Oscillator strengths for $S-P$ and $P-D$ transitions in heliumlike ions

Natalie Mary Cann
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
Ajit J. Thakkar
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

(Received 11 February 1992)
Explicitly correlated wave functions are constructed for the $n^{1} S, n^{3} S, n^{1} P, n^{3} P, n^{1} D$, and $n^{3} D$ states, with $n<7$, of the two-electron ions from He through Ne^{8+}. The variational energies are the best available for 180 of the 261 states. Electron-nuclear and electron-electron cusp checks are used to test the wave functions. For each ion, dipole oscillator strengths are calculated for $55 S-P$ and $40 P-D$ transitions. Our oscillator strengths are more accurate than previous values for 739 of the 855 transitions considered. Some coefficients for the $1 / Z$ expansions of the energies and oscillator strengths have been estimated as an aid to extrapolating our results to higher nuclear charges.

PACS number(s): $32.70 . \mathrm{Cs}, 31.20 . \mathrm{Tz}$

I. INTRODUCTION

Oscillator strengths are fundamental quantities in spectroscopy, but they are difficult to calculate by nonempirical quantum-mechanical methods. Hence, very many calculations of these quantities have been made for twoelectron atoms, which are the simplest atomic species for which exact oscillator strengths are not known. However, most such studies have concentrated on a few select transitions with the aim of demonstrating that the method being used was generally useful. Only a few studies of high accuracy dealing with many transitions and many ions of the helium isoelectronic series have been reported.

Schiff, Pekeris, and Accad [1] used variationally determined wave functions to calculate oscillator strengths for $36 S-P$ transitions in each of the ions from He through Ne^{8+}. Kono and Hattori improved and extended [2] their work on He , and then reported oscillator strengths for $24 P-D$ transitions [3] in each of the ions from Li^{+} through N^{5+}. A less accurate but much more extensive study was carried out by Sanders and Knight [4], who used Z-dependent, variational perturbation theory of low order to obtain oscillator strengths for $136 S-P$ and 112 $P-D$ transitions for each of the ions through $Z=30$.

The purpose of this paper is to report calculated oscillator strengths for $55 S-P$ and $40 P-D$ transitions for each of the ions from He through Ne^{8+}. The accuracies of 739 of the 855 oscillator strengths considered have been improved. Moreover, our nonrelativistic energies are an improvement over current values for 180 of the 261 states considered. These calculations also enabled us to obtain estimates of coefficients in the $1 / Z$ expansions of the oscillator strengths and energies.

The layout of this paper is as follows. Section II outlines our variational ansatz and method of calculation. Section III contains a comparison of our energies with previous work, and cusp and virial tests of our wave functions. A discussion of our oscillator strengths is con-
tained in Sec. IV, and $1 / Z$ expansion coefficients are contained in Sec. V. Hartree atomic units are used throughout.

II. WAVE FUNCTIONS

Our wave functions are variational approximations to the exact solutions of the Schrödinger equation with a nonrelativistic, infinite nuclear mass, spin-independent Hamiltonian given by

$$
\begin{equation*}
H=-\frac{\Delta_{1}}{2}-\frac{\Delta_{2}}{2}-\frac{\boldsymbol{Z}}{r_{1}}-\frac{\boldsymbol{Z}}{r_{2}}+\frac{1}{r_{12}} \tag{1}
\end{equation*}
$$

in which $\mathbf{r}_{i}=\left(r_{i}, \Omega_{i}\right)$ is the position vector of electron i for $i=1,2, r_{12}$ is the interelectronic distance, and Z is the nuclear charge. Schiff, Pekeris, and Accad [1], Kono and Hattori [2,3], and Sanders and Knight [4] all used Hylleraas-type [5] wave functions containing several hundred and, in some cases, a few thousand terms. We have previously [6-8] shown that use of exponential correlation factors $[5,9]$ can lead to compact wave functions of similar accuracy. Although our original work was restricted to low-lying states [6,7], the success of our ansatz for obtaining pseudospectra [8] encouraged us to expect that it would do well for more highly excited states as well. Thus, for the S and P states, we use spin free wave functions of the form [6-8]

$$
\begin{align*}
\Psi=\sum_{k=1}^{N} & c_{k}\left(1 \pm P_{12}\right) r_{1}^{L} \exp \left(-\alpha_{k} r_{1}-\beta_{k} r_{2}-\gamma_{k} r_{12}\right) \\
& \times Y_{L, 0}\left(\Omega_{1}\right) Y_{0,0}\left(\Omega_{2}\right) \tag{2}
\end{align*}
$$

in which N is the number of terms, P_{12} is the permutation operator, the plus and minus signs refer to the singlet and triplet states, respectively, L is the total orbital angular
momentum quantum number, $c_{k}, \alpha_{k}, \beta_{k}$, and γ_{k} are variational parameters, and the $Y_{L, 0}$ are spherical harmonics.

We had used [8] the above ansatz with $L=2$ for pseu-
dospectral D states, but the expansion suffers from angular incompleteness in that case. Thus we include terms with the other factor required for angular completeness [10]. That is, our ansatz for D states is

$$
\begin{align*}
\Psi= & \sum_{k=1}^{N} c_{k}\left(1 \pm P_{12}\right) r_{1}^{2} \exp \left(-\alpha_{k} r_{1}-\beta_{k} r_{2}-\gamma_{k} r_{12}\right) Y_{2,0}\left(\Omega_{1}\right) Y_{0,0}\left(\Omega_{2}\right) \\
& +\sum_{k=N+1}^{N+M} d_{k}\left(1 \pm P_{12}\right) r_{1} r_{2} \exp \left(-\alpha_{k} r_{1}-\beta_{k} r_{2}-\gamma_{k} r_{12}\right) \Upsilon\left(\Omega_{1}, \Omega_{2}\right), \tag{3}
\end{align*}
$$

in which

$$
\begin{equation*}
\Upsilon\left(\Omega_{1}, \Omega_{2}\right)=2 Y_{1,0}\left(\Omega_{1}\right) Y_{1,0}\left(\Omega_{2}\right)+Y_{1,1}\left(\Omega_{1}\right) Y_{1,-1}\left(\Omega_{2}\right)+Y_{1,-1}\left(\Omega_{1}\right) Y_{1,1}\left(\Omega_{2}\right) . \tag{4}
\end{equation*}
$$

The two sets of terms in Eq. (3) will be referred to as $s d$ and $p p$ terms, respectively. Note that Bishop and Pipin [11] have recently used D state wave functions of this form.

