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Explicitly correlated wave functions are constructed for the n 'S, n3S, n'P, n*P,n'D, and n°D
states, with n <7, of the two-electron ions from He through Ne®*. The variational energies are the best
available for 180 of the 261 states. Electron-nuclear and electron-electron cusp checks are used to test
the wave functions. For each ion, dipole oscillator strengths are calculated for 55 S-P and 40 P-D transi-
tions. Our oscillator strengths are more accurate than previous values for 739 of the 855 transitions con-
sidered. Some coefficients for the 1/Z expansions of the energies and oscillator strengths have been es-
timated as an aid to extrapolating our results to higher nuclear charges.

PACS number(s): 32.70.Cs, 31.20.Tz

I. INTRODUCTION

Oscillator strengths are fundamental quantities in spec-
troscopy, but they are difficult to calculate by nonempiri-
cal quantum-mechanical methods. Hence, very many
calculations of these quantities have been made for two-
electron atoms, which are the simplest atomic species for
which exact oscillator strengths are not known. Howev-
er, most such studies have concentrated on a few select
transitions with the aim of demonstrating that the
method being used was generally useful. Only a few stud-
ies of high accuracy dealing with many transitions and
many ions of the helium isoelectronic series have been re-
ported.

Schiff, Pekeris, and Accad [1] used variationally deter-
mined wave functions to calculate oscillator strengths for
36 S-P transitions in each of the ions from He through
Nebt. Kono and Hattori improved and extended [2]
their work on He, and then reported oscillator strengths
for 24 P-D transitions [3] in each of the ions from Li*
through N°*. A less accurate but much more extensive
study was carried out by Sanders and Knight [4], who
used Z-dependent, variational perturbation theory of low
order to obtain oscillator strengths for 136 S-P and 112
P-D transitions for each of the ions through Z =30.

The purpose of this paper is to report calculated oscil-
lator strengths for 55 S-P and 40 P-D transitions for each
of the ions from He through Ne®". The accuracies of
739 of the 855 oscillator strengths considered have been
improved. Moreover, our nonrelativistic energies are an
improvement over current values for 180 of the 261 states
considered. These calculations also enabled us to obtain
estimates of coefficients in the 1/Z expansions of the os-
cillator strengths and energies.

The layout of this paper is as follows. Section II out-
lines our variational ansatz and method of calculation.
Section III contains a comparison of our energies with
previous work, and cusp and virial tests of our wave func-
tions. A discussion of our oscillator strengths is con-
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tained in Sec. IV, and 1/Z expansion coefficients are con-
tained in Sec. V. Hartree atomic units are used
throughout.

II. WAVE FUNCTIONS

Our wave functions are variational approximations to
the exact solutions of the Schrodinger equation with a
nonrelativistic, infinite nuclear mass, spin-independent
Hamiltonian given by

+—, (1)

in which r; =(r;,€};) is the position vector of electron i
for i =1,2, r(, is the interelectronic distance, and Z is the
nuclear charge. Schiff, Pekeris, and Accad [1], Kono and
Hattori [2,3], and Sanders and Knight [4] all used
Hylleraas-type [5] wave functions containing several hun-
dred and, in some cases, a few thousand terms. We have
previously [6—8] shown that use of exponential correla-
tion factors [5,9] can lead to compact wave functions of
similar accuracy. Although our original work was re-
stricted to low-lying states [6,7], the success of our ansatz
for obtaining pseudospectra [8] encouraged us to expect
that it would do well for more highly excited states as
well. Thus, for the S and P states, we use spin free wave
functions of the form [6-8]

N
V=3 ¢ (1£P,)ry exp(—a,r;—Byr;—viry;)
k=1
XYL o(Q)Y(0(0Q,), (2)
in which N is the number of terms, P, is the permutation
operator, the plus and minus signs refer to the singlet and

triplet states, respectively, L is the total orbital angular
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momentum quantum number, ¢, a;, By, and y, are
variational parameters, and the Y; , are spherical har-

monics.
We had used [8] the above ansatz with L =2 for pseu-
_J
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dospectral D states, but the expansion suffers from angu-
lar incompleteness in that case. Thus we include terms
with the other factor required for angular completeness
[10]. That is, our ansatz for D states is

N
\p: 2 Ck(li‘Plz)r%exp(—akrl—Bkrz—‘)/krn)Yz,Q(QI)YQ,O(Qz)

k=1

N+M
+ 3 d(12Pp)rryexpl—apr, —Bir, —vir)Y(Q,Q,) , (3)
k=N+1
in which
Y(Q,0,)=2Y, o(Q)Y, o(Q)+Y, ()Y, (Q)+Y, (2)Y,;(Q,). 4)

The two sets of terms in Eq. (3) will be referred to as sd
and pp terms, respectively. Note that Bishop and Pipin
[11] have recently used D state wave functions of this
form.

Square integrability requires that the nonlinear param-
eters satisfy the following constraints:

ay By >0, (5)
a,+y,>0, (6)
Bi+7:>0. (7

The nonlinear parameters were generated in a pseudoran-
dom fashion, as in our previous work [6-8],

a,=nl(A,— ADKk(k+1)V2/20+ A4,], ®)
B.=nl(B,—B ) k(k+1)V3/2)+B,], 9)
e =1l(G,—G ) k(k+1)V5/2)+G,], (10)

in which ({x)) is defined to be the fractional part of x,
A,, A,, B,, B,, G, and G, are variational paral-
lelepiped parameters, and 7 is a virial scale factor [5,12].
This effectively reduces the problem of optimizing 3N
nonlinear parameters to the much more tractable prob-
lem of optimizing six nonlinear parameters. All the
linear parameters are found variationally.

