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Hexagonal spatial patterns for a Kerr slice
with a feedback mirror
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We study analytically and numerically a very simple nonlinear optical system, a thin slice of
Kerr material with a single feedback mirror. Theoretical analysis shows that for both a focusing
and defocusing medium the plane-wave solution is unstable above a certain input intensity, and a
hexagonal pattern of bright spots should form. The amplitude equations for this system are three
coupled Ginzburg-Landau type equations. Numerical analysis con5rms these results; moreover by
further increasing the input intensity, the hexagonal solution becomes itself unstable and turbulent
motion sets in.
PACS number(s): 42.50.Lc, 42.65.3x, 42.65.Pc

I. INTRODUCTION

Many research groups have focused their attention on
models where the spatial profile of the electromagnetic
field is taken into consideration and the plane-wave ap-
proximation removed. A review and extensive bibliogra-
phy of such studies have been published recently [1] as
part of a special issue on transverse effects in nonlinear
optics.

A very simple system of this type, namely a single
slice of Kerr medium coupled to a single feedback mir-
ror, is discussed here. Linear stability analysis of this
system [2] reveals both static and dynamic instabilities.
Numerical simulations in two transverse dimensions were
recently presented [3] showing, in particular, the sponta-
neous appearance of hexagonal patterns. In this more
extended treatment we give more complete and detailed
numerical results for this problem, together with anal-
ysis in which we examine various levels of perturbation
approach to the nonlinear behavior of the system. In
particular, we derive appropriate amplitude equations of
Ginzburg-Landau type for the problem, which are of a
form typical in hydrodynamics [4, 5].

The paper is setup as follows. In the following sec-
tion we review the linear stability analysis for complete-
ness, presenting threshold curves for various parameter
values, including, in particular, the case of strong trans-
verse diffusion of the excitation responsible for the Kerr
effect, which will be shown in later sections to present
both an interesting phenomenology and some rather sur-
prising features. In Sec. III we proceed to the nonlinear
problem, developing multiple scaling and other pertur-
bation approaches on the basis of which we analyze the
bifurcation structure for rolls and hexagons, the former
being stable only in the one-transverse-dimension case.
We derive the amplitude equations and discuss the pa-
rameter dependence of the coeKcients in that equation.

Section IV concerns itself with numerical results, de-
scribing the methods adopted and the results obtained,
and making generally satisfactory comparison with the

analysis of preceding sections. In this work we are pri-
marily concerned with pattern formation, so that a rel-

atively sluggish medium is adequate, and the dynamical
response is on the time scale of the medium response.
Indeed, in the limit of slow response, we can neglect al-
together the propagation time between the slice and the
mirror, with very considerable economy of computer re-
source. Finally in Sec. V we conclude by considering fur-
ther generalization of this work. We also consider some
of the factors relevant to experimental observation of the
sort of phenomena presented in this work.

II. BASIC MODEL AND STABILITY ANALYSIS

Many, even most, nonlinear optical systems incorpo-
rate counterpropagating beams, especially those based on
Fabry-Perot etalons, as are most lasers and many bistable
devices. The extra degrees of freedom which bidirectional
beams confer greatly increase the scope for complexity
and pattern formation. In fact, no cavity structure is
required, as Grynberg et al. [6] have shown, with in par-
ticular observations of hexagonal patterns in the far field
of laser beams counterpropagating in a sodium vapor
cell with no mirror or other external feedback. The far
field is the Fourier transform of the pattern within the
medium itself, and we can thus infer spontaneous sym-
metry breaking within the medium leading to hexagonal
patterns, albeit necessarily constrained by the power, and
thus diameter, limitations of the input beams.

Closely related also are the experiments of Giusfredi
et al. on sodium vapor [7] in which the counterpropa-
gating beam is provided by an external lens and mirror
combination. Patterns exhibiting complex dynamics on
the time scale of the round-trip to the mirror, but also
on longer time scales, are observed, though limited in
complexity by the input power available.

The basic model in the present work is rather simple,
namely a thin antireflected slice of Kerr medium irradi-
ated from one side by a spatially smooth beam, indeed a
plane wave in the present and previous analysis [2] and
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in the numerical studies, with a plane feedback mirror
behind to generate a counterpropagating beam in the
Kerr slice (see Fig. 1). The detailed modulation stability
analysis of this system has been presented elsewhere [2],
building on a related problem involving a sequence of
thin Kerr slices with free-space propagation between the
slices, in which the crucial role of propagation in convert-
ing phase to amplitude modulation was identified [8].

