shows a comparison of the accuracy obtained
using the six summation methods that do not require the
exact values of the residues of the Coulombic poles. The
level of accuracy is expressed in terms of the number of
accurate decimal digits, defined as —log&o~(S„E)/E~,—

0 I

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5

FIG. 1. Accuracy of summation methods that do not require
exact values for the residues of the Coulombic poles, labeled as
follows: o, partial sums, Eq. (2): X, shifted expansion, Eq. (6);
CI, Pade approximants; 6, rescaled approximants, Eq. (5); '7,
weighted truncation, Eq. (13); 0, hybrid Pade approximants
with residues from Eqs. (16). Solid diamonds indicate hybrid
Pade approximants that can be predicted to be inaccurate on ac-
count of an inaccurate value for a &, as described in the text.
The number of accurate digits is defined as —log~o~(S„E)/EI, —
where E is the exact energy. For those summation methods that
have an optimal asymptotic approximation (OAA), the values
before the OAA are connected by solid lines, while the values

past the OAA are connected by dotted lines.

where E is the exact energy eigenvalue and S„ is the esti-
mate for the energy given by any of the various types of
approximants using the expansion coefficients through
order n. For the methods that do not involve Pade sum-
mation, the most accurate value obtainable from the ap-
proximants is given, in principle, by the OAA. All points
in Fig. 1 that are beyond the OAA are connected by dot-
ted lines, while those before it are connected by solid
lines. In the case of the Pade methods, we show only the
diagonal sequences: [0/0], [0/1], [1/1], . . . .

The three methods that incorporate by assumption a
second-order pole at D =1, weighted truncation, hybrid
Pade approximants, and the rescaled expansion, are seen
to be generally more accurate than the two methods that

TABLE I. Coefficients of the 1/D expansions of energy eigenvalues. The atomic results are in units of Z hartree, while the re-
sults for H&+ are in units of hartree. The number in square brackets that follows each entry indicates the power of ten multiplying
the entry.

He 1s

—0.27377691 [1]—0.60575919 [1]—0.88621838 [1]—0.13900637 [2]—0.54367204 [1]—0.82739468 [2]

'Reference [13).
Reference [16].

'Reference [17].
dReference [15].

2bLi+ 1s2

—0.312 538 34 [1]—0.66201508 [1]—0.993 70479 [1]—0.13674586 [2]—0.15834934 [2]—0.22507470 [2)

He 1s2s S'
—0.27377691 [1]
—0.25085641 [1]—0.803 53093 [1]—0.21740630 [1]—0.73398574 [2]
+0.918 913 73 [3]

He 1s2s 'S'

—0.27377691 [1]—0.63121236 [0]—0.415 80650 [2]
+0.92463852 [3]—0.39641619 [5]
+0.21302595 [7]

H+ 1s, R=1
—0.62391675 [1]—0.112603 51 [2]
—0.15561777 [2]—0.23100681 [2]—0.10575525 [2]—0.23015288 [3]
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do not—partial sums and ordinary Fade approximants.
The shifted expansion includes a singularity at D = 1, but
for n )0 the form of the singularity is not correct. This
method tends to be more accurate than the methods that
do not include any singularity at D =1, but less accurate
than those that have a singularity of the proper form.
The OAA does prove to be a good indicator of the
highest accuracy that can be obtained from the given
method in those cases where it is applicable. (The only
exception is the shifted expansion for H2+, in which case
the OAA comes one order too soon. ) For the shifted ex-
pansion, the rescaled expansion, and weighted truncation,
the OAA comes quite early, at the latest by second order.

The two types of Fade summation should be con-
sidered separately from the other methods. They do not
have an OAA; they can be expected to continue to in-
crease in accuracy with increasing order. It is clear from
Fig. 1 that hybrid Pade summation is at least as accurate
as direct Fade summation and usually significantly more
accurate. Furthermore, the convergence of the hybrid
method is considerably steadier.

Only a few of the hybrid Pade approximants are less
accurate at a given order n than at order n —1, and in
those cases the cause appears to be relatively low accura-
cy in the estimate for the residue a 2. Table II compares
the exact value for a 2 with the estimates used by the hy-
brid approximants, obtained from Pade summation of
Eq. (16a). The estimates are given by Pade approximants
evaluated at the point 6=1. This point is considerably
farther from the origin than is 5= —,', so the accuracy ob-
tained for the residues is somewhat less than the accuracy
obtained for the energy. For the ground states, there is a
close correspondence between the relative accuracy of the
residue and the relative accuracy of the energy approxi-
mant. For Li+ and H2 we could identify the inaccurate
results for a 2, even if we did not know the exact results,
from the fact that ~S„—S„,~, where S„ is the n th-order
approximant for a 2, increases from its value at the pre-
vious order. (Applying this analysis to the approximants
for the energy would not identify the inaccurate ones. )