On the basis of our previous work [6-8], we estimated
that 100-term expansions would be sufficient to obtain an
accuracy comparable to that achieved in previous work
on oscillator strengths using conventional Hylleraas wave
functions containing several hundred terms. For the sake
of consistency, 100-term expansions were used for all
states and ions, even though one can argue that neutral
helium is sufficiently important that one should aim for
higher accuracy in that case. Thus, we use N =100 in
Eq. (2) for the S and P states. For the D states, we found
by numerical experimentation on the 3'D state of He
that M /(N+M)=0.3 is a good mix of sd and pp terms;
therefore, we use N =70 and M =30 with the constraint
that the nonlinear parameters in the pp terms are the
same as the nonlinear parameters in the first M sd terms.

The six parallelepiped parameters were independently
optimized, subject to the square integrability conditions
of Egs. (5)-(7), for each of the 29 states of each ion using
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Powell’s conjugate direction algorithm [13]. All optimi-
zation methods are plagued by local minima; hence it was
not surprising that different initial estimates of the pa-
rameters often led to substantially different “optimized”
values. Due to the large number of states we considered,
only one initial estimate was considered for each state ex-
cept when the optimized energies were higher than ex-
pected or the optimized parallelepiped parameters were
clearly inconsistent with physical arguments. In such in-
stances, up to 70 initial parameter estimates were tried.
After the necessarily imperfect optimization, each wave
function was scaled to satisfy the virial theorem ([5,12].
Our scale factors never deviated from unity by more than
1076 reflecting the fact that the optimizations had been
allowed to continue until the energies were stable to at
least 107! hartree—a threshold two orders of magni-
tude lower than the absolute accuracies of our wave func-
tions. The optimized parallelepiped parameters are avail-
able from the authors upon request.

Following our earlier cautionary remarks [6], we per-
formed all calculations in quadruple precision (=32
decimal digits) to avoid computational linear dependence.
The latter problem was most acute in the 6 'S state of He;
in that case, the smallest eigenvalue of the Gram matrix,
for normalized basis geminal functions was 1.2X 10~

III. ENERGIES AND QUALITY TESTS

The calculated energies for each of the bound S, P, and
D states with n <7 are listed in Tables I-IV for He
through Ne®t. The ground-state energy of H™ is includ-
ed for the sake of completeness. Consider the S states
first. Our energies for 69 of the 100 S states considered
are the lowest reported so far; the improvements range
up to 12 phartree for the 5'S states of the ions with

TABLE I. Ground-state energies (in hartrees) of the two-
electron ions.

V4 —E z —E

1 0.5277510118 6 32.406246 5980
2 29037243736 7 44.781445 1450
3 7.279913 409 6 8 59.1565951190
4 13.655 566 2340 9 75.5317123575
5 22.0309715742 10 93.906 806 507 2
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TABLE II. Excited-state energies for He, Li*, and Be?". The tabulated entries are —E values in hartrees.
n n's n3s n'pP n3p n'D n3D
He
2 2.1459740292 2.175229378176 2.123 8430802 2.133164 1816
3 2.0612719720 2.068 689 067 283 2.055 1463570 2.0580810772 2.0556207320 2.0556363088
4 2.033586 699 5 2.036512082933 2.031069 646 4 2.032324 3343 2.0312798445 2.031288 8462
5 2.021176 8309 2.022 618871382 2.0199059849 2.0205511765 2.0200158297 2.0200210228
6 2.0145630847 2.015377452422 2.0138339705 2.0142079455 2.0138982125 2.0139014058
Lit
2 5.0408767313 5.110727 372 509 49933510721 5.0277156770
3 4.7337560778 4.752076 455 858 4720206872 8 4.730459 664 1 4.722390988 4 4.7225269124
4 4.6297835973 4.637 136 594 629 4.624 1513904 4.6284635563 4.625074 1241 4.6251507732
5 4.5824279527 4.586 092 669 796 4.5795665136 4.5817684035 4.580038 695 6 4.5800824257
6 4.5569531770 4.559038 618 569 4.5553050672 4.5565767839 4.555578 166 8 4.555 604 868 4
Be2+
2 9.1848738775 9.297 166 589 741 9.110771 6142 9.174973 1379
3 8.5173125465 8.546972068 861 8.495969 6290 8.514604 359 8 8.5002158256 8.5005823430
4 8.288494 6257 8.300455 559448 8.279590 1070 8.287 3636556 8.2813398059 8.2815437460
5 8.183 6933067 8.189 674851615 8.1791606106 8.1831162879 8.1800459490 8.1801615797
6 8.1271314968 8.130543 857315 8.1245176279 8.1267982858 8.1250265700 8.125096 9820

Z > 3. The energies for the remaining 31 S states are no
more than 20 nhartree above the best available results as
outlined below. The 1S and 2 'S energies, respectively,
lie no more than 7.8 and 16.9 nhartree above the values
obtained by Freund, Huxtable, and Morgan [14] and
Frankowski [15] using wave functions containing loga-
rithmic terms, and by Drake [16] from Hylleraas-type ex-
pansions containing several hundred terms. For neutral
He, the higher 'S and 3S energies, respectively, lie no
more than 20 and 0.9 nhartree above the results of Drake
[16] and Kono and Hattori [17] obtained with Hylleraas-
type expansions.

