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Calculation of some integrals for the atomic three-electron problem
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An analysis is presented for the evaluation of integrals of the form

f rIrir,"r23'r3ir", ze
' 'dr, dr2dr3 which arise in the determination of certain properties for

atomic three-electron systems. All convergent integrals with i ~ —2, j ~ —2, k) —2, m )—1, and

n ~ —1 are discussed. These integrals are solved by reduction to one-dimensional quadratures of the
form fg(x)w(x) dx, where tv(x) is one of the four functions ln[(1+x)/(1 —x)],
x 'ln[(1+x)/(1 —x)], ln[(1+x)/(1 —x)]ln(x '), and x 'ln[(1+x)/(1 —x)]ln(x '), and f(x) is a
well-behaved function on the interval [0,1]. The polynomials, which are mutually orthogonal over the
interval [0,1] for each of the preceding four weight functions w(x), are determined. These polynomials
allow specialized numerical quadrature calculations to be performed, which leads to an efficient algo-
rithm for evaluation of the above integrals.

PACS number(s): 31.15.+q, 02.60.+y

I. INTRODUCTION

The integral defined by

I(i j,k, l, m, n, a,g, y)

r jr2r3r23r32r„e dr, dr2dr3, (1)i j k l m n l t"2 ~"3

where ri is the electron-nuclear coordinate and r," is the
interelectronic separation, occurs in several contexts for
the three-electron atomic problem [1—8]. Evaluation of
certain relativistic contributions and the determination of
lower bounds for energy levels involve these integrals,
when a Hylleraas-type expansion is employed for the
wave function.

Special cases of the above integral have received atten-
tion in the literature. The most difficult cases occur for
I = —2. For I = —2, the case m =0 and n =0 being well
studied, as the two-electron integrals contained in Eq. (1),
are those required for the evaluation of relativistic contri-

I

butions and lower bounds in the two-electron problem
[9—12]. A generalization of Eq. (1) has been discussed in
the literature [13]for the cases I, m, n, ) —1.

In a recent investigation [14]one of the present authors
succeeded in evaluating some of the I integrals for the
case I = —2. That work should be consulted for addi-
tional references and theoretical background.

The focus of this investigation is the reduction of the I
integrals to a form suitable for numerical quadrature
techniques. Because many I integrals may occur in the
course of a single atomic calculation, efficiency of the
evaluation technique becomes a critical concern. Special-
ized quadrature procedures are developed to yield an
effective approach to the evaluation of the I integrals.

II. REDUCTION OF I
TO THREE-DIMENSIONAL INTEGRALS

Two expansions for the interelectronic coordinates are
required. r, 2 can be expanded as [14]

I 21 —2u I —2v
2
12 1=0

P1 r2
2 11 72 O U=0

(
—4)"

u K V

I —1 min[~, l —~—1j—I +2~„!—2~ —2 y 4j~ T1 T2
v=O j=0

I —2j —1

K J

I 21 —2u
( —1)"j v I

X g 2j —2u +1 Pi(cosH, 2) . (2)

A slightly modified version of Eq. (2) has been given by Pauli and Kleindienst [15]. The standard summation conven-
tion gk „=0when m (n, is employed throughout this work. (b) denotes a binomial coefficient. The Sack formula
[16] for the expansion of r» is

r3I g R ~(r3, r& )P (cosH3t)
p=0

(3)
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where P (cos83, ) are the Legendre polynomials and R p(r3, r] } denotes the radial functions. If Eqs. (2) and (3) and the

analogous Sack expansion for r33 are inserted in Eq. (1), then the I integral simplifies to

21+1 i k ~'& f3~v

I(ij,k, 2—, m, n, a,p, y)= J g g g 4 'Pl(cos823)rjr/r3e
p =01)=01=0

XR p(r3, r, )R«(r], rz)Pp(cose»)PI (c ose z]}

I T +f—1 —1+2~ 1 —1 —2]ci
r3 ln

x=0 P2 P3

min[~, 1 —~] 1 21 —2v 1 —2u
X g ( —4)"

v==0

1 —1—2 ~ f 1+2~11—2x —2~f2 f3
v=O

min[]c, 1 —~—1 ] 1 —2j —]
4

j=0

I 21 —2u

u 1
( —1)"

x~
2j —2u +1 dr, dr2dr3 . (4)