Another way to predict the quality of an approximant for
a 2 is to examine the roots of the denominator polyno-
mial of the hybrid approximant for the energy. The hy-
brid Fade approximant is designed so that the series that

is summed by the Fade summation is regular at the point
5=1. If the denominator polynomial is found to have a
zero in the neighborhood of that point, then we can ex-
pect that the value at that order for the residue is not
very good. Thus, we could eliminate the [2/3] approxi-
mant for Li+, which has a pole at 0.89, and perhaps the
[1/1] approximant for Hz+, which has a pole at 1.69.
Approximants that can be ruled out by either of these
two criteria are indicated in Fig. 1 by solid diamonds.
For the two singly excited states of He, the correlation
between the accuracy of a 2 and the accuracy of the cor-
responding energy approximant is weaker. This is prob-
ably due to the fact that another dimensional singularity,
at 5=0, is relatively more important for these states [17].
Even so, hybrid Pade summation is still significantly
more effective than direct Fade summation.

Analysis [15—17,20] of the higher-order terms in the
energy expansions suggests, in all five cases, the presence
of a complicated singularity at 5=0. This singularity ap-
pears to have the form of a product of a square-root
branch point and an essential singularity. The Pade ap-
proximants model this by tracing out a branch cut with a
series of nearly coincident poles and zeros. This behavior
is well illustrated by the [2/3] hybrid Pade approximant
for H2+. The poles and zeros of this approximant are
shown in Fig. 2. The branch cut is placed along the nega-
tive real axis. All of the Fade approximants of Fig. 1 gen-
erally conform to this pattern although some of them
have stray poles along the positive real axis. If such a
pole is close to 1 then it probably represents a remnant of
the Coulombic poles, as discussed above. Several of the
approximants have a pole farther out along the positive
axis, which is probably spurious. As long as any spurious
pole is well removed from the point 5= —,', at which the
approximant is evaluated, it should not have a direct
effect on the accuracy. However, it could have an in-
direct effect since the extra pole is not being used produc-
tively to model the singularity at the origin. Such ap-
proximants should be regarded as suspect. The [0/1],
[1/2], and [2/3] approximants for the He ground state
(and P' state), the [0/1] and [1/2] approximants for Li+,
and the [2/2] approximant for H2+ have spurious poles

at large positive 5; the accuracies of most of these appear
to be at least slightly degraded.

TABLE II. Residues of the second-order pole in the energy at D = 1, in units of Z hartree. The first
entry in each column is the exact solution, while subsequent entries are from Pade summation of Eq.
(16a).

Exact

He 1s2

—3.155 39'

i+ ls'

—3.403 53'

He 1s2s S' He 1s2s 'S' H2+ 1s, R =1
—5.048 79

[0/0]
[0/1]
[1/1]
[1/2]
[2/2]
[2/3]

—2.737 8
—3.477 0
—3.046 5
—3.277 9
—3.147 0
—3 ~ 146 7

—3.125 4
—3.544 3
—3.374 7
—3.455 0
—3.412 8
—3.997 8

—2.7378
—1.3139
—1.7286
—1.7045
—1.7285
—6.0260

—2.7378
—0.9886
—2.2478
—1.1959
—2.0434
—1.3754

—6.239 2
—5.220 1
—3.261 6
—5.059 3
—4.726 6
—5.025 2

'Reference [22].
Reference [15].
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FIG. 2. Singularity structure of the [2/3] hybrid Fade ap-
proximant for Hz . X represents a zero in the denominator po-
lynomial and 0 represents a zero in the numerator polynomial.
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It is clear from Fig. 1 that the hybrid Pade summation
is generally the method of choice at order higher than
that corresponding to the OAA of the rescaled expansion
or of weighted truncation, which is the point at which the
large-order behavior due to the singularity at 5=0 begins
to become important. At lower orders it is not quite as
clear which of these three methods is best. Figure 3 com-
pares the accuracy of these methods for the ground state
of the two-electron atom over a range of A, =—1/Z. The
dashed curves represent approximants of order 1 and the
solid curves represent approximants of order 2. Weight-
ed truncation at order 1 appears to be the most robust of
the methods, working well over the entire range. At or-
der 2 it works rather poorly for large A, , where it lies
beyond its OAA. Figure 4 shows the accuracy for Hz+
over a range of internuclear distance. Here the most
robust approximant is weighted truncation at order 2,
which in this case is the OAA over most of the range.

The residues of the second-order poles for each of our
systems are known exactly. They are the energy eigen-
values of appropriately dimension-scaled Schrodinger
equations at D= 1 [11,15]. For the singly excited states
of He the calculation of the residue is particularly simple.
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FIG. 3. Accuracy of summation methods for the ground
state of' the two-electron atom as a function of the inverse of the
nuclear charge. The dashed curves are approximants of order 1

while the solid curves are approximants of order 2. The curves
are labeled as follows: Re, rescaled approximants, Eq. (5); WT,
weighted truncation, Eq. (13); HPA, hybrid Pade approximants
with both residues calculated according to Eqs. (16).