The energies of the 48 P states with n =4, 5, and 6 for
the cations lie below the best available values. Our 'P
and 3P energies for He lie no more than 10 and 14 nhar-
tree, respectively, above the values obtained by Drake
and Makowski [18], and Kono and Hattori [17]. Most of
the 2'P, 23P, 3'P, and 3P energies for the cations lie
above the values of Accad, Pekeris, and Schiff [20], but
never by more than 30 nhartree.

Our 'D and 3D energies for helium lie no more than 15
and 10 nhartree, respectively, above those of Drake [19].
Our energies for the D states of the cations are in all cases
as good as or better than those in the literature [3].

TABLE III. Excited-state energies for B>*, C**, and N°*. The tabulated entries are — E values in hartrees.

n’p

n'D

n3D

n n's n3s n'pP

B3+
2 14.578 5280140 14.733 897 348 781 14.4772832536
3 13.4119969317 13.453 104279 643 13.3827148799
4 13.009 726 826 2 13.026 336958 201 12.9974920527
5 12.824 972647 7 12.833292 190279 12.8187397926
6 12.725096 643 3 12.729 848 532 224 12.7215005159

C4+
2 21.222017684 6 21.420755902276 21.093 3323009
3 19.417 808 525 6 19.470403 018010 19.3805212872
4 18.793472876 6 18.814 746 155 889 18.777 882958 4
5 18.506260 6182 18.516 925265 508 18.498 3154158
6 18.3508450160 18.356940714 471 18.3462597407

N5+
2 29.1154156939 29.357 681737453 28.9591163884
3 26.5347425711 26.598 842 151 505 26.4894160317
4 25.639727620 1 25.665 670121432 25.620770176 3
5 25.2275537939 25.240566 728 042 25.2178904229
6 25.004 3744608 25.011 815871593 24.998 796 797 6

14.573 1376855
13.410068 4802
13.008 8461365
12.824 5054260
12.724 8212316

21.2217106899
19.4167350899
18.792 864 6702
18.505912632 5
18.3506323301

29.1205017383
26.534 5607879
25.6394021159
25.2273293146
25.004 226664 1

13.3891003003
13.000080 5582
12.820039768 9
12.722244756 6

19.389059 129 7
18.781303 7746
18.500024 1801
18.3472352426

26.500 103 284 7
25.625014784 5
25.2200020950
24.999 999 643 7

13.389 7715900
13.0004510123
12.820249042 8
12.722 3719380

19.390083 504 7
18.7818659335
18.500 3410100
18.3474274513

26.5015131871
25.6257854177
25.2204356552
25.0002624364
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TABLE IV. Excited-state energies for O°", F’*, and Ne®*. The tabulated entries are —E values in hartrees.

n n's n3s n'p n’p n'D n3D
06+
2 38.258 7572858 38.544 647 320047 38.0747352216 38.2694227099
3 34.7627955284 34.838 409 733 347 34.7094102328 34.763 5258578 34.722240109 8 34.724058 1557
4 33.548 488 006 4 33.579 102 862297 33.5261562824 33.5484506942 33.5312171008 33.5322078221
5 32.988 8503818 33.004213 186445 32.977465 6338 329887515913 32.9799754101 329805320322
6 32.6856837812 32.694471907219 32.6791119566 32.6856019862 32.6805390523 32.680876234 4
F7+
2 48.6520616174 48.981 638 329481 48.440244 2655 48.668 4272877
3 44.101 9650589 44.189099 531 881 44.0405090344 44.103 6200619 44.055474 5177 440577170337
4 425197521738 42.555041240113 42.494042049 7 42.520006 368 7 42.499913067 1 42.501 1322182
5 41.790 1492430 41.807 862 859 144 41.7770412551 41.7901774414 41.779945 3295 41.7806295778
6 41.3947722847 41.404 907718 164 41.3872052791 41.394757153 1 41.388 8543015 41.389268 509 8
Ne8+
2 60.295340024 1 60.668 646 584 034 60.0556767280 60.317488 8147
3 54.5522496178 54.650907 980 593 54.4827150911 54.554 837 569 3 54.499 809 8479 54.502 488978 1
4 52.5535190410 52.593483453112 52.524 4280976 52.554 066 8527 52.5311042674 52.5325580331
5 51.6314496325 51.651514721700 51.616617 3033 51.6316056912 51.619912692 8 51.620727944 7
6 51.1316395090 51.143 122 668 823 51.123076 728 3 51.1316914644 51.1249458Q82 51.125439 1359

Independent checks of the accuracies of our wave func-
tions can be made with the help of cusp conditions
[21-25]. In particular, the electron-nuclear cusp condi-
tion [21-23] states

—p'(r)
2Zp(r)

en

=—1, (11

r=0

in which p(r) is the spherically averaged electron number
density. The electron-electron cusp condition [21,22,24]
reads

C.=[h'(u)/h(w)],-o=1, (12)

in which A (u) is the spherical average of the inter-
electronic density [26]. Equation (12) is satisfied trivially
by virtue of the Pauli principle for states of maximum
spin multiplicity (i.e., triplet states in two-electron sys-
tems). In such cases, there is a higher-order cusp condi-
tion [25],

203 (u)

CE(’: 3h”(u)

=1. (13)

u=0

Exact wave functions satisfy the cusp conditions exact-
ly, and thus a measure of the quality of an approximate
wave function is the degree to which it satisfies them.
The one-electron cusp condition of Eq. (11) is easier to
satisfy than the two-electron cusp conditions of Egs. (12)
and (13). For our wave functions, the largest deviation of
C,, from unity is only 7.1X107° for the 2'S state of
B*", whereas the largest deviation of C,, from unity is
0.20 for the 6'D state of B**. Our wave functions have
average deviations from unity of 9X107° for C,, and
0.045 for C,,. The average C,, deviations for states of the
same symmetry are 0.037, 0.016, 0.031, 0.060, 0.067, and
0.071 for the 'S, 38, 'P, 3P, 'D, and 3D states, respectively.
Similarly, the average C,, deviations for states of the

same symmetry are 1.4X107°, 2.2X107¢, 1.3X1075,
1.1X1073, 6.7X 107, and 5.2X107° for the 'S, *S, 'P,
3P, 'D, and *D states, respectively. For each state, the de-
viations averaged over all the ions tend to increase as the
principal quantum number increases. For each symme-
try, the deviations averaged over principal quantum num-
ber tend to remain constant as the nuclear charge in-
creases.