Square integrability requires that the nonlinear parameters satisfy the following constraints:

$$
\begin{align*}
& \alpha_{k}+\beta_{k}>0, \tag{5}\\
& \alpha_{k}+\gamma_{k}>0, \tag{6}\\
& \beta_{k}+\gamma_{k}>0 . \tag{7}
\end{align*}
$$

The nonlinear parameters were generated in a pseudorandom fashion, as in our previous work [6-8],

$$
\begin{align*}
& \alpha_{k}=\eta\left[\left(A_{2}-A_{1}\right)\langle\langle k(k+1) \sqrt{2} / 2\rangle\rangle+A_{1}\right], \tag{8}\\
& \beta_{k}=\eta\left[\left(B_{2}-B_{1}\right)\langle\langle k(k+1) \sqrt{3} / 2\rangle\rangle+B_{1}\right], \tag{9}\\
& \gamma_{k}=\eta\left[\left(\boldsymbol{G}_{2}-G_{1}\right)\langle\langle k(k+1) \sqrt{5} / 2\rangle\rangle+G_{1}\right], \tag{10}
\end{align*}
$$

in which $\langle\langle x\rangle\rangle$ is defined to be the fractional part of x, $A_{1}, A_{2}, B_{1}, B_{2}, G_{1}$, and G_{2} are variational parallelepiped parameters, and η is a virial scale factor [5,12]. This effectively reduces the problem of optimizing $3 N$ nonlinear parameters to the much more tractable problem of optimizing six nonlinear parameters. All the linear parameters are found variationally.

On the basis of our previous work [6-8], we estimated that 100 -term expansions would be sufficient to obtain an accuracy comparable to that achieved in previous work on oscillator strengths using conventional Hylleraas wave functions containing several hundred terms. For the sake of consistency, 100 -term expansions were used for all states and ions, even though one can argue that neutral helium is sufficiently important that one should aim for higher accuracy in that case. Thus, we use $N=100$ in Eq. (2) for the S and P states. For the D states, we found by numerical experimentation on the $3{ }^{1} D$ state of He that $M /(N+M)=0.3$ is a good mix of $s d$ and $p p$ terms; therefore, we use $N=70$ and $M=30$ with the constraint that the nonlinear parameters in the $p p$ terms are the same as the nonlinear parameters in the first $M s d$ terms.

The six parallelepiped parameters were independently optimized, subject to the square integrability conditions of Eqs. (5)-(7), for each of the 29 states of each ion using

Powell's conjugate direction algorithm [13]. All optimization methods are plagued by local minima; hence it was not surprising that different initial estimates of the parameters often led to substantially different "optimized" values. Due to the large number of states we considered, only one initial estimate was considered for each state except when the optimized energies were higher than expected or the optimized parallelepiped parameters were clearly inconsistent with physical arguments. In such instances, up to 70 initial parameter estimates were tried. After the necessarily imperfect optimization, each wave function was scaled to satisfy the virial theorem [5,12]. Our scale factors never deviated from unity by more than 10^{-6} reflecting the fact that the optimizations had been allowed to continue until the energies were stable to at least 10^{-11} hartree -a threshold two orders of magnitude lower than the absolute accuracies of our wave functions. The optimized parallelepiped parameters are available from the authors upon request.

Following our earlier cautionary remarks [6], we performed all calculations in quadruple precision (≈ 32 decimal digits) to avoid computational linear dependence. The latter problem was most acute in the $6{ }^{1} S$ state of He ; in that case, the smallest eigenvalue of the Gram matrix, for normalized basis geminal functions was 1.2×10^{-30}.

III. ENERGIES AND QUALITY TESTS

The calculated energies for each of the bound S, P, and D states with $n<7$ are listed in Tables I-IV for He through Ne^{8+}. The ground-state energy of H^{-}is included for the sake of completeness. Consider the S states first. Our energies for 69 of the $100 S$ states considered are the lowest reported so far; the improvements range up to 12μ hartree for the $5{ }^{1} S$ states of the ions with

TABLE I. Ground-state energies (in hartrees) of the twoelectron ions.

\boldsymbol{Z}	$-\boldsymbol{E}$	\boldsymbol{Z}	$-\boldsymbol{E}$
1	0.5277510118	6	32.4062465980
2	2.9037243736	7	44.7814451450
3	7.2799134096	8	59.1565951190
4	13.6555662340	9	75.5317123575
5	22.0309715742	10	93.9068065072

TABLE II. Excited-state energies for $\mathrm{He}, \mathrm{Li}^{+}$, and Be^{2+}. The tabulated entries are $-\boldsymbol{E}$ values in hartrees.

n	$n^{1} S$	$n^{3} S$	$n^{1} P$	$n^{3} P$	$n^{1} D$	$n^{3} D$
He						
2	2.1459740292	2.175229378176	2.1238430802	2.1331641816		
3	2.0612719720	2.068689067283	2.0551463570	2.0580810772	2.0556207320	2.0556363088
4	2.0335866995	2.036512082933	2.0310696464	2.0323243343	2.0312798445	2.0312888462
5	2.0211768309	2.022618871382	2.0199059849	2.020551765	2.0200158297	2.0200210228
6	2.0145630847	2.015377452422	2.0138339705	2.0142079455	2.0138982125	2.0139014058
Li^{+}						
2	5.0408767313	5.110727372509	4.9933510721	5.0277156770		
3	4.7337560778	4.752076455858	4.7202068728	4.7304596641	4.7223909884	4.7225269124
4	4.6297835973	4.637136594629	4.6241513904	4.6284635563	4.6250741241	4.6251507732
5	4.5824279527	4.586092669796	4.5795665136	4.5817684035	4.5800386956	4.5800824257
6	4.5569531770	4.559038618569	4.5553050672	4.5565767839	4.5555781668	4.5556048684
Be^{2+}						
2	9.1848738775	9.297166589741	9.1107716142	9.1749731379		
3	8.5173125465	8.546972068861	8.4959696290	8.5146043598	8.5002158256	8.5005823430
4	8.2884946257	8.300455559448	8.2795901070	8.2873636556	8.2813398059	8.2815437460
5	8.1836933067	8.189674851615	8.1791606106	8.1831162879	8.1800459490	8.1801615797
6	8.1271314968	8.130543857315	8.1245176279	8.1267982858	8.1250265700	8.1250969820

