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Higher-order relativistic corrections to the polarization energies of helium Rydberg states

E. A. Hessels
Department ofPhysics and Astronomy, York Uniuersity, North York, Ontario, Canada M3J 1P3

(Received 17 April 1992; revised manuscript received 25 June 1992)

Accurate energies of helium Rydberg states have been obtained by Drachman using polarization po-
tentials [Phys. Rev. .A 26, 1228 (1982); 31, 1253 (1985);38, 1659(E) (1988)]. The present work calculates
the higher-order relativistic corrections up to order a'((ao/r2) )e'/ao, where r, is the position of the

Rydberg electron. The results given simple formulas for these contributions, which can easily be evalu-

ated for any Rydberg state. The results are compared (at lower L) to precise variational calculations,
and are compared to recent precisely measured n = 10 intervals.

PACS number(s): 31.30.Jv, 31.50.+w

INTRODUCTION

Calculations of the energies of high-angular-
momentum Rydberg states of helium have advanced
greatly in the past decade. In 1982, Drachman published
[1] calculations in which the energies could be expressed
in terms of simple long-range polarization potentials. In
1985, after improved measurements [2] of these states,
the lowest-order relativistic corrections to the polariza-
tion potentials were calculated [3]. In 1990, variational
energies for states up to 10K (n = 10,l =7) were calculat-
ed [4], giving very accurate eigenvalues for these states.
Recent higher-precision measurements [5] in n = 10 states
of helium make it desirable to calculate higher-order rela-
tivistic corrections to the polarization potentials. These
relativistic corrections are calculated here and shown to
be simple expressions that can easily be evaluated for any
nl Rydberg state. The corrections are compared to the
variational calculations at lower l, and are compared to
experiment in n =10. In this work, all spin-independent
relativistic effects to order a ((ao/rz) ) are included.

In the next section, a brief review of the nonrelativistic
polarization potential is presented. In the following sec-
tion, the higher-order relativistic calculations are present-
ed. Finally, the calculations are compared to experiment
for n =10 intervals.
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where r) (r & ) is the larger (smaller) of r, and r2 and P„
is a I.egendre polynomial. Hp, is a Z=2 hydrogenic
Hamiltonian for the inner (core) electron and Ho„ is a
Z=1 hydrogenic Hamiltonian for the outer (Rydberg)
electron. The fact that Hp=Hp +Hp„ is not symmetric
under the interchange of r, and r2 implies that one must
use unsymmetric perturbation theory [6] instead of the
usual Raleigh-Schrodinger perturbation theory. For
high-L Rydberg states, the core and Rydberg electrons
occupy different regions of space, since the outer electron
is excluded from positions near the nucleus by its
centrifical potential. For example, for the hydrogenic
(1S)(10M) state (n =10,L =9), the inner electron has a
probability of less than 10 ' of being outside 10ap, while
the outer electron has a probability of only 10 ' of being
inside 10ap. Because the wave functions of the two elec-
trons do not overlap, it is possible to disregard symmetri-
zation, and treat the electrons as distinct.

The potential Yean be written (in atomic units) as

NONRELATIVISTIC POLARIZATION POTENTIAL

The nonrelativistic Hamiltonian
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The zeroth-order energies are E' '= —2 —1/2n, and the
zeroth-order wave functions are

l(o(r„r2) = i( ls)(nl) ) =1(),
=

(r, )P„t='(r2) . (9)

The higher-order energies are obtained from perturbation
theory, E =E' '+E'"+E' '+. . ., where
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Here the sums are assumed to include the continuum and
to exclude the (ls)(nl) state. The energy denominators
can be expanded as

(Elsnl NLn'I'} (Els ~'NL }

+ (E„.l. E„()(E—1, ENL )
—+

(13)
with the first term giving the adiabatic energies, the next
term the first nonadiabatic corrections, etc. Using these
expansions, the most significant terms of V, have been
evaluated analytically [1]:
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(14)
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where a, =
—,', is the dipole polarizability of He+, a2= ~

is the quadrupole polarizability, and p1 =
—,",, is the nona-

diabatic correction to the dipole polarizability. The nota-
tion (r 2

")„I refers to the hydrogenic expectation value,
and all terms up to order (r2 ) have were included by
Drachman [1,7] and terms up to (r2 ' ) have recently
been calculated [8]. Since (r2 ") decreases quickly with
k for high-L Rydberg states, only relativistic corrections
of the terms up to order ( r 2 ) are included in the
present calculations.