Neither accurate energies nor accurate cusp ratios
guarantee accurate oscillator strengths. However, they
do attest to the overall quality of the wave functions.

IV. OSCILLATOR STRENGTHS

Optical oscillator strengths were calculated for the
dipole-allowed S-P and P-D transitions using both the
length form [27]

f1=C(E,—E))|{m|z,+z,|n)|? (14)
and the velocity form [28]

“EoE " ")
E,—E,

in which C =2 and %, respectively, for S-P and P-D tran-
sitions between states m and n, and z; is the z coordinate
of electron i. The f values were also computed in
quadruple precision to reduce roundoff errors arising
from cancellation among contributing terms that in turn
is a consequence of the near linear dependence of our
basis functions. Interestingly, the length and velocity
forms proved to be equally susceptible to roundoff errors.
The length and velocity forms are equivalent if both wave
functions are exact, but give different results if approxi-
mate wave functions are used. There is no consensus in
the literature [1-3] as to which approximate value is
more reliable and under what circumstances. We chose

2

d d ’ (15)

__+__
dz, 0z,

fo
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to use the average of the length and velocity results:
f=(f;+f,)/2. Moreover, we use, as others [1-3] do,
the difference between the two values, §f =f;— f,, as an
estimate of the accuracy of the mean. Thus, in Tables
V-VIII, we list mean f values rounded on the basis of
§8f. A regular entry indicates that §f was between 0.7
and 2.99 units in the last quoted digit, whereas an under-
lined last digit indicates that §f was between 3 and 6.99
units in that digit. Since agreement between the two
forms is not an infallible indicator of accuracy [1], the
tabulated values are limited to six decimal digits whenev-
er the length and velocity values agree to more than six
digits.

We find that §f is generally smaller for transitions in-
volving lower-lying states and for the more highly
charged ions. However, in contrast to previous work [1],
we find that 8f is not always smaller for the triplet than
for the corresponding singlet transition. For instance, §f
values for transitions originating from the 6 IS, 4P, and
5P states are smaller than for the corresponding triplet
transitions.

For each m 'S—n 'P and m 3S —n 3P transition, the os-
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cillator strengths are monotonic functions of the nuclear
charge; they increase monotonically with Z when n >m
and decrease monotonically otherwise. Moreover, the os-
cillator strengths are monotonic functions of Z for all
m?3P—n3D transitions except 2°P-4°D for which a max-
imum occurs at Z =4. On the other hand, the oscillator
strengths for the m 'P—n D transitions are unimodal
functions of Z; the extremum is usually a maximum if
n2m.

Oscillator strengths for 503 of the 855 transitions we
considered have been calculated previously [1-3] using
variationally determined Hylleraas-type wave functions.
An unequivocal comparison is not always possible be-
cause the previously tabulated values are sometimes the
f; values, sometimes the f, values, and sometimes ex-
trapolations based on both length and velocity values ob-
tained from a series of wave functions. Nevertheless, de-
tailed comparison of our f; and f, values with the older
work [1-3] reveals several trends. Generally, when a
discrepancy occurs, one of our f; and f, values (usually
the latter) lies outside the error margins cited whereas the
other agrees closely with the older value. For each ion,

TABLE V. Optical oscillator strengths for the m 'S to n ' P transitions in the two-electron ions.

m n He Ll+ Be2+ B3+ C4+ N5+ 06+ F7+ NeB+

1 2 0.276 17 0.456 627 0.551555 0.608 915 0.647 067 0.674 198 0.694 449 0.710131 0.722 625
3 0.07343 0.110637 0.126 850 0.135373 0.140479 0.143 817 0.146 149 0.147 857 0.149 158
4 0.029 861 0.043 667 0.049 227 0.051970 0.053 529 0.054 505 0.055 161 0.055 626 0.055971
5 0.015039 0.021 697 0.024 273 0.025 501 0.026178 0.026 591 0.026 862 0.027 050 0.027 186
6 0.008 627 0.012 358 0.013 767 0.014 426 0.014 782 0.014 996 0.015134 0.015228 0.015296

2 2 0.37648 0.21258 0.148 56 0.11437 0.093057 0.078 48 0.067 860 0.059 783 0.053 430
3 0.15135 0.257085 0.305 89 0.333730 0.35169 0.364 242 0.373 502 0.380615 0.386251
4 0.049 15 0.0727 0.082 13 0.08704 0.090 089 0.09212 0.093 60 0.094 72 0.095 60
5 0.022 34 0.03155 0.03497 0.036 707 0.037746 0.038 444 0.038939 0.039312 0.039 600
6 0.012 136 0.01677 0.01841 0.019 237 0.019721 0.020 044 0.020272 0.020 443 0.020 575