I„=fPI(cose»}P (cose3])PI ( cso8])2dQ] dQ2dQ3

to yield

64m
Ir] =

(2I +1)2 l]p II] pl ~

where 5,, is the Kronecker delta. To simplify the notation set

21 —2v 1 —2umin[a. , I —r)
(
—4)" „v=0

F(l, l~) =
K u

and

which can be evaluated on employing the standard expansion of the Legendre polynomials

4~
Pl(cos83])= g YIM(83, $3)YIM(8], I))]),

M= —1

(7)

(8)

min[a. , I —x —1]
G(l, a. ) =2

j=0

1 —2j —1

1 21 —2u

J
( —1)"

v 1

2I —2u +1 (9)

The functions F(l,~) and G(l, a) defined in Eqs. (8) and (9) are independent of the arguments of any particular I in-

tegral, so the most efticient computational procedure is to compute and store arrays for both functions. This actually
becomes a necessary approach for odd-m odd-n I integrals. For these cases F and 6 functions involving large argu-
ments are required. Equations (8) and (9) are not stable for standard numerical evaluation for these cases. This
difficulty was solved by evaluating the F and G arrays using exact arithmetic (with MATHEMATteA [17]),and then con-
verting to Boating decimal point values suitable for input to our Fortran code. The results were checked by direct cal-
culation using multiple precision arithmetic. Liichow and Kleindienst [18]have just published an investigation of some
of the properties of the functions 6 and F.

Inserting Eqs. (7)—(9) into Eq. (4) yields
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00 4
—I

I(i j,k, —2, m, n, a,P, y)=32m g R t(r3, r, )R„t(r„rz)r', + rt+ r3+ e
p (21+1)

I —I —1+2m I —1 —2x'l
P2 P3 n

x=0

f2+f3
F(l,a)

12 r3

Equation (10) can be simplified to

1 —1—g r '+ "r' " G(l, tr) dr, dr dr
x=0

(10)

4 ~( —m/2) ( n—/2)
I(i j,k, 2—, m, n, a,p, y)=—32m3 g g a „, g a, [Ri(ij,k, m, n, w, s, t, a,p, y)

p (2w +1)[(1/2) ],=p, =p

+R2(i j,k, m, n, w, s, t, a,p, y }],
where

I

Ri = g F(l,a)[ Wt (i+2+21+2s+2t j +1+n —2l —2s+2a, k+1+m 2t —2', a—,p, y)
lx=0

+ WL (i +2+2l +2s+2t, k+1+m 2t 2—tc,j +—1+n —2l —2s+2s, a, y, p)

+ WL (k +1+21+2t —2s.,j+1+2s+2s, i+2+m +n —21 —2s 2t, y, p, —a)
2

+ Wt (j+1+2s+2tr, k+1+2l+2t 21—i~+2+m +n —21 2t —2s, p—, y, a)

+ WL (j+1+2s +21', i +2+n +2t —2s, k+1+m 2t 2—a,p, a, y—)

+ WL (k+1+2l +2t 2', i —+2+m +2s 2t j +—1+n —2l —2s+2 i', ap)],

I —1

R2= —g G(l, s)[ W(i +2+2l +2t+2s, j+2+n —21 —2s +2m. , k +m 2t 2a.,—a,p,—y)

(12)

and

+ W(j +2+2s +2 iir+2+n +2t —2s, k+m 2t 2a, p, a—, y—)

+ W(k+2t +21 —2a, j+2+2s+2tr, i +2+m +n —21 2t —2s—, y, p, a)

+ W(i +2+2l +2s +2t, k +m 2t —2',j +2—+n —21 —2s +2m, a, y, p)

+ W(j +2+2s+2x, k+21+2t 2x, i +—2+m +n —21 —2s 2t, p, y, a)—
+ W(k+2l +2t 2tr, i +—2+m +2s 2t j +2+n ——2l —2s —2s, y, a,p)], (13)

W(L, M, N, a, b, c}=f x e '"dx f y e dy f z e "dz,
0 x

z+y
WL (L,M, N, a, b, c)= x~e '"dx y e ~

dy f z e "1n dz,
x y Z

WL (L,M, N, a, b, c)=fx e '"f -y e Gn dy f z e "dz,
X X y

(14)

(15)

(16)

WL(L, M, N, a, b, c)=f x e 'dxf y e «dyf z e "1n dz.
3 0 X y Z X

(17)

The coefficient a „, in Eq. (11) is defined by

( w n /2 ), ( ——,' n /2 ), ——
s!(w + —,'),

and (m)„denotes the Pochhammer symbol. Efficient
methods exist [4] for the evaluation of the W integrals
defined in Eq. (14).