The V,
' ' part of the Coulomb perturbation gives a

first-order contribution of

n —l —1 (n —I —1)!(n+I)!(—2/n) ' I+"+ /n 2(2l +j+k+2)! (2I+j+k+1)!+ (15)
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These contributions are very small (less than 100 Hz for
I &4 and less than 0.1 Hz for I &5). Similar contribu-
tions from second-order perturbation theory due to V,

' '

times V,' ' are similarly small. Thus, only the relativistic
corrections of the potentials that result from the V,

'"' per-
turbations are included in the present calculations.

RELATIVISTIC CORRECTIONS

The goal of the present work is to obtain all relativistic
corrections to the polarizabilities up to order a ( r 2 )
(where a is the fine-structure constant). The relativistic
corrections to the Hamiltonian Ho are given (in atomic
units) by [6)

is the Darwin term. The Hamiltonians H3 and H&,
which give the spin structure, have been ignored, since
we will consider only the spin-independent structure. H3
and H& have been treated elsewhere in long-range hydro-
genic models [9—11]. Also, terms proportional to 5(r,2)
and 5(r2) have been ignored, since high-L Rydberg elec-
trons do not penetrate into the core.

The effects of K1c and H4 on the dipole polarizability
(a, ) come from third-order energies involving V,"', V,"',
and (H, c+H4) and have been calculated previously [3]
to be

(20)

H„1=H1+H2+H4,

where

(16)
The effects of H, c and H4 on the quadrupole polarizabil-
ity were also calculated [3]:

H1 H1C+H1R g I 1 8 I 2 (17)
229 ~2 + —557 ~2 —879 ~2 (21)

1
H2 a [Pl P2+r12 (r12 Pl }P2]

"12

is the relativistic retardation correction, and

Hz=m. a 5' '(r, )

(18)

(19)

are the relativistic corrections to the kinetic energy of the
core and Rydberg electrons,

A third term, also proportional to r2, comes from the
relativistic corrections to the nonadiabatic dipole polari-
zability (p1). This term has not been previously calculat-
ed and is necessary in order to make precise comparisons
between theory and recent experiments.

The term comes from the third-order energy. Taking
the first nonadiabatic corrections to the energy denomi-
nators of Eq. (12) gives



46 HIGHER-ORDER RELATIVISTIC CORRECTIONS TO THE. . . 5391
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The first term can be simplified using

for

[Hp, (r&), [Hp, (r&),F"']]I1$&
= V,"'I1$ & (23)

(24)

The term then reduces to
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where the E„—E„' factor is taken inside of the V,"' matrix element. Using

2r& g r, BP, (cos8&2)
[Hp„(r2), V,"']lnl &= r, r2 — lnl &

r2 r2 r2 2

(26)

and noting that the expectation value of the second term is zero and using the completeness of In'1' &, Eq. (25) reduces
to

& 1$IHI, +H4INL & r r2 ~~ ~l 2 l 3
2r&2g (1$)(nl) r, + r, + r, r& r2 (NL)(nl)

E1s ENL
(27)

Since V„, is a scalar operator, INL & is restricted to $

states, and only the scalar part of (r&.r2)(r& r2) (which
equals —,

'
) will contribute. Noting that

[Hp ( r] ), —4
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( + 4
1'

) +
24

I't ] I
1$ &

= —'( —'r(+ —r, + r, + r'"'—)ll$ &
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Calculation of the second and third terms of Eq. (22) is
carried out in a similar fashion. The second term gives

,",,', a (, r2 & and zero for the H&, and H4 contributions,
while the third term gives —",

,
", a ( r 2 & and—3(sa (r2 &, respectively. Thus, the total contribution of

the relativistic corrections to p& is

2023 ~2( r
—6

&1536 2 (31)
and that (using integration by parts} for 1 )—,'(k —2)

nl
k nl = nl k+, nl (29)

we obtain

+ '"r f
—"")I1$&(r2 &

—(3Q}

This gives ——7a (,r2 & and", ,
S5a (r2 & for H&, and

H4, respectively.

