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Bell inequalities with a magnitude of violation that grows exponentially
with the number of particles
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A simple Bell inequality for an n-particle system in a Greenberger-Horne-Zeilinger state is derived.
Quantum mechanics violates this inequality by an exponentially large factor of 2'" "~' for n odd or
2'" "~ for n even.
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In 1935, Einstein, Podolsky, and Rosen (EPR) [1] used
certain plausible propositions about locality and realism
as premises of an argument to show that even at the
quantum level, there must exist definable elements or
dynamical variables that precisely determine the results
of individual measurements. Since these variables are not
included in the formalism of quantum mechanics, EPR
concluded that quantum-mechanical states do not pro-
vide a complete description of physical reality. Bell's [2]
extraordinary contribution was to show that the premises
of EPR lead to the validity of an inequality that is some-
times grossly violated by the statistical predictions of
quantum mechanics. Bell's theorem is of paramount im-
portance for understanding the conceptual foundation of
quantum mechanics because it rigorously formulates the
premises of EPR and shows that these premises, in gen-
eral, are incompatible with the quantitative predictions of
quantum theory. Over the years, Bell's theorem has been
generalized for values of spin other than —,

' [3], and for
number of axes larger than 3 [4]. Recently an even more
provocative demonstration of the incompatibility of the
premises of EPR with quantum mechanics was
discovered by Greenberger, Horne, and Zeilinger (GHZ)
[5—7]. They showed that the premises of EPR cannot
even handle the perfect correlations of quantum mechan-
ics for systems of three or more particles. The GHZ ar-
gument is stronger than the arguments for the two-
particle systems where no contradiction arises at the level
of perfect correlations.

Motivated by the GHZ argument, Mermin [8] recently
derived an n-particle Bell inequality. Quantum mechan-
ics violates his inequality by an amount that grows ex-
ponentially with n. Mermin's result provides the first
spectacular demonstration of the fact that there is no lim-
it to the amount by which quantum-mechanical correla-
tions can exceed the limits imposed by the premises of
EPR.

In this paper, we derive a simple Bell inequality for an
n-particle system in a GHZ state [9]. Similar to
Mermin's analysis, we assume that the measurements are
imperfect so that the measured correlations, in general,
do not attain their extreme values. %'e shall then show
that quantum mechanics violates Bell's inequality by an
exponentially large factor of 2'" ' for n odd or
2'" " for n even (in contrast, quantum mechanics

violates Mermin's inequality by a factor of 2'" "~ for n

odd or 2'" '~ for n even).
Consider an n-particle GHZ state 4 [10,11]:

1

v'2

where 1 or $ in the jth position corresponds to the spin
of the jth particle along the z axis. We take the z axis for
each particle to be along its direction of Qight, and the x
and the y axes along any two orthogonal directions per-
pendicular to the z axis. After the particles are well
separated, we measure the spin of particles 1,
2, . . . , n —1 along the x or y axis, but we measure the
spin of the nth particle along axis a, which is the xy plane
and makes 45' with the x axis, or along axis b, which is
also in the xy plane but makes 135' with the x axis.

We now note that we can learn in advance the result of
measuring of the spin of any particle k along any axis u,
i.e., m„, by far-away measurements of the spin of the oth-
er particles. EPR account for this by insisting that the
result of measuring the spin of any particle must have al-
ready been specified prior to any of the measurements.
This assumption is quite natural, since the particles are
spatially separated so that the orientation of the analyzer
used for the measurement of the spin of any particle
should not infiuence the measurements carried out on the
other particles. This assumption, which generally is
known as local realism, essentially means that any system
in the state 4 must be characterized by a 2n-axis proba-
bility distribution function P, . . . , b (m, . . . , m„).

1~1 n n

Quantum mechanics, however, vehemently denies that
such a distribution function has any meaning, since it as-
signs simultaneous values to noncommuting spin opera-
tors. In this paper, we shall show that the existence of
such a distribution function is numerically incompatible
with the quantitative predictions of quantum theory.

Consider operator A defined as A = A&+ A2 where

0 0 0 0 0 ' ' 0l 2 3 4 5 . . . n —l
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46 S37S Oc 1992 The American Physical Society



5376 M. ARDEHALI 46

and

1 2 n —1+ 1 2 3 4 n —1=(o o o' CT 0 0 CT
' ' t7 ~ ~ ~
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(3)

F=gP„» . . . , b (m„. . . , m„)(M&+M&), (4)

where

Each term in (2) and (3) contains all distinct permutations
of the subscripts that give distinct products. In the fol-
lowing, we shall calculate the expected value of A ac-
cording to the standard rules of quantum mechanics, and
according to the requirement of local realism. We shall
then show that quantum mechanics violates Bell's in-
equality by an amount that grows exponentially with n.

First we calculate the expected value of A according to
the assumption of local realism. We note that if local
realism holds, that is, if the 2n-axis probability distribu-
tions function exists, then the expected value of A, which
we denote by the function F, is defined as

Lemma: If u, u', v, and U' are random variables having
a probability distribution function P(u, v, u', v'), then the
following elementary relation always holds:

QP(u, u', v, v')[u(v —v')+u'(v+ v')]

-2~ax[ l~ I I&'l]~ax[ lv
I

lv'I] .