III. SIMPLIFICATION OF THE WL INTEGRALS

The WI integrals defined in Eqs. (15)—(17) can be eval-

uated analytically for certain values of L, M, and N.
However, for most negative values of these parameters,
the integrals, despite their relatively simple appearance,
become rather difficult to resolve in a form that is stable
for numerical evaluation. Efficient evaluation of these in-
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tegrals is paramount to the usefulness of Eq. (11),particu-
larly for the case when I and n are both odd. In this case
the lead summation in Eq. (11) does not terminate. The
second and third summations both terminate at finite
values for m and n even or odd, based on the properties
of the Pochhammer symbols [see Eq. (18)].

The approach adopted below is to convert each of the
WL integ rais to an essentially similar set of one-
dimensional integrals. These are then evaluated by spe-
cialized numerical quadrature procedures.

Wt (L,M, N, a, b, c)=q! t + +'ln dt
0

w dw

o (awt+bt+c) +'

with

q =L+M+N+2 .

(22)

(23)

A. 8'& integrals
1

The WL integral converges for
1

L+0,
L+M) —2,
L+M+N) —2 .

(19)

(20)

(21)

Equation (22) can be simplified to yield several different
expressions. The most convenient form, for reasons that
will be apparent in Sec. IV, is to retain the distinct factort'™+I.By differentiating with respect to a parameter
in the second integral, the following result is obtained:

W~ (L,M, N, a, b, c)=q!f t~+~+'In f(t)dt
0

The constants a, b, and c appearing in Eqs. (14)—(17) are
greater than 0. With a suitable change of variable, Eq.
(15) can be recast as with

(24)

f(t)=
bt +c)q+1

L
(
—1)

q (
—~)'

~+I
' ln(1+E)+ g

E' J

q (
—1)" " ' (L +k —j—1)!

~) k(q —k)!(L —q+k)! o (k —j —1)!(1+e)J+' (25)

and

atE'=
bt+c ' (26)

I

With appropriate programming, the calculation of fac-
torial terms can be entirely avoided in the evaluation of
Eq. (28).

where ( ) is a binomial coefficient and

L

q
=0 for L &q (27)

L+ I

for M+N+1=0
(E+1) (L+1)

LI(t)=
q![(a +b)t +c]~+'
for M+N+1(0 .

(j+q)!
J —o (j+L +1)!(1+@ )1

(28)

has been employed. The function f (t) is well behaved for
all values of t on the interval [0, 1]. For small values of t,
separate evaluation and combination of the factors
ln(1+E) and QJ &( e)~lj leads t—o significant figure loss,
particularly for large values of L. In such cases, these
two factors can be combined by appropriate expansion of
the term ln(1+a). When large negative arguments for
the WL integral are encountered, a superior approach to

l

the evaluation off (t) is to utilize the following result:

B. Wz, integrals
2

The conditions for convergence of the WL integral are
2

L+ —1,
L+M~ —1,
L+M+1V) —2 .

(29)

(30)

(31)

With a change in integration variables Eq. (16) can be
simplified to yield

Wt (L,M, N, a, b, c)

1+t L I w + +'dw
=qf ln t dt

o (awt +bw +c) +'

(32)

and q is given in Eq. (23). Evaluation of the second in-
tegral in Eq. (32) leads to
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WL (L,M, N, a, b, c)=. ~+, L+M+2 t ln g(t)dtq! & L 1+t
(33)

with

1
L+M+i L +M+1

)L +M+2 jg(t)= P+1 1 P
N+i+j, o ~ N+1+ ' P+1

N+1+j '

(34)

and

13=c(at+b) (35)

I

where p =L +M + 1. N & 0 implies p + 1 & q so Eq. (36}
provides a stable procedure for evaluating g (t) for large
negative values of N.

and the prime on the summation in Eq. (34} signifies that
the second term involving the factor (N + 1+j) ' is
omitted if N+1+j=0. By inspection, g(t) is observed
to be well behaved for all values of t on the interval [0,1].
For large values of L +M+1 and large negative values
of N [a situation which arises for m and n both odd in Eq.
(1)],Eq. (33) can be cast into a more suitable form for nu-
merical evaluation:

g
(t)= (cia)"+' ~! " (j+q)!

[t+(b+c)la] +' q' = (j+p+1)!(1+p)
(36)

I

C. WI integral
3

The 8'L integral converges for
3

L~ —1,
L+M+ —2,
L+M+N~ —2 .