The contributions of these relativistic corrections are list-
ed in Table I in the column labeled az" +P',".

Another term, the relativistic correction of the dipole
polarizability due to H, ~, has contributions of similar
size and must also be included. These corrections come
from third-order perturbation-theory expressions [Eq.
(12)] containing V,"', V,'", and H&z. The term that con-
tains ((1s)(nl)IH, al(NL)(n'1'}& dominates, since it is
nonzero only for (NL)=(1$), and this leads to a small
denominator: E„I—E„I.. The exact solution to this term
has recently been carried out by Drake [12], who ob-
tained
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TABLE I. Relativistic corrections to the polarization energies. The second column lists the relativistic corrections due to H, +H4
from the variational calculations of Drake [12]. The third column gives the lowest-order corrections as calculated by Drachman us-

ing his polarization model [3]. The next columns give the higher-order corrections due to H, c+H4 and H, z, respectively. The next

column lists the total of the previous three columns, which is the total of the corrections in the polarization model. The Snal column

gives the difference between this polarization model prediction and the variational calculation. All values are in MHz, with error es-

timates in parentheses.

10F
106
10H
10I
10I(

10L
10M

Variational

+0.5501(3 I

+0.155 05(0)
+0.055 05(6)
+0.022 868(9)
+0.010 580(3 )

rel
a~

+0.6229
+0.165 16
+0.057 17
+0.023 413
+0.010746
+Q.005 343
+0.002 812

rel ~ arel

—0.0224
—0.001 60
—0.000 21
—0.000 037
—0.000008
—0.000002
—0.000001

A(H, ~ )

—0.0679
—0.008 99
—0.001 91
—0.000 515
—0.000 159
—0.000053
—0.000018

Total

0.5326
0.154 57
0.055 05
0.022 861
0.010 579
0.005 288
0.002 793

Difference

0.0175(3 )

0.000 48(0)
0.000 00(6)
0.000 007(9)
0.000 001(3)

ha, (H, „)=a p 9 21+3

J=2I —i &(2I+

9n —5l(l +1)/n +2l +1
2(21+ 1)[3n —l ( l + 1)]

differences, which go very quickly to zero as L increases.
For the higher-L states, where the variational wave func-
tions are not available, the polarization model predictions
are reliable at the Hz level of accuracy. Thus, the effects
of H& +H4 are approximated well by

(32)

+ [ —"' —'1(l +1)+ 'I2(1+ 1) ](r2 ) ]

(33)

and
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+
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I have calculated the other terms in the third-order ener-

gy [Eq. (12)]. These terms contribute

2

1 3 ~e 1 1+ + —,', a
2n I +—,

' 4n M n

—",,'„'a (r2 )„I+A(H,~ }, (35}

1

l+ —,
'

where the first term is simply the expectation value of
H, „(with appropriate mass corrections [13]),5(H, It ) is
the sum of Eqs. (32)—(34), and the other terms are correc-
tions to the polarizabilities due to H&c+H4 as discussed
above.

We now consider H2, which leads to retardation
corrections. The lowest-order retardation contribution is
known to be a (r2 )/4 [14]. A derivation of this result
from H2 and V,'" within the present formalism is given
below. It is then extended to obtain new corrections due
to H2 or oder a ( r 2 ) to the polarization energies.

The operator

Inclusion of these terms is necessary to get all contribu-
tions of order a (r2 ), but evaluation of these terms in-

dicates that their contribution is small. The energies
from these contributions are included in Table I. These
results complete all of the H, +H4 corrections up to or-
der a (r~ ).