3 2 0.145 460 0.094 671 0.077 372 0.068 542 0.063 160 0.059 528 0.056911 0.054 936 0.053 391
3 0.626 3 0.3627 0.2562 0.1982 0.1617 0.1365 0.1181 0.1041 0.093 1
4 0.1439 0.26506 0.32317 0.3571 0.37924 0.394 87 0.406 48 0.41541 0.42253
5 0.0505 0.07976 0.09203 0.098 6 0.1029 0.105 74 0.1078 0.109 43 0.11067
6 0.0241 0.0362 0.04095 0.043 46 0.04500 0.046 05 0.046 81 0.047 37 0.047 81

4 2 0.025 865 0.018 748 0.015950 0.014 428 0.013466 0.012 800 0.012312 0.011939 0.011 645
3 0.307 53 0.205 32 0.17001 0.15202 0.14110 0.13377 0.128 52 0.124 56 0.12148
4 0.8581 0.5013 0.3554 0.2755 0.2249 0.1900 0.16442 0.1450 0.1296
5 0.14628 0.28424 0.35183 0.391 62 0.41783 0.436 38 0.45020 0.460 88 0.469 39
6 0.0528 0.0872 0.101 893 0.11012 0.11529 0.11886 0.12147 0.12345 0.125011

5 2 0.009 66 0.007217 0.006210 0.005 655 0.005 297 0.005 047 0.004 863 0.004 721 0.004 609
3 0.055 50 0.04132 0.035 64 0.032575 0.030 649 0.029 328 0.028 366 0.027 636 0.027 062
4 0.475 80 0.322950 0.269 62 0.242 39 0.225 84 0.21474 0.206 78 0.200 80 0.196 14
5 1.0833 0.6358 0.4516 0.3503 0.286 17 0.241 83 0.209 37 0.184 59 0.165 04
6 0.152 646 0.308 00 0.38515 0.4309 0.46108 0.48252 0.498 5 0.51089 0.5208

6 2 0.004 771 0.003 618 0.003 132 0.002 859 0.002 683 0.002 560 0.002 468 0.002 397 0.002 341
3 0.02109 0.01623 0.014 157 0.013021 0.012299 0.011 801 0.011437 0.01117 0.010941
4 0.086 20 0.065 44 0.05698 0.052 39 0.049 51 0.047 53 0.046 09 0.044 99 0.044 13
5 0.646 77 0.44371 0.37245 0.33596 0.31379 0.298 89 0.288 202 0.280162 0.273 897
6 1.30537 0.768 3 0.546 4 0.4242 0.346 6 0.292 95 0.253 67 0.223 66 0.199 99
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TABLE VI. Optical oscillator strengths for the m 3S to n *P transitions in the two-electron ions.

m n He Li* Bet B3t cHt N3+ os+ F* Ne?*

2 2 0.5391 0.307 944 0.213139 0.162 626 0.131381 0.110178 0.094 856 0.083 267 0.074 199
3 0.064 47 0.18707 0.252 58 0.29122 0.31648 0.33423 0.347 366 0.357482 0.365 507
4 0.02576 0.057 54 0.07152 0.079 03 0.083 665 0.086 803 0.089 063 0.090 765 0.092 095
5 0.012493 0.025 60 0.030955 0.033733 0.035409 0.036 526 0.037 320 0.037911 0.038 370
6 0.006 981 0.013 745 0.016411 0.017 769 0.018 578 0.019112 0.019489 0.019 770 0.019985

3 2 0.208 52 0.11709 0.088 70 0.075 437 0.067 845 0.062 951 0.059 543 0.057035 0.055116
3 0.8910 0.5130 0.3558 0.2718 0.2198 0.1844 0.158 8 0.13943 0.1243
4 0.05006 0.18683 0.264 06 0.31027 0.34067 0.36211 0.37802 0.39030 0.40004
5 0.02291 0.06142 0.079 30 0.08909 0.09520 0.099 37 0.102 38 0.104 662 0.106 450
6 0.011985 0.028 719 0.035918 0.03972 0.042 045 0.043 607 0.044 721 0.045 563 0.046215

4 2 0.031715 0.021472 0.017 328 0.015221 0.013962 0.013131 0.012 541 0.012 104 0.011 764
3 0.43571 0.25501 0.19746 0.17016 0.154 37 0.144 13 0.136958 0.131 663 0.127597
4 1.2154 0.7037 0.4891 0.3739 0.3025 0.2539 0.2188 0.1921 0.1713
5 0.044 22 0.196 15 0.28520 0.33900 0.374 54 0.399 67 0.41835 0.43278 0.44424
6 0.02163 0.065 88 0.08720 0.09899 0.106 41 0.11148 0.11516 0.117950 0.120 14

5 2 0.01132 0.008 061 0.006 623 0.005 876 0.005423 0.005 120 0.004 903 0.004 742 0.004 617
3 0.067 59 0.04799 0.039 62 0.03529 0.032 674 0.030921 0.029 67 0.028 74 0.028 010
4 0.668 35 0.40005 0.31328 0.27178 0.247 69 0.23199 0.22098 0.212823 0.206 555
5 1.5308 0.8898 0.6191 0.4737 0.3834 0.3219 0.2774 0.2436 0.2172
6 0.04151 0.209 30 0.31034 0.37177 0.41249 0.44134 0.462 80 0.479 38 0.492 57