FIG. 4. Accuracy of summation methods for the ground
state of H2+, as a function of the internuclear distance in atomic
units. The dashed curves are approximants of order 1, while the
solid curves are approximants of order 2. The curves are la-
beled as follows: Re, rescaled approximants, Eq. (5); WT,
weighted truncation, Eq. (13); HPA, hybrid Pade approximants
with both residues calculated according to Eqs. (16).

For D =1 it has been shown [11] that the dimension-
scaled Schrodinger equation in the limit X~O has only
one eigenstate in which both electrons are bound. This
result continues to hold for nonzero A, , since the addition
of interelectron repulsion can only further destabilize the
system. Therefore, any excited state of the two-electron
atom ionizes in the limit D~1 leaving a one-electron
atom, whose energy eigenvalue (at any D ) is given by Eq.
(4). Thus the residue of the second-order pole is
a 2= —2Z . For H2+, a 2 can be determined by solv-

ing a simple transcendental equation [15]. In the case of
the two-electron ground state the calculation is more
complicated, but the solution can be expressed in terms
of an integral equation that can be solved numerically to
arbitrary precision [22]. For the doubly excited He
2p P' state, we use the residue corresponding to the
ground state, since we evaluate the eigenvalue of the ex-
cited state as a ground-state energy at D = 5 [26].

Figure 5 shows the accuracy of the three summation
methods that can incorporate a known value for a 2.
the hybrid expansion, Eq. (8); the biased weighted trunca-
tion, Eq. (14); and hybrid Pade summation with the resi-
due of the first-order pole fit from Fade summation of Eq.
(16b). Hybrid Pade summation here generally appears to
be the method of choice at all orders. The one exception
is the He ground state at order 2, in which case the hy-
brid expansion is better, but this result appears to be
anomalous. In all the other cases the Pade summation is
at least about as good but usually significantly better.
The [2/2] approximant for H2+ and the [1/2] for the
triplet singly excited state are about equal in accuracy to
the hybrid expansion, but both have poles near 5=1.
The [2/2] approximant for Li+ has a spurious pole near
22 but this does not seem to affect its accuracy. The esti-
mates for a, from Pade summation are shown in Table
III. There is an excellent correspondence between the
relative accuracy of the residue and the relative accuracy
of the corresponding energy approximant, although it is
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FIG. 5. Accuracy of summation methods that require the ex-
act value for the residue of the second-order pole a 2, but not
for the residue of the first-order pole a &, labeled as follows: 0,
hybrid expansion, Eq. (8), with a 1=0; V, weighted truncation,
Eq. (14); 0, hybrid Fade approximants with a, from Eq. (16b).
Solid diamonds indicate hybrid Pade approximants that can be
predicted to be inaccurate on account of a pole in the vicinity of
5 = 1. The number of accurate digits is defined as
—log~o~(S„E)/E~, w—here E is the exact energy. For those
summation methods that have an optimal asymptotic approxi-
mation (OAA), the values before the OAA are connected by
solid lines, while the values past the OAA are connected by dot-
ted lines.

not always possible to identify the less accurate residue
estimates from the behavior of ~S„—S„,~. All of these
summation methods have been improved by using the ex-
act value for a 2.

Knowledge of both a: and a
&

would allow the com-
plete removal of the poles at 5=1 using the hybrid ex-
pansion, Eq. (8). The energy could then be determined ei-
ther from partial sums or from Fade summation. For the
singly excited states of He we have a

&

=0 as discussed
above. For our other systems this residue is much more
difficult to calculate. In principle, it should be possible to
calculate it exactly using perturbation theory in powers
of (D —1) about the one-dimension limit. This has been
carried out for central-potential problems [11], but not

FIG. 6. Accuracy of summation methods that require exact
values for both a 2 and a &, labeled as follows: 0, hybrid ex-

pansion, Eq. (8); 0, hybrid Pade approximants. Solid diamonds
indicate hybrid Fade approximants that have a nearly coin-
cident pole and zero on the positive real axis. The number of
accurate digits is defined as —log, o~(S„E)/E ~,

—where E is the
exact energy. For those summation methods that have an op-
timal asymptotic approximation (OAA), the values before the
OAA are connected by solid lines, while the values past the
OAA are connected by dotted lines.

for the more complicated systems that we are considering
here. In order to determine how helpful it would be to
know the exact a „we will use estimates for this residue
obtained through other means. For the ground states of
He and Li+, values for a

&
have been extracted from nu-

merical fits [28] to direct calculations of E, from the
Hylleraas-Pekeris method [29], over a range of D. For
H2+, we estimate a, from Pade summation of Eq. (16b)
using expansion coefficients through 35th order [15]. Our
estimates for the exact values for a, are listed in table
III.