A comparison between the relativistic effects of
H, +H4 as calculated by Drake using variational wave
functions [4,12], and as calculated here in terms of
corrections to the polarizabilities, is given in Table I. In
the second column the variational calculations of Drake
for n = 10 are given (with the first-order energies
( H, +H4 ) subtracted out). The sixth column gives the
total of the corrections to a&, a2, and P& due to H &, +H4
and of a& due to H&z. The final column gives the

(36)

and

H2 2a [Pl P2+r2 (r2 Pl }P2]
r2

r)
H~2 '= —

—,'a —[r, r2p, .pz+3r, r2r2 (r2.p, )p2
rp

—r &.(r2 p&)p&
—r2. (r~.p~)pz]

(38)

[P~ p2+r~2 (r~2 p~)p2)]
12

can be expanded in terms of powers of r, /r2 to obtain

H =H"'+H'"+H'"+. . . ,2 2 2 2

where

r)
H2 '= —

—,'a —3[(—,'r, .rzr, .r2 —
—,')[p, .p2+3r2 (r2 p, )p2]+3r, .r2r, r2r2 (r2.p, )p2

rp

+~1 r2rl (r2 Pl }P2+rl (rl Pl }P2] (40)
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The lowest-order contribution of H2 to the helium Rydberg energy levels comes from the second-order perturbation be-

tween H2" and V,'", which gives

N, L, n', I'

Using

(
1

(ls)(nl) r, rz (NL)(n'1') (N L)(n ()
'—'—,'a IP, Pz+rz. (rz P, )Pzl ((s)(n())

f2 f2

E), —ENL
(41)

2fi+P'i
6

4 2 1 2 &
r r (42)

which satisfies

P)
[Ho, (r, ), G"']~ ls ) = r, rz~ ls ),

T2

and using the fact that

along with

(43)

(44)

rz Vz=
Brz

Eq. (41) reduces to

(45)

fi+f i2(( ls)(nl) —— „r, rz( —
—,'a ) (2) r, .V2+r, rz

2
( ls)(nl) . (46)

Since we need the expectations value between 1s states, only the scalar part of the operator survives. Since the scalar
part of r, A(rz)r, B(rz) is —,

' A(rz) B(rz), the expression reduces to

za ( lslr, +r, I ls) —,'(nl —,
r2 r

n! =-,'a'(rz ')„, . (47)

This is the lowest-order approximation to the dipole retardation correction. The full dipole retardation contribution
has been discussed at length [14-16]. Precise calculations of the dipole contributions have been done and the results for
a wide range of states have been tabulated [16,17]. For short distances the full dipole retardation contributions can be
approximated [16]by ( V«, )„I,where

6m
(48)

This potential includes effects other than H2, with the r term, for example, coming from the two-electron Lamb shift

[4,15]. Since the Hz contribution is the largest portion of the dipole retardation potential, the higher-order effects of
the Hz part of the retardation potential will be calculated. The terms that give results proportional to a (rz ) are the
second-order perturbation terms: Hiz" V,' ', Hz 'V,'", Hiz 'V,' ', and the nonadiabatic correction to H("V,"'. The first
three of these are calculated using methods similar to those used for Hiz iV,"i. The results are 0, "a (rz ), and

«a ( rz ), respectively. The nonadiabatic term is

(( ls)(nl)
~ V,'"~(NL)(n'l') ) ((NL)(n'1') ~Hz" (( ls)(nl) )

(E„.i E„i) . —
«ip ENI )

(49)

The operator F'" of Eq. (24) can be used to cancel the energy denominators, and putting the factor E„,&. E„& inside of-
the first matrix element and using Eq. (26), we obtain

Qg 2 2
2Zri 'I'2

T2
nI

2 r4
2

a—a ls ( ,",r, + ,",r, + —,', r', )
(
z)„z—— a

2r, Vz+2rz r,
12 812

( ls)(nl) (50)
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Here we have also used Eqs. (44) and (45) and the com-
pleteness of the n 'l' ) 's. Using the facts that
(t)IB82)rz=e2, 82.V2=(1lr 2)( t)IB82), and the two ma-

trix elements

Drake s variational calculations, it is clear that Eq. (54)
contains all of the Hz corrections to order a ( r 2 ) . The
size of the order a (r2 ) retardation corrections not in-

cluded in Hz is a matter that warrants further investiga-
tion.