(37)

(38)

(39)

This integral is most conveniently treated by considering
two cases: (i) M ~ 0 and (ii) M &0. With a change of in-
tegration variable Eq. (17) simplifies to

& y
+ +'ln[(1+xy) l(1—xy)] & 1+t L & w dw

+i dy=q& ln t dt
(axy+by +c)»+' o 1 t t (at +bw +c)»+'

on using the transformation formula

f dy f f (x,y)dx = f dx f"f(x,y)dy .

Equation (40) can be simplified to yield

(40)

(41)

with

WL (L,M, N, a, b, c)=- ', f ln t h, (t)dt (42)

h, (t)=

with

1 M . M r+1
y . o J ' y+tX ( ) ' 5L+N+j+2, 01n +

(L +N+ j+2) y+1

L+N+j +2 L+N+j +2
y+1
y+t (43)

at +cy= (44)

and the prime on the summation signifies the term involving (L +N+ j+2) ' is omitted if L +N+ j+2=0. h, (t) is
well behaved for all values of t on the interval [0,1].

For case (ii) with M & 0, Eq. (40) can be transformed by differentiation with respect to a parameter, to the form

(LMNabc) ( —1) (L+N+1)!
1

1+t
1 ttL L j»

b»+' ( —M —1)! o 1 —t

o 1 —t
1+y,-L-N-2,

y dtt+y

ln tL +M +Ih (t)dt
1+t

o 1 —t
(45)
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with

(L +~+1) M 1
( y)i(r! 1}t M I j

(
—M —1)! li=1

q
+— X ( —y)"(L+X+1—k)! ( —1)" '(k —1)i[(1+y) "—(r+y) "It(-M —1)!

/c =1

'
( —r)'(& —1)!

(i —k)!

(46)

and y is defined in Eq. (44). By inspection, hz(t) is well

behaved for all values of t on the interval [0,1]. f ln ln(t ')F3(t)dt,
o 1 —t

IV. EVALUATION OF THE O'I INTEGRALS

Equations (24), (33), (42), and (45) represent the basic
results for the evaluation of the 8'L integrals. The struc-
ture of the integrands are not very suitable for standard
numerical quadrature. For example, a 32-point Gauss-
Legendre quadrature of

1+x
0

" 1-x

yields the result 1.385696, while a 384-point Gauss-
Legendre quadrature leads to the result 1.386290090.
Neither value is in very close agreement to the exact re-
sult of 2 ln2= 1.386 294 36. . .. One can, of course, resort
to interval disection techniques, but these are likely to be
ineffective. The reason for these poor results is obvious:
the integrand is a rather slowly converging series, and a
great number of terms are required to yield an accurate
result. A close inspection of the final results for the WL

integrals will make it clear that the integrands can be
more of a problem than the illustrative example just dis-
cussed above. For WL, (L +M+1) may equal —1, in1'

which case the inte grand has the basic form
t 'in[(1+t)l(1 —t)] [f(t) does not affect this behavior],
which means additional care would be needed in any
quadrature approach as t~0. A similar situation arises
for the case when L = —1 for WL [see Eq. (33)], and for

WL when M) 0 [see Eq. (42)]. The WL integral for the

case M (0 involves integrands like in[(1+t)l(1 —t)],
t 'ln[(1+ t) l(1 —t) ], In[( 1+t) l(1—t) ]lnt, and
t 'in[(1+t)l(1 —t)]lnt. The latter three integrands will
all require considerable additional care in the region
t~0. From the preceding comments, it should be ap-
parent that a conventional quadrature scheme is likely to
be particularly ineffective.

The final results for the WL integrals can be cast into a
form depending on one of the following integrals:

ln F] tdt,1+t
o 1 —t

ln t 'F~ tdt,
o 1 —t

f ln t 'ln(t ')F&(t)dt,
o 1 —t

where F, (t), i =1—4, are well-behaved functions with no
singular behavior on the interval [0,1]. These integrals
can be very efficiently evaluated by finding the set of poly-
nomials which are orthogonal on the interval [0,1] with
the weight functions

1+t
w~(t)=in

1 —t
(47)

w2(t) =t ln
1+t
1 —t

(48)

w3(t) =ln 1+t
ln(t ),

1 —t
(49)

w4(t) =t 'ln ln(t ') .
1+t
1 —t

(50)

We are not aware of any discussion of these polynomials
in the literature. Standard sources do not provide any
quadrature points for the above functions, though a re-
mark in one text [19] gives a hint of the difficulty to be
expected working with the simple weight function
ln(x ').