Figure 6 compares the accuracy of the two hybrid-
expansion methods using accurate values for both resi-
dues. Both methods are improved by using the exact
a &. It is clearly better in general to use the Pade sum-
mation. Spurious poles are present in [2/3] for the He

TABLE III. Residues of the first-order pole in the energy at D =1, in units of Z hartree. The first entry in each column is the ex-
act solution (or an estimate of the exact solution, as described in the text), while subsequent entries are from Pade summation of Eq.
(16b) using the exact value of a

Exact

He 1s'

0.31645'

Li+ 1s

0.209 30'

He 1s2s S' He 1s2s 'S' H2+ 1s, R =1
—0.9830

[0/0]
[0/I]
[1/1]
[1/2]
[2/2]
[2/3]

0.417 6
0.299 6
0.365 1

0.323 3
0.330 8

0.325 8

0.278 2
0.209 5

0.231 4
0.214 9
0.202 7
0.213 0

—0.7378
—0.1835

0.1256
—3.0591

0.1399
0.0268

—0.7378
—0.1124
—0.3461
—0.1220
—0.1646
—0.1226

—1.1904
—1.1634
—1.1914
—1.0175
—1.3295
—0.9819

'From numerical fit to Hylleraas-Pekeris calculations, Ref. [28].
From 35th-order Pade summation, Ref. [15].
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FIG. 7. Effect of the manner of obtaining residues on the ac-
curacy of hybrid Pade summation. The solid lines connect
points obtained using the exact values of both residues, the
dashed lines connect points obtained with a ] estimated from
Pade summation, and the dash-dot lines connect points obtained
with both residues estimated from Pade summation. The dia-

monds indicate approximants with acceptable singularity struc-
ture: approximants with poles near 5= 1 or with defects have

been omitted and the value of the next lower-order approximant
has been used instead.

ground state (and the P' state), [2/2] for Li+, [0/1] and
[1/2] for H2, and [1/2] for the triplet He state; each of
these approximants is relatively poor. The [2/2] approxi-
mant for Li+ and the [1/2] for triplet He have spurious
poles that are near1y coincident with zeros. These are de-
fects [24], an occasional problem with Pade approxi-
mants. In the latter case the defect occurs at approxi-
mately 0.3 and has a profound effect on the accuracy due
to its promixity to the physical solution 5= —,'. The form-

er occurs near 0.7 and has less of an effect. The accuracy
of the hybrid Pade approximants for the singly excited
states is significantly improved at most orders by the ex-
act a „although the convergence is rather uneven,
probably on account of the importance of the singularity
at 6=0.

In Fig. 7 we show the improvement in the accuracy of
the hybrid Pade approximants that comes from using ex-
act values for the residues. For the two singly excited
states of He the improvement from using exact residues is
quite significant. The residues in these cases are trivial to
derive, so there is no excuse not to use the exact values.

For the other systems the improvement is substantial at
lower orders, but appears to be less significant at orders 4
and 5.

IV. DISCUSSION

We have introduced in this paper two summation pro-
cedures, weighted truncation and Pade summation of the
hybrid expansion. They are significantly more accurate
than the shifted expansion [18,19] and appear to be the
best techniques yet avai1able for summing dimensional
expansions of Coulombic systems given expansion
coefficients through order n ~5. If the residue of the
second-order Coulombic pole is known or if the expan-
sion coefficients are known at least through third order,
then we recommend Fade summation of the hybrid ex-
pansion. If the exact values of the residues are not avail-
able and the expansion coefficients are not known beyond
second order, then two other methods, the rescaled ex-
pansion and weighted truncation, are also competitive.
Weighted truncation seems to be the most robust of the
three. The convergence of the hybrid Pade approximants
can be improved by discarding approximants whose
singularity structure is inconsistent with the known di-
mensional singularities. It is sometimes possible to re-
place discarded diagonal approximants with off-diagona1
approximants that have the proper singularity structure.

An advantage of weighted truncation and hybrid ap-
proximants over the rescaled expansion is that singulari-
ties more complicated than poles can also be treated. A
pertinent example is the case of a relativistic particle in a
Coulomb potential. Dimensional singularity analysis of
the energy revealed [30] a complicated structure involv-

ing four branch points, instead of the second-order pole
found in the nonrelativistic version. It would be difficult
to accommodate a singularity of such complexity with a
simple rescaling, but it is straightforward to incorporate
it into the methods that subtract out the singularity. Vs-
ing weighted truncation, with only the zeroth-order term
in the energy expansion, was found [30] to immediately
yield the exact solution for the relativistic energy.
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