(51)

and

(52)

Eq. (50) reduces to

a [ ——,
' (r2 ) ——' l(l+1)(r2 )+ —,

' (r2 )] . (53)

This, combined with the earlier terms, gives the total
correction due to Hz (to order a (r2 ) ):

—,'a (r2 )+ —,', a (r2 ) —[—', + —,', l(l+1)]a (rz ) .

(54)

A comparison between the n =10 values from this ex-
pression and the Hz corrections from Drake's variational
calculations is given in Table II. The level of agreement
is very high and increases rapidly with increasing L. For
the higher-L states, where variational wave functions are
not available, Eq. (54) appears to give values that are ac-
curate to 1 Hz.

It should be noted that higher-order retardation effects
have been discussed elsewhere. The retardation correc-
tion to P& was discussed in Ref. [18],but was not calcu-
lated. The leading-order term of the "electric quadrupole
retardation effect" was calculated in Ref. [19] to be
—,', a (r2 )„I, which differs from the present result. The
calculation of Ref. [19] included the full retardation con-
tributions (not just H2). From the comparison with

COMPARISON TO EXPERIMENT

Table III shows a comparison of experiment to both
the variational calculations of Drake and the long-range
calculations discussed above. The first row gives the ex-
perimental results for measurements of n =10 intervals

[5,20]. The second row gives the nonrelativistic contribu-
tions to these intervals as calculated by Drake [4], the
third row is the difference between the first and second
rows and is thus the net relativistic and radiative contri-
butions to these intervals. These contributions are com-
pared to variational calculations and long-range calcula-
tions of the lower sections of the table. The variational
calculations of Drake [4] include relativistic corrections
from the Breit interaction (H&, H2, and H4) as well as
one- and two-electron Lamb shifts (L „L2 )[21]. The V'„',

term, as discussed by Au [15] and Drake [4], is a correc-
tion to Drake's calculation which includes retardation
effects not included in Hz or the two-electron Lamb shift.
The total contributions of relativistic and radiative effects
to the n =10 intervals as calculated using variational
methods are shown in the tenth row of Table III and are
several standard deviations larger than the contributions
derived from experiment.

The second half of the table shows the long-range (po-
larization model) calculations, including the H

&
+H4

corrections to the polarizabilities from Table I and the
full dipole retardation contribution as calculated by Babb
and Spruch [16] and also by Au [17]. The higher-order
H2 corrections (to order a (r2 ) ) calculated above are
also included. Finally, the asymptotic form of the one-
electron Lamb shifts as calculated by Goldman and
Drake [21] are included. These are due to the effect of
the Rydberg electron on the core electron's Lamb shift,

TABLE II. The corrections to the polarizabilities due to H2. The contributions are given for n = 10,
L =3-9. The second column gives the H2 contributions calculated by Drake [12]. The third column
gives the leading (r~ ) contribution, with the next column giving the higher-order (r2 ') and (rz )
contributions. The fifth column gives the total of the previous two columns, and is thus the total con-
tribution in the polarization potential calculations. The final column gives the difference between the
polarization potential results and the variational calculations. All values are in MHz.

Variational' a'(r, ')/4 Total Difference

10F
106
10H
10I
10K
10L
10M

0.2696
0.072 183
0.024 919
0.010 169
0.004 653

0.2670
0.070 783
0.024 502
0.010034
0.004 605
0.002 290
0.001 205

—0.0010
0.001 315
0.000416
0.000 136
0.000048
0.000019
0.000008

0.2660
0.072 098
0.024 918
0.010 170
0.004 653
0.002 309
0.001 213

0.0036
0.000085
0.000001

—0.000001
0.000000

'Reference [12],Table 9, with the mass correction due to the scaling of the Rydberg subtracted out.
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TABLE III. Comparison between theory and experiment for n =10 intervals. The energy intervals listed are the separations be-

tween the statistically weighted mean of the energies of the four 10L spin structure levels and the statistically weighted mean of the
10L+1 energies. Comparisons are made for both variational calculations of Drake and the polarization potential calculations. All
values are in MHz, with one-standard-deviation-error estimates in parentheses.