Im (m„'+ im')
j=l

Let

and

j=n —1

F, =max —Re g (m J+im»)
j=1

(12}

j=n —1

Using inequality (10) together with the fact that m,"
and mb are constrained to lie between 1 and —1, we can
immediately conclude that

j=n —1

F~2max —Re P (m„+im»)
j=1

j=n —1

M =( —m'm m . m" '+m'm m m" '+
1 x x x y y x x

m lm2m3m4m5. . . m n —1

v

+m' m m m" '+ —
)y x X

F2=max Irn

Obviously

F &2m ax F[„F2].

(m„'+im') (13)

(14)

X(m," mb ),—
or

M1 = —Re

Similarly

j=n —
1

(m„'+im,') (m,"—mb)
j=1

M =(mm m" + —mmmm m"
2 y x X v X

(6)

We now use Mermin's elegant technique to calculate
the maximum of the function F, . We note that F1 is
bounded by a product of complex numbers, each of
which has a maximum magnitude of &2 and a phase of
+45' or +135'. When n —1 is even, the product can lie
along the real axis and can attain a maximum value of
2'n ";when n —1 is odd, the product must lie along an
axis at 45' to the real or the imaginary axis and can only
attain a maximum value of 2{n ' . Thus

+m' m;m m" '+
v x X

—m m m m1 7 8 n —1 + .
)y X X

X(m, +mb)

T

n even(
{n 1 ]/2 n O

and similarly [8]

(15)

M2 = Im
j=n —1

(m~ +im»J ) (m "+mb ) .
j=l

(8)

2'n "" n even

2{n 1 ) /2 n odd
(16)

Thus we can write the function F as

F=gP . . . , b (m, , . . . , m„)

Therefore the function F, which is defined as the expected
value of A according to the assumption of local realism,
is bounded by

X —Re
j=n —

1

(m'+im') (m,"—mb )
j=1

j=n —1

2" , n even
—

2 "" .Odd . (17)

+ Im (m„'+im } (m,"+mb)
j=l

We now use the generalized Clauser-Horne-Shimony-
Holt [12] lemma to obtain an upper bound on the func-
tion F.

Having obtained an upper bound on the expected value
of A according to the requirement of local realism, we
now proceed to calculate the expected value of A accord-
ing to the standard rules of quantum mechanics. First we
calculate (@IA, I@):
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or [13]

+&@la'1a2a3 . . o" 'o" 4& —&@la'ta2a3 . . o" 'o "la &+

—(@la,' . a,'o„' . . o„" 'a."le&+(@la,' . a,'a„'. . . a„" 'able& —. + (18)

(4l A, l@)= cos(1)o„'+ . +1p„" '+1p,")—cos(1p„'+ . +1p„" '+qr")

—cos(g'+1P +1P„+ +1P„" '+1P,")+cos(tP'+tPy+tP„+ . . +1P„" '+tPb)—

+ cos(q,'+ . . +q4+q„'+ +q„" 1+y.")
—cos(y'+ . +1P +1P'+ +1P„" '+1Pt", )+ (19)

where 1p,"=0', 1p"=90', (kB[1,2, . . . , n —1]),1p,"=45', and grb=135'. Substituting these values, it can easily be
checked that each term in (19) is equal to &2/2.

We now calculate ( C1
l
A 2 l

4 ):
&+l&2 ~ &=&@ay'a,2 a." 'a." @&+&~lay'a.2 a," 'a", I@&+

(@l 1 2 3 4 . . . n —1 nl@) (@l 1 2 3 4. . . n —
1 n @)

y x a y y y x x b

+&@la' asa6 o'" 'o "ltI &+&@la'1 . asa6 a" 'a le"&+
y x y X (20)

or

(4l A2 4) = —cos(g'+1p„+ +1p„" '+1p,")—cos(1p~+1p„+ +1p" '+tpt, )—

+ CSO(g& +1Py+tP y+1PX+ ' ' +1P„+1Pe)+ COS(1Py+P&+Py+1P„+ ' ' ' +$7„+1Pb)+ ' ' '

—COS(+I, + ' ' ' +g +3P„1+ ' ' ' +1Px +1Pe)

—cos(42 + ' ' ' +&1P+ „1P+' ' ' +tP„+tabb )
' ' ' + ' ' (21)

(C,
l
~ l@& 2. —(tr2) (22)

The quantum theoretic value (22) exceeds the limit im-

posed by the premises of EPR (17) by an exponentially
large amount of 2'" " for n even or 2'" ' for n odd.

Note that for odd n (even n) the magnitude of violation
of Mermin s inequality is larger (smaller) than the magni-
tude of violation of the inequality derived here. We thus

Again it can easily be checked that each term in (21) is
equal to 3/2/2. Since the total number of terms in (19)
and (21) is 2", we can immediately conclude that

conclude that for odd n, perfect correlations lead to the
largest magnitude of violation, whereas for even n, sta-
tistical correlations lead to the largest violation.

A final comment is in order about the experimental im-
plications. Recently Greenberger et al. [6] have pro-
posed an experiment to test the violation of 0HZ correla-
tion for a set of four particles. The entangled state that
they have proposed can also be used to test the violation
of Bell inequalities derived here. Quantum mechanics
violates their inequality (i.e., GHZ correlation) by a fac-
tor of 2, but it violates the inequality derived here by a
factor of 23/2.

'Present address: NEC Research Laboratories, Sagam-
ihara, Kanagawa 229, Japan.
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