$Z>3$. The energies for the remaining $31 S$ states are no more than 20 nhartree above the best available results as outlined below. The $1{ }^{1} S$ and $2{ }^{1} S$ energies, respectively, lie no more than 7.8 and 16.9 nhartree above the values obtained by Freund, Huxtable, and Morgan [14] and Frankowski [15] using wave functions containing logarithmic terms, and by Drake [16] from Hylleraas-type expansions containing several hundred terms. For neutral He , the higher ${ }^{1} S$ and ${ }^{3} S$ energies, respectively, lie no more than 20 and 0.9 nhartree above the results of Drake [16] and Kono and Hattori [17] obtained with Hylleraastype expansions.

The energies of the $48 P$ states with $n=4,5$, and 6 for the cations lie below the best available values. Our ${ }^{1} P$ and ${ }^{3} P$ energies for He lie no more than 10 and 14 nhartree, respectively, above the values obtained by Drake and Makowski [18], and Kono and Hattori [17]. Most of the $2{ }^{1} P, 2{ }^{3} P, 3{ }^{1} P$, and $3{ }^{3} P$ energies for the cations lie above the values of Accad, Pekeris, and Schiff [20], but never by more than 30 nhartree.

Our ${ }^{1} D$ and ${ }^{3} D$ energies for helium lie no more than 15 and 10 nhartree, respectively, above those of Drake [19]. Our energies for the D states of the cations are in all cases as good as or better than those in the literature [3].

TABLE III. Excited-state energies for $\mathrm{B}^{3+}, \mathrm{C}^{4+}$, and N^{5+}. The tabulated entries are $-E$ values in hartrees.

n	$n^{1} S$	$n^{3} S$	$n^{1} P$	$n^{3} P$	$n^{1} D$	$n^{3} D$
B^{3+}						
2	14.5785280140	14.733897348781	14.4772832536	14.5731376855		
3	13.4119969317	13.453104279643	13.3827148799	13.4100684802	13.3891003003	13.3897715900
4	13.0097268262	13.026336958201	12.9974920527	13.0088461365	13.0000805582	13.0004510123
5	12.8249726477	12.833292190279	12.8187397926	12.8245054260	12.8200397689	12.8202490428
6	12.7250966433	12.729848532224	12.7215005159	12.7248212316	12.7222447566	12.7223719380
C^{4+}						
2	21.2220176846	21.420755902276	21.0933323009	21.2217106899		
3	19.4178085256	19.470403018010	19.3805212872	19.4167350899	19.3890591297	19.3900835047
4	18.7934728766	18.814746155889	18.7778829584	18.7928646702	18.7813037746	18.7818659335
5	18.5062606182	18.516925265508	18.4983154158	18.5059126325	18.5000241801	18.5003410100
6	18.3508450160	18.356940714471	18.3462597407	18.3506323301	18.3472352426	18.3474274513
N^{5+}						
2	29.1154156939	29.357681737453	28.9591163884	29.1205017383		
3	26.5347425711	26.598842151505	26.4894160317	26.5345607879	26.5001032847	26.5015131871
4	25.6397276201	25.665670121432	25.6207701763	25.6394021159	25.6250147845	25.6257854177
5	25.2275537939	25.240566728042	25.2178904229	25.2273293146	25.2200020950	25.2204356552
6	25.0043744608	25.011815871593	24.9987967976	25.0042266641	24.9999996437	25.0002624364

TABLE IV. Excited-state energies for $\mathrm{O}^{6+}, \mathrm{F}^{7+}$, and Ne^{8+}. The tabulated entries are $-E$ values in hartrees.

n	$n^{1} S$	$n^{3} S$	$n^{1} P$	$n^{3} P$	$n^{1} D$	$n^{3} D$
O^{6+}						
2	38.2587572858	38.544647320047	38.0747352216	38.2694227099		
3	34.7627955284	34.838409733347	34.7094102328	34.7635258578	34.7222401098	34.7240581557
4	33.5484880064	33.579102862297	33.5261562824	33.5484506942	33.5312171008	33.5322078221
5	32.9888503818	33.004213186445	32.9774656338	32.9887515913	32.9799754101	32.9805320322
6	32.6856837812	32.694471907219	32.6791119566	32.6856019862	32.6805390523	32.6808762344
F^{7+}						
2	48.6520616174	48.981638329481	48.4402442655	48.6684272877		
3	44.1019650589	44.189099531881	44.0405090344	44.1036200619	44.0554745177	44.0577170337
4	42.5197521738	42.555041240113	42.4940420497	42.5200063687	42.4999130671	42.5011322182
5	41.7901492430	41.807862859144	41.7770412551	41.7901774414	41.7799453295	41.7806295778
6	41.3947722847	41.404907718164	41.3872052791	41.3947571531	41.3888543015	41.3892685098
Ne^{8+}						
2	60.2953400241	60.668646584034	60.0556767280	60.3174888147		
3	54.5522496178	54.650907980593	54.4827150911	54.5548375693	54.4998098479	54.5024889781
4	52.5535190410	52.593483453112	52.5244280976	52.5540668527	52.5311042674	52.5325580331
5	51.6314496325	51.651514721700	51.6166173033	51.6316056912	51.6199126928	51.6207279447
6	51.1316395090	51.143122668823	51.1230767283	51.1316914644	51.1249458082	51.1254391359