E„,'
Expt b

Expt. -E„,

10F-G

2025.9805
2036.5588(22)

10.5783(22)

10G-H

484.060 44
491.005 23(49)

6.944 79(49)

10H-I

152.19464
157.052 41(23 )

4.85777(23)

10I-K

57.238 79
60.815 95(20)
3.577 16(20)

10K-L

24.4346(2)
27.1747(5 )

2.7401(5 )

hE„,
L1
L2
V,",,

'
Total
E-T

Drake' variational relativistic and radiative effects
10.5268(3 ) 6.93006( 10) 4.852 78(5)

+0.0549( 1) +0.012 91 +0.003 97
+0.0123 +0.004 84 +0.002 28
—0.0012 —0.000 71 —0.00045

10.5928(3 ) 6.947 10( 10) 4.858 58(5)
—0.0145(22) —0.002 31(50) —0.000 81(24)

3.575 32(1)
+0.001 46
+0.001 22
—0.000 30

3.577 70(1)
—0.000 54(20)

p4d

H, +H4 corr.
to pol.
pot'1'
V„„dipole'
a~ir2 6)H2
corr. g

Lamb shift
Total
E—T

—0.3780 —0.099 52 —0.032 19 —0.012 28

—0.1853

+0.0024

+0.0532
10.6139

—0.0356(22)

—0.042 20

—0.000 90

+0.012 90
6.947 63

—0.002 84(49)

—0.012 64

—0.000 28

+0.003 98
4.858 58

—0.000 81(23 )

—0.004 52

—0.00009

+0.001 46
3.577 68

—0.000 52(20)

Long-range interaction predictions for relativistic and radiative corrections
11~ 1216 7.077 35 4.899 71 3.593 11 2.7477

—0.0053

—0.0018

—0.0000

+0.0006
2.7412

—0.0011(5)

'Reference [4] (and Ref. [3] for the 10K-10L nonrelativistic energy). 'Table I.
bReferences [5] and [6]. "Reference [16].
'Reference [17]. ~Column 4 of Table II.
dReference [13].

as well as the Lamb shift of the Rydberg electron. The
largest of the terms given by Goldman and Drake are
(approximately)

—26193 MHz(r2 )„&+38082 MHz(r2 )„&

—1085 MHzP„& /n, (55)

where p„i is the hydrogenic Bethe logarithm [22].
The total relativistic and radiative corrections in the

long-range model are in fair agreement with the varia-
tional calculations, with the agreement becoming very
good at high L (10H Iand 10I K). T-he ag-reement be-
tween experiment and the long-range calculations is very
poor, being somewhat worse than the agreement between
the variational calculations and experiment for the low-I.
intervals. The relatively good agreement observed previ-
ously [5] for long-range calculations appears to have been
fortuitous, since the agreement worsens when the
higher-order relativistic corrections calculated in the
present work are included. The remaining discrepancy
between experiment and both calculations seems to indi-
cate the presence of additional e6ects not included in ei-
ther calculation.
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APPENDIX: HELIUMLIKE IONS

Although the principal reason for the present calcula-
tions is to compare with precisely measured helium inter-
vals, it should be noted that the calculations presented
can also be used to calculate the energy levels of helium-
like ions. The Z dependence of the various terms can be
obtained from the perturbation-theory expressions by
noting that matrix elements of H&z and H4 scale as Z,
K,a as (Z —1), H'"' as (Z —1)"+'/Z" V'"' s
(Z —1)"+'/Z", and Rydberg and core energy differences
scale as (Z —1) and Z, respectively. Using this
method, one finds that the overall scaling of the relativis-
tic corrections to p, [Eq. (31)] is (Z —1) Z . Note that
the (Z —1) scaling is already contained in (r2 ), so
that the result for heliumlike ions is—2063a (r2 ) /96Z . It thus has similar scaling as the
previously calculated relativistic correction to a2 [3].
The overall scaling of the H, R corrections of Eqs. (33)
and (34) is (Z —1)s/Z6, which differs from the scaling of
the larger H, „correction of Eq. (32), which scales as
(Z —1) /Z [12]. Finally, the a (r2 ) contribution
from Hz [Eq. (54)] scales as (Z —1) /Z, while the
a ( r 2 ) contribution has an overall scaling of
(Z —1) /Z". The scaling of other previously calculated
terms is discussed elsewhere [1,3,12].
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