6 2 0.005 492 0.003 990 0.003 308 0.002 947 0.002 727 0.002 579 0.002 475 0.002 396 0.002 335
3 0.024 68 0.01845 0.015528 0.013963 0.012998 0.012 352 0.01188 0.011533 0.011267
4 0.10397 0.075 88 0.0635 0.056 980 0.0530 0.05031 0.048 40 0.046 98 0.045 86
5 0.9033 0.548 28 0.43233 0.376 62 0.344 17 0.32300 0.308 12 0.29709 0.288 601
6 1.8419 1.0737 0.7477 0.5724 0.463 3 0.389 1 0.3353 0.2945 0.2626

TABLE VII. Optical oscillator strengths for the m 'P to n ' D transitions in the two-electron ions.

m n He Li* Be?* B3t C*t N3+ o¢ F'* Neét

2 3 0.71017 0.71161 0.708 792 0.706 33 0.704 492 0.703 132 0.702 101 0.701 303 0.700 672
4 0.12027 0.119270 0.119178 0.119314 0.119 497 0.119678 0.119 844 0.119990 0.120119
5 0.04328 0.04274 0.042 746 0.042 875 0.043 008 0.043 129 0.043 235 0.043 325 0.043 405
6 0.020952 0.020 654 0.020 675 0.020752 0.020833 0.020907 0.020969 0.021024 0.021071

3 3 0.0211 0.0243 0.0210 0.0178 0.01525 0.01327 0.01171 0.01046 0.009 45
4 0.648 10 0.651 706 0.646 698 0.642 046 0.638 449 0.635702 0.633 569 0.631878 0.630512
5 0.14132 0.141406 0.141 040 0.140730 0.140492 0.140313 0.140176 0.140071 0.13998
6 0.05626 0.05623 0.056 183 0.056 161 0.056 15 0.056 140 0.056 136 0.056 15 0.056 132

4 3 0.015 305 0.01501 0.01550 0.01595 0.016299 0.016570 0.016 780 0.016951 0.017087
4 0.040 04 0.0439 0.03708 0.03090 0.026 16 0.022 56 0.019 77 0.01755 0.01577
5 0.647 66 0.6511 0.644 29 0.638 28 0.633710 0.630271 0.627 627 0.625 54 0.623 869
6 0.15282 0.15314 0.15240 0.15173 0.15123 0.150 84 0.15055 0.15030 0.150119

5 3 0.003 114 0.003 067 0.003 163 0.003 249 0.003316 0.003 366 0.003 405 0.003 437 0.003 462
4 0.039 300 0.03878 0.03999 0.041 067 0.041 883 0.042 505 0.042985 0.043 364 0.043 670
5 0.05731 0.061 59 0.051415 0.042 51 0.03577 0.03072 0.026 83 0.02379 0.02132
6 0.669 83 0.673 10 0.664 842 0.65773 0.652 406 0.648 425 0.645 381 0.642 992 0.641080

6 3 0.001 190 0.001 173 0.001210 0.001 243 0.001 267 0.001 286 0.001 301 0.001312 0.001 321
4 0.008 38 0.008 29 0.008 532 0.008 72 0.008 896 0.009012 0.009 104 0.009 175 0.009 232
5 0.068 42 0.067 711 0.069 746 0.071516 0.072 84 0.073 85 0.074 629 0.075238 0.075 728
6 0.073 60 0.0783 0.064 8 0.0535 0.044 87 0.0384 0.0335 0.029 6 0.026 54
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TABLE VIII. Optical oscillator strengths for the m >P to n *D transitions in the two-electron ions.

m n He Ll+ Be2+ B3+ C4+ N5+ 06+ F7+ Ne3+

2 3 0.61024 0.624 659 0.639 126 0.649263 0.656473 0.661 802 0.665 883 0.669 098 0.671 696
4 0.122 850 0.123214 0.123275 0.12320 0.12310 0.123 000 0.122903 0.122 824 0.122748
5 0.0470 0.046 795 0.046 447 0.046 160 0.04593 0.045 749 0.045 602 0.045 482 0.045 384
6 0.023472 0.023277 0.023016 0.022 808 0.022 647 0.022 524 0.022427 0.022 347 0.022282

3 3 0.1122 0.090 8 0.0712 0.057 81 0.048 50 0.04171 0.036 55 0.03252 0.02929
4 0.477 60 0.503 38 0.52727 0.54377 0.555417 0.563 999 0.570 554 0.575714 0.579 876
5 0.124 531 0.12785 0.13060 0.13241 0.133631 0.134484 0.13512 0.13561 0.135988
6 0.05298 0.053 88 0.054 55 0.054 95 0.055 196 0.055 366 0.05548 0.055 57 0.055 645

4 3 0.036 960 0.03279 0.029 30 0.02705 0.025 540 0.024 462 0.023 660 0.023 040 0.022 548
4 0.200947 0.1606 0.12526 0.10152 0.08505 0.073 06 0.063 99 0.056 90 0.05122
5 0.438 39 0.470 54 0.499 49 0.51940 0.53346 0.543 81 0.55172 0.55794 0.562 96
6 0.123972 0.12922 0.1337 0.136 65 0.1386 0.14006 0.141 14 0.14198 0.142 64

5 3 0.006 902 0.006 202 0.005613 0.005 229 0.004 967 0.004 779 0.004 639 0.004 529 0.004 442
4 0.088 31 0.078 73 0.07090 0.065 873 0.062 492 0.060 085 0.058 294 0.056911 0.055813
5 0.28009 0.2227 0.17337 0.14040 0.11756 0.10096 0.088 41 0.078 60 0.07073
6 0.429 44 0.466 48 0.499 46 0.52213 0.538 144 0.54994 0.558 95 0.566 044 0.57177

6 3 0.002 586 0.002 331 0.002 114 0.001975 0.001 878 0.001 809 0.001 757 0.001717 0.001 685
4 0.017 043 0.01544 0.014 11 0.01323 0.012 648 0.012221 0.011902 0.011656 0.011458
5 0.146 98 0.13157 0.119 085 0.111089 0.105 705 0.101 873 0.099018 0.096 816 0.095 066
6 0.35432 0.2811 0.218 65 0.17702 0.148 19 0.12726 0.11142 0.099 06 0.089 14

there are more discrepancies between our results and old-
er work [1-3] for the triplet rather than the singlet tran-
sitions. In general, an observed discrepancy for a given
transition tends to occur for several of the ions.