Independent checks of the accuracies of our wave functions can be made with the help of cusp conditions [21-25]. In particular, the electron-nuclear cusp condition [21-23] states

$$
\begin{equation*}
C_{e n}=\left[\frac{-\rho^{\prime}(r)}{2 Z \rho(r)}\right]_{r=0}=-1 \tag{11}
\end{equation*}
$$

in which $\rho(r)$ is the spherically averaged electron number density. The electron-electron cusp condition [21,22,24] reads

$$
\begin{equation*}
C_{e e}=\left[h^{\prime}(u) / h(u)\right]_{u=0}=1, \tag{12}
\end{equation*}
$$

in which $h(u)$ is the spherical average of the interelectronic density [26]. Equation (12) is satisfied trivially by virtue of the Pauli principle for states of maximum spin multiplicity (i.e., triplet states in two-electron systems). In such cases, there is a higher-order cusp condition [25],

$$
\begin{equation*}
C_{e e}=\left[\frac{2 h^{(3)}(u)}{3 h^{\prime \prime}(u)}\right]_{u=0}=1 . \tag{13}
\end{equation*}
$$

Exact wave functions satisfy the cusp conditions exactly, and thus a measure of the quality of an approximate wave function is the degree to which it satisfies them. The one-electron cusp condition of Eq. (11) is easier to satisfy than the two-electron cusp conditions of Eqs. (12) and (13). For our wave functions, the largest deviation of $C_{e n}$ from unity is only 7.1×10^{-5} for the $2{ }^{1} S$ state of B^{3+}, whereas the largest deviation of $C_{e e}$ from unity is 0.20 for the $6^{1} D$ state of B^{3+}. Our wave functions have average deviations from unity of 9×10^{-6} for $C_{e n}$ and 0.045 for $C_{e e}$. The average $C_{e e}$ deviations for states of the same symmetry are $0.037,0.016,0.031,0.060,0.067$, and 0.071 for the ${ }^{1} S,{ }^{3} S,{ }^{1} P,{ }^{3} P,{ }^{1} D$, and ${ }^{3} D$ states, respectively. Similarly, the average $C_{e n}$ deviations for states of the
same symmetry are $1.4 \times 10^{-5}, 2.2 \times 10^{-6}, 1.3 \times 10^{-5}$, $1.1 \times 10^{-5}, 6.7 \times 10^{-6}$, and 5.2×10^{-6} for the ${ }^{1} S,{ }^{3} S,{ }^{1} P$, ${ }^{3} P,{ }^{1} D$, and ${ }^{3} D$ states, respectively. For each state, the deviations averaged over all the ions tend to increase as the principal quantum number increases. For each symmetry, the deviations averaged over principal quantum number tend to remain constant as the nuclear charge increases.

Neither accurate energies nor accurate cusp ratios guarantee accurate oscillator strengths. However, they do attest to the overall quality of the wave functions.

IV. OSCILLATOR STRENGTHS

Optical oscillator strengths were calculated for the dipole-allowed $S-P$ and $P-D$ transitions using both the length form [27]

$$
\begin{equation*}
\left.f_{1}=C\left(E_{m}-E_{n}\right)\left|\langle m| z_{1}+z_{2}\right| n\right\rangle\left.\right|^{2} \tag{14}
\end{equation*}
$$

and the velocity form [28]

$$
\begin{equation*}
\left.f_{v}=\frac{C}{E_{m}-E_{n}}\left|\langle m| \frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}}\right| n\right\rangle\left.\right|^{2} \tag{15}
\end{equation*}
$$

in which $C=2$ and $\frac{5}{3}$, respectively, for $S-P$ and $P-D$ transitions between states m and n, and z_{i} is the z coordinate of electron i. The f values were also computed in quadruple precision to reduce roundoff errors arising from cancellation among contributing terms that in turn is a consequence of the near linear dependence of our basis functions. Interestingly, the length and velocity forms proved to be equally susceptible to roundoff errors. The length and velocity forms are equivalent if both wave functions are exact, but give different results if approximate wave functions are used. There is no consensus in the literature $[1-3]$ as to which approximate value is more reliable and under what circumstances. We chose
to use the average of the length and velocity results: $f=\left(f_{l}+f_{v}\right) / 2$. Moreover, we use, as others [1-3] do, the difference between the two values, $\delta f=f_{l}-f_{v}$, as an estimate of the accuracy of the mean. Thus, in Tables V-VIII, we list mean f values rounded on the basis of δf. A regular entry indicates that δf was between 0.7 and 2.99 units in the last quoted digit, whereas an underlined last digit indicates that δf was between 3 and 6.99 units in that digit. Since agreement between the two forms is not an infallible indicator of accuracy [1], the tabulated values are limited to six decimal digits whenever the length and velocity values agree to more than six digits.

We find that δf is generally smaller for transitions involving lower-lying states and for the more highly charged ions. However, in contrast to previous work [1], we find that δf is not always smaller for the triplet than for the corresponding singlet transition. For instance, δf values for transitions originating from the $6{ }^{1} S, 4{ }^{1} P$, and $5^{1} P$ states are smaller than for the corresponding triplet transitions.

For each $m{ }^{1} S-n{ }^{1} P$ and $m{ }^{3} S-n{ }^{3} P$ transition, the os-
cillator strengths are monotonic functions of the nuclear charge; they increase monotonically with Z when $n>m$ and decrease monotonically otherwise. Moreover, the oscillator strengths are monotonic functions of Z for all $m^{3} P-n^{3} D$ transitions except $2^{3} P-4^{3} D$ for which a maximum occurs at $Z=4$. On the other hand, the oscillator strengths for the $m^{1} P-n^{1} D$ transitions are unimodal functions of Z; the extremum is usually a maximum if $n \geq m$.