The polynomials were determined using the recurrence
relation

p0(t)=1,

(p;(&)rip, (&) )

(p, (t)lp, (t) ) p;(t)

(p;(&) Ip;(t) )

(p, , (t)lp, ,(t))
p'-'

p;+,(t)= t—

where

(p;(t)lp, (t)) = f w, (t)[p, (t)]'dt

(51)

(52)

(53)

and w (t) is one of the four weight functions given in Eqs.
(47)—(50).

The recurrence scheme given above is well known to
have numerical limitations [20]. There is potential for
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considerable loss of significant figures in determination of
the coefficients of the polynomials. An initial double pre-
cision test calculation followed by an extended precision
calculation involving w, (t) on a Vax mainframe gave

poor results. The problem for w&(t) was initially resolved

by evaluating the polynomials analytically using the sym-
bolic algebra capabilities of MATHEMATIcA [17].

The moments of each weight function are required for
the evaluation of the inner products (p, ~p,. ). The results

employed are

1+x [(m +1)/2]

f x ln dx == [1+(—1) ]ln2+2 (1+m) ' for m ~0,
0 1 —x m —2i +2

(54)

where [(m + 1)/2] = (m + 1)/2 if m is odd and m /2 if m is even.

1+x0""1—x

is evaluated using Eq. (54) and for m =0 the result

0" "1x 4
(55)

is employed. Also

x ln ln(x )dx = —(m + 1) [2—(
—1) ]

— ln2
1+x i i m 1+(—1)

o 1 —x 12 (m+1)

m+1
+' (m +n +1)[1+(—1) +"]

for m 0.
n

(56)

f x ln x 'ln(x ')dx1+x
0 1 —x

is evaluated from Eq. (56), and for m =0

& ln[(1+x)/(1 —x)]ln(x ')dx 7g(3)
0 x 4

(57)

1 1+xf F, (x)ln dx= g F, ( )wx,
0 1 —x

(5g)

with similar results for the other integrals discussed
above.

where g(n) is the Riemann zeta function.
The polynomial coefficients become extremely complex

very quickly. Analytic expressions for the first few poly-
nomials can be obtained from the authors. To speed up
the calculations, the coefficients of the polynomials were
determined numerically, using the variable precision op-
tion of MATHEMATICA. Once the polynomials were
found, the abscissas x, of the X-point quadrature and the
corresponding weight w; were determined by standard
procedures [21]. As a check on the x; and w; values, the
integrals in Eqs. (54)—(57) were evaluated by quadrature
on a Cray YMP in double precision. The results were
found to be in excellent agreement with the analytical re-
sults (the relative error was typically —10 ). The re-
quired integrals were then evaluated using the standard
formula

V. RESULTS

The polynomial determinations and the evaluation of
the x; and w, for each polynomial were initially carried
out on a PS/2 (model 70) personal computer with no
math coprocessor. The calculations were somewhat slow
on the PS/2 and it became necessary to continue the
problem on a RISC/6000 work station. Even on this
machine the calculations were rather slow for the evalua-
tion of the polynomial associated with the fourth weight
function, due in part to the result for the zeroth moment,
Eq. (57). Some trial and error experimentation was
necessary to find the appropriate number of digits of pre-
cision to carry in the calculations, in order to accurately
determine the x; and w; values. The values of x; and w;

may have applications in a number of problems, and have
therefore been submitted to the Physics Auxiliary Publi-
cation Service [22].

To show how effective these specialized quadratures
are, results for the evaluation of some representative WL

integrals are shown in Table I as a function of the num-

ber of quadrature points. Table II gives a selection of
values of the 8'L integrals, with some additional difficult

cases considered.
A few representative I integrals are tabulated in Table

III based on the use of Eq. (11). To show the conver-
gence of the w summation in Eq. (11), six examples are il-

lustrated in Table IV where the values of the sum after
each value of w are indicated. All the results reported in

Tables II—IV were calculated with the quadrature point
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TABLE II. Some WL integrals involving negative arguments. All integrals are evaluated using
a =2.7, b =2.9, and c =0.65 and the quadrature point set employed is (100, 100, 100, 90).