For He, our f; and f, values lie within the recom-
mended error margins of the values of Kono and Hattori
[2] for 72 of the 95 transitions considered. If we take en-
ergies and suggested error margins in the oscillator
strengths as criteria, then we find that our results are
“more accurate” than theirs [2] for 60 transitions, com-
parable for 22, and “less accurate” for 13 transitions.
For the S-P transitions of the cations with Z > 2, a simi-
lar comparison with the work of Schiff, Pekeris, and Ac-
cad [1] suggests that our recommended oscillator
strengths are more accurate than theirs [1] for 255 transi-
tions and less accurate for 33 transitions. Most of the
latter involve the 3!S and 33S states. Similarly, our
values are more accurate than those of Kono and Hattori
[3] for 72, comparable for 19, and less accurate for 29 P-
D transitions for the cations from Li™ through N°7.
There are also 152 S-P and 200 P-D transitions that we
considered for which no previous high accuracy values
are available.

V. 1/Z EXPANSION COEFFICIENTS

Z scaling of the coordinates and treatment of the in-
terelectronic repulsion as a perturbation leads to so-called
1/Z perturbation theory [29]. Within this context, the
1/Z expansion for the energy is given by

E/Z*=¢yte,/Z+ey/Z7+ - - (16)

and the 1/Z expansion of the transition moment M,

which is simply the integral appearing in Eq. (14), is
given by

M=M,+M,/Z+M,/Z*+ --- . (17)

The first two coefficients in these expansions are well
known and have been tabulated for the energies [30] of
very many states and transition moments [4] of many
transitions. Higher-order coefficients have been calculat-
ed for the energies of some states by variational perturba-

TABLE IX. Energy 1/Z expansion coefficients. The ¢,
coefficients are from Ref. [30].
State €, € €3 €4
6'S 0.02701804  —0.012902 —0.00024  —0.0006
63S 0.025 668 88 —0.010880 —0.00040  —0.0002
6'p 0.02801529 —0.014 317 —0.00026 0.0001
6°pP 0.026 949 51 —0.012256 —0.000 39 —0.0003
3'D 0.11127014  —0.057 486 0.006 09 —0.0084
4'D 0.062 58203 —0.032170 0.002 81 —0.0038
5'D 0.040044 95 —0.020492 0.001 49 —0.0020
6'D 0.027 804 63 —0.014 180 0.0009 —0.0012
3°D 0.11077576 —0.054 620 —0.00071 0.0000
4°D 0.062318 32 —0.030 687 —0.00056 0.0001
5°D 0.039898 13 —0.019677 —0.000 34 0.0001
6°D 0.027716 14 —0.013691 —0.00021 0.0001
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TABLE X. Second-order coefficients for the 1/Z expansion
of the transition moments for the mS to nP transitions.
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TABLE XI. Second-order coefficients for the 1/Z expansion
of the transition moments for the mP to nD transitions.

m n  Singlet Triplet m n  Singlet Triplet m n  Singlet Triplet m n Singlet Triplet
1 2 —0.35 4 2 0.53 0.68 2 3 24 1.86 5 3 0.04 0.48
1 3 —0.209 4 3 4.14 5.0 2 4 0.720 0.74 S 4 1.2 3.42
1 4 —0.103 4 4 —129 —10.7 2 5 0.36 0.45 5 5 —-17 —18
1 5 —0.0609 4 5 —0.81 —34 2 6 0.23 0.31 5 6 10.7 3.8
1 6 —0.044 4 6 —-0.5 —0.94

3 3 -2 —5.21 6 3 —0.08 0.28
2 2 —313 —2.054 5 2 0.28 0.372 3 4 495 2.3 6 4 —2.4 1.0
2 3 -—0.15 —0.977 5 3 1.4 14 3 5 1.6 1.1 6 5 2.7 5.93

2 4 0.1 —0.25 5 4 8.3 10 3 6 0.85 0.74 6 6 —263 —26.0
2 5 0.18 —0.11 5 5 —2042 —17.46
2 6 0.14 —0.062 5 6 -1 —5.3 4 3 0.1 1.52

4 4 —103 —10.7
3 2 1.7 2.0 6 2 0.19 0.25 4 5 7.37 3.0
3 3 —17167 —5.626 6 3 0.8 0.874 4 6 2.3 1
3 4 —04 —2.03 6 4 2 2.8
3 5 0.09 —0.530 6 S 12.6 14.3
3 6 03 —0.22 6 6 —305 —2590 VI. CONCLUSIONS

tion methods [31-35] and by fitting [31,36] variationally
calculated energies [20,37].