Oscillator strengths for 503 of the 855 transitions we considered have been calculated previously [1-3] using variationally determined Hylleraas-type wave functions. An unequivocal comparison is not always possible because the previously tabulated values are sometimes the f_{l} values, sometimes the f_{v} values, and sometimes extrapolations based on both length and velocity values obtained from a series of wave functions. Nevertheless, detailed comparison of our f_{l} and f_{v} values with the older work [1-3] reveals several trends. Generally, when a discrepancy occurs, one of our f_{l} and f_{v} values (usually the latter) lies outside the error margins cited whereas the other agrees closely with the older value. For each ion,

TABLE V. Optical oscillator strengths for the $m^{1} S$ to $n^{1} P$ transitions in the two-electron ions.

m	n	He	Li^{+}	Be^{2+}	\mathbf{B}^{3+}	C^{4+}	\mathbf{N}^{5+}	O^{6+}	\mathbf{F}^{7+}	Ne^{8+}
1	2	0.27617	$0.45662 \underline{7}$	0.551555	0.608915	0.647067	0.674198	0.694449	0.710131	0.722625
	3	0.07343	0.110637	0.126850	0.135373	0.140479	0.143817	0.146149	0.147857	0.149158
	4	0.029861	0.043667	0.049227	0.051970	0.053529	0.054505	0.055161	0.055626	0.055971
	5	0.015039	0.021697	0.024273	0.025501	0.026178	0.026591	0.026862	0.027050	0.027186
	6	0.008627	0.012358	0.013767	0.014426	0.014782	0.014996	0.015134	0.015228	0.015296
2	2	$0.3764 \underline{8}$	0.21258	0.14856	0.11437	0.093057	0.07848	0.067860	0.059783	0.053430
	3	0.15135	0.257085	0.30589	0.333730	0.35169	0.364242	0.373502	0.380615	0.386251
	4	0.04915	0.0727	0.08213	0.08704	0.090089	$0.0921 \underline{2}$	0.09360	$0.0947 \underline{2}$	0.09560
	5	0.02234	0.03155	0.03497	0.036707	$0.03774 \underline{6}$	0.038444	0.038939	0.039312	0.039600
	6	0.012136	0.01677	0.01841	0.019237	0.019721	0.020044	0.020272	0.020443	0.020575
3	2	0.145460	0.094671	$0.07737 \underline{2}$	0.068542	0.063160	$0.05952 \underline{8}$	0.056911	0.054936	0.053391
	3	0.6263	0.3627	0.2562	0.1982	0.1617	0.1365	0.1181	0.1041	0.0931
	4	0.1439	0.26506	0.32317	0.3571	0.37924	0.39487	$0.4064 \underline{8}$	0.41541	0.42253
	5	0.0505	0.07976	0.09203	0.0986	0.1029	$0.1057 \underline{4}$	0.1078	$0.1094 \underline{3}$	0.11067
	6	0.0241	0.0362	0.04095	0.04346	0.04500	0.04605	0.04681	0.04737	0.04781
4	2	0.025865	0.018748	0.015950	0.014428	0.013466	0.012800	0.012312	0.011939	0.011645
	3	0.30753	0.20532	0.17001	0.15202	0.14110	0.13377	0.12852	0.12456	0.12148
	4	0.8581	0.5013	0.3554	0.2755	0.2249	0.1900	0.16442	0.1450	0.1296
	5	0.14628	0.28424	0.35183	0.39162	0.41783	0.43638	0.45020	0.46088	0.46939
	6	0.0528	0.0872	0.101893	0.11012	0.11529	0.11886	$0.1214 \underline{7}$	0.12345	0.125011
5	2	0.00966	0.007217	0.006210	0.005655	0.005297	0.005047	0.004863	0.004721	0.004609
	3	0.05550	0.04132	0.03564	0.032575	0.030649	0.029328	0.028366	0.027636	0.027062
	4	0.47580	0.322950	0.26962	0.24239	0.22584	0.21474	0.20678	0.20080	0.19614
	5	1.0833	0.6358	0.4516	0.3503	0.28617	0.24183	0.20937	0.18459	0.16504
	6	$0.15264 \underline{6}$	0.30800	0.38515	0.4309	0.46108	0.48252	0.4985	0.51089	0.5208
6	2	0.004771	0.003618	0.003132	0.002859	0.002683	0.002560	0.002468	0.002397	0.002341
	3	0.02109	0.01623	0.014157	0.013021	0.012299	0.011801	0.011437	0.01117	0.010941
	4	0.08620	0.06544	0.05698	0.05239	0.04951	0.04753	0.04609	0.04499	0.04413
	5	$0.6467 \underline{7}$	0.44371	0.37245	0.33596	0.31379	0.29889	0.288202	0.280162	0.273897
	6	1.30537	0.7683	0.5464	0.4242	0.3466	0.29295	$0.2536 \underline{7}^{\underline{2}}$	$0.2236 \underline{\underline{6}}$	0.19999

TABLE VI. Optical oscillator strengths for the $m^{3} S$ to $n^{3} P$ transitions in the two-electron ions.

m	n	He	Li^{+}	Be^{2+}	B^{3+}	C^{++}	$\mathrm{N}^{\text {+ }}$	O^{6+}	F^{7+}	Ne^{8+}
2	2	0.5391	0.307944	0.213139	0.162626	0.131381	0.110178	0.094856	0.083267	0.074199
	3	0.06447	0.18707	0.25258	0.29122	0.31648	0.33423	$0.34736 \underline{6}$	0.357482	0.365507
	4	0.02576	0.05754	0.07152	0.07903	0.083665	0.086803	$0.08906 \underline{3}$	0.090765	0.092095
	5	0.012493	0.02560	0.030955	0.033733	0.035409	$0.03652 \underline{6}$	$0.03732 \underline{0}$	0.037911	0.038370
	6	0.006981	0.013745	0.016411	0.017769	0.018578	0.019112	0.019489	0.019770	0.019985
3	2	$0.2085 \underline{2}$	0.11709	0.08870	0.075437	0.067845	0.062951	0.059543	0.057035	0.055116
	3	$0.891 \underline{0}$	0.5130	0.3558	0.2718	0.2198	0.1844	0.1588	0.13943	0.1243
	4	0.05006	0.18683	0.26406	0.31027	0.34067	0.36211	0.37802	0.39030	0.40004
	5	0.02291	0.06142	0.07930	0.08909	0.09520	0.09937	0.10238	0.104662	0.106450
	6	0.011985	$0.02871 \underline{19}$	0.035918	0.03972	$0.04204 \underline{5}$	0.043601	0.044721	0.045563	$0.04621 \underline{5}$
4	2	0.031715	0.021472	0.017328	0.015221	0.013962	0.013131	0.012541	0.012104	0.011764
	3	0.43571	0.25501	0.19746	0.17016	0.15437	0.14413	$0.13695 \underline{8}$	0.131663	0.127597
	4	1.2154	0.7037	0.4891	0.3739	0.3025	0.2539	0.2188	0.1921	0.1713
	5	0.04422	0.19615	0.28520	0.33900	0.37454	0.39967	0.41835	0.43278	0.44424
	6	0.02163	0.06588	0.08720	0.09899	0.10641	0.11148	0.11516	0.117950	0.12014
5	2	0.01132	0.008061	0.006623	0.005876	0.005423	0.005120	0.004903	0.004742	0.004617
	3	0.06759	0.04799	$0.0396 \underline{2}$	0.03529	0.032674	0.030921	0.02967	0.02874	0.028010
	4	0.66835	0.40005	0.31328	$0.2717 \underline{8}$	0.24769	0.23199	0.22098	0.212823	$0.20655 \underline{5}$
	5	1.5308	0.8898	0.6191	0.4737	0.3834	0.3219	0.2774	0.2436	0.2172
	6	0.04151	0.20930	0.31034	0.37171	0.41249	0.44134	0.46280	0.47938	0.49257
6	2	0.005492	0.003990	0.003308	0.002947	0.002727	0.002579	0.002475	0.002396	0.002335
	3	0.02468	0.01845	$0.01552 \underline{8}$	$0.01396 \underline{3}$	0.012998	0.012352	0.01188	0.011533	0.011267
	4	0.10397	0.07588	0.0635	0.056980	0.0530	0.05031	$0.0484 \underline{0}$	0.04698	0.04586
	5	0.9033	0.54828	0.4323 3	0.37662	0.34417	0.32300	0.30812	0.29709	0.288601
	6	1.8419	1.0737	0.7477	0.5724	0.4633	0.3891	0.3353	0.2945	0.2626