Type

W,
1

WL
1

WL
l

WL
2

Wz,

Wl
2

WL
3

WL

WL

WL
3

WL,

W
3

WL

WL

W,

—3

Integral value

1.083 879 599 898 198 513 257 178 293

1.250 010973 399 807 433 307 142 399X 10

3.062 696 750 071 622 728 513 911 399X 10

4.208 102 671 056 596 251 692 555 269

6.907 359 995 821 510518498 717 951 X 10

2.400 459 131058 917 517 788 881 101

2.764499 740 806429 169 877 617486X 10

2.037 462 701 111799 221 300 890409 X 10

6.227 779 185 629 390 790 392 624 846 X 10

1.102428 636 266 714 271 801 334 512 X 10

1.660 849 370085 631 845 528 907460X 10

4.705 557080 602 339 931 684 159418 X 10

3.073 732 135 871 503 739 127 446 372 X 10

3.543 868 845 554 504 664 788 125 473

9.876051 123 075 226 886 136545 810X 10

set I 100, 100, 100,90); 100 points employed for the first
weight function, 100 for the second, etc.

VI. DISCUSSION

The key observation to be made from the results of
Table I is the extremely rapid convergence of the WL in-

tegral values as the number of quadrature points is in-
creased. In several cases (particularly for WL ), approxi-2'
mately 27 digits of precision are obtained with only 20
quadrature points. All the results reported in Table I
were matched with the values computed by independent
methods which yield, in certain cases, a smaller number
of digits of precision. Typically 16—23 digits of precision
were found to match between the different methods of
calculation.

The fast convergence for many of the WL integrals is
tied to two factors. The logarithmic terms have a poor
representation as a polynomial expansion, but this prob-

lem is entirely avoided by the nature of the specialized
quadrature procedures employed. The rate of conver-
gence for a particular WL integral is thus determined by
how well the functions f (t), g (t), h, (t), and h2(t) can be
represented by a polynomial expansion. Since none of
these functions have any singularities on the interval
[O, lj, a very good polynomial representation is possible,
subject to the values of the arguments for each particular
integral. For large negative values of M or N, the above
functions are less likely to be accurately approximated by
polynomials of short length. In these cases, a large num-
ber of quadrature points are necessary to obtain an accu-
rate value for the integral.

The WL results reported in Table II were evaluated
1

using Eq. (25). A large number of additional WL integral
test cases were examined. A focus of the effort was the
examination of integrals involving large negative argu-
ments for M and N (up to —200). These are the most
difficult cases, but are extremely important for the evalu-

TABLE III. Values of I(ij,k, l, m, n, a,P, y) computed using Eq. (11).

k I

0
0
0

—2
—1

0
0
1

—2
—1

1
—2

0
0
0

—2
—2

0
0
2
2

—1
—2
—1

0 0 2.5
4 6 2.5
6 6 2.5
2 2 2.5
2 4 2.5
1 0 2.5
1 2 2.5
1 2 2.5
1 2 2.5
5 4 2.5
1 2 2.5
1 2 2.5

3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6
3.0 0.6

2.625 998 889 298 125 422 146 962 8 X 10
4.509 905 007 964 538 011X10'
3.333 172436048 289 562605 531 173X 10
3.761 971 636 531 376 663 166 128 677 X 10
1.590 374 828 884498 105 225 072 180X 10
1.611019909 354 640 984 938 494 180X 10'
6.017 750 485 629 056 093 536 290 760 X 10'
6.833 815 746 120 315 435 488 530 589 X 10
7.555 096 795 290 167 516269 164257 X 10
1.105 739 136640 783 062 978 512 954 X 10
4.141 831 292273 281 421 100703936X 10
1.056402 594446466 865 747 747 807 X 10
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ation of I integrals with m and n both odd. Effective
evaluation of these integrals required the alternative
forms for f (t) and g(t) given in Eqs. (28) and (36). The
final entry shown in Table I is representative of the ob-
served convergence behavior when large negative argu-
ments are involved. Clearly, in this example (and in
many other test cases examined) a large number of quad-
rature points are necessary to obtain an accurate value of
the integral.

The most difficult I integrals to compute are those in-
volving odd-m and odd-n values. The w summation in
Eq. (11) is nonterminating in this case. Table IV illus-
trates the convergence for some examples of this type as a
function of the w summation index. The poorest conver-
gence is observed for the m = —1, n = —1 integral, with
approximately 6—7 digits of precision obtained after 150

terms have been employed in the sum. In contrast, the
case m =1, n =3 has converged to approximately 19
digits of precision using 150 terms.

In summary, a viable procedure has been presented to
evaluate some of the more difficult integrals arising in
certain aspects of the atomic three-electron problem. Ex-
tensions of the approach to more complicated integrals
are being explored.
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