We determine some higher-order energy coefficients by
fitting our calculated energies using a least-squares pro-
cedure in which the first two coefficients were constrained
to the known values [30]. Table IX lists our estimates of
€;, 1 =2,3,4 for the 65 and 6P states which were not con-
sidered by Blanchard [36], and for all the D states we cal-
culated. The latter are included because the existing vari-
ational perturbation estimates [35] were based on wave
functions that did not include pp-type terms which are
necessary for angular completeness [10]. Our expansion
coeflicients for these D states should be more accurate.

We also estimated the third coefficient M, in Eq. (17)
from our calculated transition moments M in both the
length and velocity forms. We used both differencing and
least-squares fitting of M2, with M, and M, constrained
to their known values [4]. Our estimated coefficients are
listed in Tables X and XI for the S-P and P-D transitions,
respectively. Most of our estimates should be more accu-
rate than previous values [4] obtained by differencing cal-
culated transition moments themselves; the latter pro-
cedure is not as reliable because the moments often
change sign over the range of nuclear charges considered.

Explicitly correlated wave functions have been con-
structed for the n'S, n 3S, n'P, n3P, n'D, and n 3D
states, with n <7, of the two-electron ions from He
through Ne®". The variational energies are the best
available for 180 of the 261 states considered even though
all our wave functions are limited to 100 terms. This
constitutes a clear-cut demonstration of the advantages of
the exponentially correlated ansatz and pseudorandom
exponent generating scheme advocated by us [6-8] pro-
vided that care is taken to ensure angular completeness
[10] as in this work. For each ion, dipole oscillator
strengths have been calculated for 55 S-P and 40 P-D
transitions. Our oscillator strengths are more accurate
than previous values for 739 of the 855 transitions con-
sidered. These calculations should serve as a challenge to
recently reported techniques [38] for measuring oscillator
strengths. The coefficients obtained for the 1/Z expan-
sions of the energies and oscillator strengths may prove
useful in extrapolating our results to higher nuclear
charges.

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences
and Engineering Research Council of Canada. One of us
(N.M.C.) thanks Dr. Russell J. Boyd for his support and
encouragement of this work.

[1] B. Schiff, C. L. Pekeris, and Y. Accad, Phys. Rev. A 4, 885
(1971).

[2] A. Kono and S. Hattori, Phys. Rev. A 29, 2981 (1984).

[3] A. Kono and S. Hattori, Phys. Rev. A 30, 2093 (1984).

[4] F. C. Sanders and R. E. Knight, Phys. Rev. A 39, 4387
(1989).

[S] E. A. Hylleraas, Z. Phys. 54, 347 (1929).

[6] A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 1
(1977).

[71 A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 16
(1977).

[8] A. J. Thakkar, J. Chem. Phys. 75, 4496 (1981).
[9]113. C. Slater, Phys. Rev. 32, 349 (1928).
[10] G. Breit, Phys. Rev. 35, 569 (1930); C. Schwartz, ibid.
123, 1700 (1961).
[11] D. M. Bishop and J. Pipin, J. Chem. Phys. 91, 3549 (1989).
[12] V. Fock, Z. Phys. 63, 855 (1930); P. O. Lowdin, J. Mol.
Spectrosc. 3, 46 (1959).
[13] M. J. D. Powell, Comput. J. 7, 155 (1965).
[14] D. E. Freund, B. D. Huxtable, and J. D. Morgan III,
Phys. Rev. A 29, 980 (1984).
[15] K. Frankowski, Phys. Rev. 160, 1 (1967).



46

[16] G. W. F. Drake, Nucl. Instrum. Methods B 31, 7 (1988).

[17] A. Kono and S. Hattori, Phys. Rev. A 34, 1727 (1986).

[18] G. W. F. Drake and A. J. Makowski, J. Opt. Soc. Am. B 5,
2207 (1988).

[19] G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987).

[20] Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516
(1971).

[21] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[22] R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556
(1966).

[23] E. Steiner, J. Chem. Phys. 39, 2365 (1963).

[24] A. J. Thakkar and V. H. Smith, Jr., Chem. Phys. Lett. 42,
476 (1976).

[25] A.J. Thakkar, J. Chem. Phys. 84, 6830 (1986).

[26] A. J. Thakkar, in Density Matrices and Density Function-
als, edited by R. M. Erdahl and V. H. Smith, Jr. (Reidel,
Dordrecht, 1987), pp. 553-581.

[27] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of
One- and Two-Electron Atoms (Springer, Berlin, 1957).

[28] S. Chandrasekhar, Astrophys. J. 102, 223 (1945).

[29] R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436

OSCILLATOR STRENGTHS FOR S-P AND P-D TRANSITIONS . .. 5405

(1963).

[30] F. C. Sanders and C. W. Scherr, J. Chem. Phys. 42, 4314
(1965).

[31] P. Blanchard and G. W. F. Drake, J. Phys. B 6, 2495
(1973).

[32] K. Aashamar, J. Midtdal, and G. Lyslo, J. Chem. Phys.
60, 3403 (1974); 61, 1345 (1974); K. Aashamar, G. Lyslo,
and J. Midtdal, ibid. 52, 3324 (1970).

[33]1 A. N. Ivanova, U. I. Safronova, and V. N. Kharitonova,
Opt. Spektrosk. 24, 660 (1968) [Opt. Spectrosc. (USSR)
24, 355 (1968)].

[34]J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan
III, Phys. Rev. A 41, 1247 (1990).

[35] F. C. Sanders and R. E. Knight, Phys. Rev. A 27, 1279
(1983).

[36] P. Blanchard, Phys. Rev. A 13, 1698 (1976).

[37] Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 11,
1479 (1975).

[38] W. F. Chan, G. Cooper, and C. E. Brion, Phys. Rev. A 44,
186 (1991).