TABLE VII. Optical oscillator strengths for the $m^{1} P$ to $n^{1} D$ transitions in the two-electron ions.

m	n	He	Li^{+}	Be^{2+}	B^{3+}	C^{4+}	$\mathrm{N}^{\text {S }}$	O^{6+}	F^{7+}	Ne^{8+}
2	3	0.71017	0.71161	0.708792	0.70633	0.704492	0.703132	0.702101	0.701303	0.700672
	4	0.12027	0.119270	0.119178	0.119314	0.119497	0.119678	0.119844	0.119990	0.120119
	5	0.04328	0.04274	0.042746	$0.04287 \underline{5}$	$0.04300 \underline{8}$	0.043129	0.043235	0.043325	0.043405
	6	0.020952	0.020654	0.020675	0.020752	0.020833	0.020907	0.020969	0.021024	0.021071
3	3	0.0211	0.0243	0.0210	0.0178	0.01525	0.01327	0.01171	0.01046	0.00945
	4	0.64810	0.651706	0.646698	$0.64204 \underline{6}$	$0.63844 \underline{9}$	0.635702	0.633569	0.631878	0.630512
	5	0.14132	0.141406	$0.14104 \underline{0}$	0.140730	0.140492	$0.14031 \underline{13}$	0.140176	$0.14007 \underline{1}$	0.13998
	6	$0.0562 \underline{6}$	0.05623	$0.05618 \underline{3}$	0.056161	0.05615	$0.05614 \underline{0}$	$0.05613 \underline{6}$	$0.0561 \underline{5}$	0.056132
4	3	0.015305	0.01501	0.01550	0.01595	0.016299	0.016570	0.016780	0.016951	0.017087
	4	0.04004	0.0439	0.03708	0.03090	0.02616	0.02256	0.01977	$0.0175 \underline{5}$	0.01577
	5	0.64766	0.6511	0.64429	0.63828	0.633710	0.630271	0.627627	0.62554	0.623869
	6	0.15282	0.15314	$0.1524 \underline{0}$	$0.1517 \underline{3}$	0.15123	0.15084	0.15055	0.15030	0.150119
5	3	0.003114	0.003067	0.003163	0.003249	0.003316	0.003366	0.003405	0.003437	0.003462
	4	0.039300	0.03878	0.03999	0.041067	0.041883	0.042505	0.042985	0.043364	$0.04367 \underline{0}$
	5	0.05731	0.06159	0.051415	0.04251	0.03577	0.03072	0.02683	0.02379	0.02132
	6	0.66983	0.67310	$0.66484 \underline{2}$	0.65773	0.652406	$0.64842 \underline{5}$	0.645381	0.642992	0.641080
6	3	$0.00119 \underline{0}$	0.001173	0.001210	0.001243	0.001267	0.001286	0.001301	0.001312	0.001321
	4	0.00838	0.00829	0.008532	$0.0087 \underline{2}$	$0.00889 \underline{6}$	0.009012	0.009104	$0.00917 \underline{5}$	0.009232
	5	0.06842	0.067711	0.069746	0.071516	0.07284	0.07385	0.074629	0.075238	0.075728
	6	0.07360	0.0783	0.0648	0.0535	0.04481	0.0384	0.0335	0.0296	0.02654

TABLE VIII. Optical oscillator strengths for the $m^{3} P$ to $n^{3} D$ transitions in the two-electron ions.

m	n	He	Li^{+}	Be^{2+}	B^{3+}	C^{4+}	$\mathrm{N}^{\text {s+ }}$	O^{6+}	\mathbf{F}^{7+}	Ne^{8+}
2	3	0.61024	0.624659	0.639126	0.649263	0.656473	0.661802	0.665883	0.669098	0.671696
	4	0.122850	0.123214	$0.12327 \underline{5}$	0.12320	0.12310	0.123000	0.122903	0.122824	0.122748
	5	0.0470	0.046795	0.046447	0.046160	0.04593	0.045749	0.045602	0.045482	0.045384
	6	0.023472	0.023277	0.023016	0.022808	0.022647	0.022524	0.022427	0.022347	0.022282
3	3	0.1122	0.0908	0.0712	0.05781	0.04850	0.04171	0.03655	0.03252	0.02929
	4	0.47760	0.50338	0.52727	0.54377	0.555417	0.563999	0.570554	0.575714	0.579876
	5	0.124531	0.12785	0.13060	0.13241	0.133631	0.134484	0.13512	0.13561	0.135988
	6	$0.0529 \underline{8}$	0.05388	0.05455	0.05495	$0.05519 \underline{6}$	$0.05536 \underline{6}$	0.05548	0.05557	0.055645
4	3	0.036960	0.03279	0.02930	0.02705	$0.02554 \underline{0}$	0.024462	$0.02366 \underline{0}$	0.023040	0.022548
	4	0.200947	0.1606	0.12526	$0.1015 \underline{2}$	0.08505	0.07306	0.06399	0.05690	0.05122
	5	0.43839	0.47054	0.49949	0.51940	0.53346	0.54381	0.55172	0.55794	0.56296
	6	$0.12397 \underline{2}$	0.12922	0.1337	0.13665	0.1386	0.14006	0.14114	0.14198	0.14264
5	3	0.006902	0.006202	0.005613	0.005229	0.004967	0.004779	0.004639	0.004529	0.004442
	4	0.08831	0.07873	0.07090	0.065873	0.062492	0.060085	0.058294	0.056911	0.055813
	5	0.28009	0.2227	0.17337	0.14040	$0.1175 \underline{6}$	0.10096	0.08841	0.07860	0.07073
	6	0.42944	0.46648	0.49946	0.52213	0.538144	0.54994	0.55895	0.566044	0.57177
6	3	0.002586	0.002331	0.002114	0.001975	0.001878	0.001809	0.001757	0.001717	0.001685
	4	0.017043	0.01544	0.01411	0.01323	0.012648	0.012221	0.011902	0.011656	0.011458
	5	0.14698	0.13157	0.119085	0.111089	0.105705	0.101873	0.099018	0.096816	0.095066
	6	0.35432	0.2811	0.21865	0.17702	0.14819	0.12726	0.11142	0.09906	0.08914

there are more discrepancies between our results and older work [1-3] for the triplet rather than the singlet transitions. In general, an observed discrepancy for a given transition tends to occur for several of the ions.

For He , our f_{l} and f_{v} values lie within the recommended error margins of the values of Kono and Hattori [2] for 72 of the 95 transitions considered. If we take energies and suggested error margins in the oscillator strengths as criteria, then we find that our results are "more accurate" than theirs [2] for 60 transitions, comparable for 22, and "less accurate" for 13 transitions. For the $S-P$ transitions of the cations with $Z>2$, a similar comparison with the work of Schiff, Pekeris, and Accad [1] suggests that our recommended oscillator strengths are more accurate than theirs [1] for 255 transitions and less accurate for 33 transitions. Most of the latter involve the $3{ }^{1} S$ and $3{ }^{3} S$ states. Similarly, our values are more accurate than those of Kono and Hattori [3] for 72, comparable for 19, and less accurate for $29 P$ D transitions for the cations from Li^{+}through N^{5+}. There are also $152 S-P$ and $200 P-D$ transitions that we considered for which no previous high accuracy values are available.

V. $1 / Z$ EXPANSION COEFFICIENTS

Z scaling of the coordinates and treatment of the interelectronic repulsion as a perturbation leads to so-called $1 / Z$ perturbation theory [29]. Within this context, the $1 / Z$ expansion for the energy is given by

$$
\begin{equation*}
E / Z^{2}=\varepsilon_{0}+\varepsilon_{1} / Z+\varepsilon_{2} / Z^{2}+\cdots \tag{16}
\end{equation*}
$$

and the $1 / Z$ expansion of the transition moment M,
which is simply the integral appearing in Eq. (14), is given by

$$
\begin{equation*}
M=M_{0}+M_{1} / Z+M_{2} / Z^{2}+\cdots \tag{17}
\end{equation*}
$$

The first two coefficients in these expansions are well known and have been tabulated for the energies [30] of very many states and transition moments [4] of many transitions. Higher-order coefficients have been calculated for the energies of some states by variational perturba-

TABLE IX. Energy $1 / Z$ expansion coefficients. The ε_{1} coefficients are from Ref. [30].

State	ε_{1}	ε_{2}	ε_{3}	ε_{4}
$6^{1} S$	0.02701804	-0.012902	-0.00024	-0.0006
$6^{3} S$	0.02566888	-0.010880	-0.00040	-0.0002
$6^{1} P$	0.02801529	-0.014317	-0.00026	0.0001
$6^{3} P$	0.02694951	-0.012256	-0.00039	-0.0003
$3^{1} D$	0.11127014	-0.057486	0.00609	-0.0084
$4^{1} D$	0.06258203	-0.032170	0.00281	-0.0038
$5^{1} D$	0.04004495	-0.020492	0.00149	-0.0020
$6^{1} D$	0.02780463	-0.014180	0.0009	-0.0012
$3^{3} D$	0.11077576	-0.054620	-0.00071	0.0000
$4^{3} D$	0.06231832	-0.030687	-0.00056	0.0001
$5^{3} D$	0.03989813	-0.019677	-0.00034	0.0001
$6^{3} D$	0.02771614	-0.013691	-0.00021	0.0001

TABLE X. Second-order coefficients for the $1 / Z$ expansion of the transition moments for the $m S$ to $n P$ transitions.

m	n	Singlet	Triplet	m	n	Singlet	Triplet
1	2	-0.359		4	2	0.53	0.68
1	3	-0.209		4	3	4.14	5.0
1	4	-0.103		4	4	-12.9	-10.7
1	5	-0.0609		4	5	-0.81	-3.4
1	6	-0.044		4	6	-0.5	-0.94
2	2	-3.13	-2.054	5	2	0.28	0.372
2	3	-0.15	-0.977	5	3	1.4	1.4
2	4	0.1	-0.25	5	4	8.3	10
2	5	0.18	-0.11	5	5	-20.42	-17.46
2	6	0.14	-0.062	5	6	-1	-5.3
3	2	1.7	2.0	6	2	0.19	0.25
3	3	-7.167	-5.626	6	3	0.8	0.874
3	4	-0.4	-2.03	6	4	2	2.8
3	5	0.09	-0.530	6	5	12.6	14.3
3	6	0.3	-0.22	6	6	-30.5	-25.90

tion methods [31-35] and by fitting [31,36] variationally calculated energies [20,37].

We determine some higher-order energy coefficients by fitting our calculated energies using a least-squares procedure in which the first two coefficients were constrained to the known values [30]. Table IX lists our estimates of $\varepsilon_{i}, i=2,3,4$ for the $6 S$ and $6 P$ states which were not considered by Blanchard [36], and for all the D states we calculated. The latter are included because the existing variational perturbation estimates [35] were based on wave functions that did not include pp-type terms which are necessary for angular completeness [10]. Our expansion coefficients for these D states should be more accurate.

We also estimated the third coefficient M_{2} in Eq. (17) from our calculated transition moments M in both the length and velocity forms. We used both differencing and least-squares fitting of M^{2}, with M_{0} and M_{1} constrained to their known values [4]. Our estimated coefficients are listed in Tables X and XI for the $S-P$ and $P-D$ transitions, respectively. Most of our estimates should be more accurate than previous values [4] obtained by differencing calculated transition moments themselves; the latter procedure is not as reliable because the moments often change sign over the range of nuclear charges considered.

TABLE XI. Second-order coefficients for the $1 / Z$ expansion of the transition moments for the $m P$ to $n D$ transitions.

m	n	Singlet	Triplet	m	n	Singlet	Triplet
2	3	2.4	1.86	5	3	0.04	0.48
2	4	0.720	0.74	5	4	1.2	3.42
2	5	0.36	0.45	5	5	-17	-18
2	6	0.23	0.31	5	6	10.7	3.8
3	3	-2	-5.21	6	3	-0.08	0.28
3	4	4.95	2.3	6	4	-2.4	1.0
3	5	1.6	1.1	6	5	2.7	5.93
3	6	0.85	0.74	6	6	-26.3	-26.0
4	3	0.1	1.52				
4	4	-10.3	-10.7				
4	5	7.37	3.0				
4	6	2.3	1				

VI. CONCLUSIONS

Explicitly correlated wave functions have been constructed for the $n^{1} S, n^{3} S, n^{1} P, n^{3} P, n^{1} D$, and $n^{3} D$ states, with $n<7$, of the two-electron ions from He through Ne^{8+}. The variational energies are the best available for 180 of the 261 states considered even though all our wave functions are limited to 100 terms. This constitutes a clear-cut demonstration of the advantages of the exponentially correlated ansatz and pseudorandom exponent generating scheme advocated by us [6-8] provided that care is taken to ensure angular completeness [10] as in this work. For each ion, dipole oscillator strengths have been calculated for $55 S-P$ and $40 P-D$ transitions. Our oscillator strengths are more accurate than previous values for 739 of the 855 transitions considered. These calculations should serve as a challenge to recently reported techniques [38] for measuring oscillator strengths. The coefficients obtained for the $1 / Z$ expansions of the energies and oscillator strengths may prove useful in extrapolating our results to higher nuclear charges.

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences and Engineering Research Council of Canada. One of us (N.M.C.) thanks Dr. Russell J. Boyd for his support and encouragement of this work.
[1] B. Schiff, C. L. Pekeris, and Y. Accad, Phys. Rev. A 4, 885 (1971).
[2] A. Kono and S. Hattori, Phys. Rev. A 29, 2981 (1984).
[3] A. Kono and S. Hattori, Phys. Rev. A 30, 2093 (1984).
[4] F. C. Sanders and R. E. Knight, Phys. Rev. A 39, 4387 (1989).
[5] E. A. Hylleraas, Z. Phys. 54, 347 (1929).
[6] A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 1 (1977).
[7] A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 16 (1977).
[8] A. J. Thakkar, J. Chem. Phys. 75, 4496 (1981).
[9] J. C. Slater, Phys. Rev. 32, 349 (1928).
[10] G. Breit, Phys. Rev. 35, 569 (1930); C. Schwartz, ibid. 123, 1700 (1961).
[11] D. M. Bishop and J. Pipin, J. Chem. Phys. 91, 3549 (1989).
[12] V. Fock, Z. Phys. 63, 855 (1930); P. O. Lowdin, J. Mol. Spectrosc. 3, 46 (1959).
[13] M. J. D. Powell, Comput. J. 7, 155 (1965).
[14] D. E. Freund, B. D. Huxtable, and J. D. Morgan III, Phys. Rev. A 29, 980 (1984).
[15] K. Frankowski, Phys. Rev. 160, 1 (1967).
[16] G. W. F. Drake, Nucl. Instrum. Methods B 31, 7 (1988).
[17] A. Kono and S. Hattori, Phys. Rev. A 34, 1727 (1986).
[18] G. W. F. Drake and A. J. Makowski, J. Opt. Soc. Am. B 5, 2207 (1988).
[19] G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987).
[20] Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).
[21] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
[22] R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966).
[23] E. Steiner, J. Chem. Phys. 39, 2365 (1963).
[24] A. J. Thakkar and V. H. Smith, Jr., Chem. Phys. Lett. 42, 476 (1976).
[25] A. J. Thakkar, J. Chem. Phys. 84, 6830 (1986).
[26] A. J. Thakkar, in Density Matrices and Density Functionals, edited by R. M. Erdahl and V. H. Smith, Jr. (Reidel, Dordrecht, 1987), pp. 553-581.
[27] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).
[28] S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
[29] R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436
(1963).
[30] F. C. Sanders and C. W. Scherr, J. Chem. Phys. 42, 4314 (1965).
[31] P. Blanchard and G. W. F. Drake, J. Phys. B 6, 2495 (1973).
[32] K. Aashamar, J. Midtdal, and G. Lyslo, J. Chem. Phys. 60, 3403 (1974); 61, 1345 (1974); K. Aashamar, G. Lyslo, and J. Midtdal, ibid. 52, 3324 (1970).
[33] A. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Opt. Spektrosk. 24, 660 (1968) [Opt. Spectrosc. (USSR) 24, 355 (1968)].
[34] J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan III, Phys. Rev. A 41, 1247 (1990).
[35] F. C. Sanders and R. E. Knight, Phys. Rev. A 27, 1279 (1983).
[36] P. Blanchard, Phys. Rev. A 13, 1698 (1976).
[37] Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 11, 1479 (1975).
[38] W. F. Chan, G. Cooper, and C. E. Brion, Phys. Rev. A 44, 186 (1991).