The system that we have modeled is a good approxima-
tion of a direct band-gap semiconductor, such as InSb or
GaAs: an electromagnetic field E' excites electrons from
the valence to the conduction band; once there, the elec-
trons can diffuse (diffusion length ID) or recombine with
a free trap (time constant r):

—ID 7~n+ r +n = Nv(&~,
On Asp

t hv

where n is the carrier density in the conduction band, a is
the absorption cross section, N& is the density of states in
the valence band (we assume that it is not depleted), and
v is the frequency of the transition. The proportionality
constant can be eliminated by suitably scaling the field

so that the equation for the carrier density reads

tion, provided we are sufIiciently detuned from resonance.
Finally, in order to simplify the model as much as pos-
sible we shall suppose that the slice is su%ciently thin
as to allow the neglect of difFraction inside it (see end of
this paragraph) and that diffusion washes out the grating
formed by the forward and backward field inside the ma-
terial. Under all these assumptions Maxwell's equations
for the two fields have a very simple form

OF . - OB
Oz Oz

= iypnF, = —iypnB,

while the equation for the carrier excitation density is

-ID&'.n+ ~ — + n = IFI'+ IBI',
Ot

(2)

where 9'& is the Laplacian in the z and y directions.
The modulus of yo = —koy/2 measures the strength of
the nonlinearity while its sign determines the type: pos-
itive for focusing, negative for defocusing media. p is
the proportionality constant between the variation of the
index of refraction and that of the carrier density. As
the intensities of the two fields in Eq. (2) do not depend
on z, we can suppose that the carrier density is uniform
through t, he slice,

Finally, outside the material, the fields' evolutions are
determined by Maxwell's equations in free space

ID%'~n+ —r —+ n = )E) .
Ot

Broadly similar equations would be obeyed by other
types of mobile excitation which affect the refractive in-
dex in other kinds of media, e.g. , liquid crystals [9].

The total electric field is the sum of a forward and
backward field

F(x t) )(kpr —p)p'k1 + B(x t) )(kps+p)pig +

where I" and B are slowly varying amplitudes. We as-
sume that the carrier density changes (linearly) the re-
fractive index of the medium, so that the electric field is
phase modulated during the transit of the slice, but we

neglect absorption: linear absorption does not change sig-
nificantly the model and nonlinear absorption is an effect
of higher order with respect to nonlinear phase modula-

i
Oz 2ko

OF . y OB= i—nF, = —i—nB,
Oz L' '

Oz L'

—&'n+ +n = IFI'+ IBI'
t

BI" io.

Oz 2d'

(4)

We can introduce adimensional quant, ities by scaling time
with the recombination time and space with the diffusion
length [keep in mind that n is the excitation density per
unit volume and that the electric fields intensities are
measured in the same units as n; see Eq. (2)]:

IFI'= IFI'ID, IBI' = IBI'lL,
n = nlD, (z, y, z) = (z, y, z)ID',
d' = dlD, I' = LlD', t = tr

where I. is the unscaled slice thickness and d is the un-

scaled slice-mirror distance. Equations (1)—(3) become

SLICE MIRROR

SOLID and o—:d/(kolD2) is an adimen-
sional parameter which measures the relative strength
of diffraction versus diffusion (o. is small for strong dif-
fusion). These equations admit a spatially uniform equi-
librium point [2]:

FIG. 1. Schematic diagram of the model. A thin slice of
Kerr material, of thickness L, is illuminated from the left.
The mirror, at a distance d, reflects this field back through
the slice, thus closing the feedback loop.

iFi = Io, iBi = RIO, n = Io(1+ R),

where Io is the intensity of the forward (or pump) field
and R is the reflectivity of the mirror. The uniform so-
lution is linearly stable with respect to a perturbation
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of wave vector K for forward field intensities that are
smaller than the value of the pump Ip which satisfies

so that the characteristic length of the pattern is now

1+ K —iQ = 2RIoy sin(0'Ii )e' (6) L'pIIttern —2Ir
I

3ko)
where t~ is the round-trip time from slice to mirror and
back, I( = ~K), and 0 is the oscillation frequency of the
perturbation. Equating the real and imaginary parts, we
find that the oscillation frequency of the perturbation 0
is either zero or of the order of the round-trip time. In
this work we consider only slow media so that dynamic in-
stabilities (0 g 0) have a threshold much higher than the
static instabilities (0 = 0) and can be ignored. Putting
0 = 0 in Eq. (6) we obtain the instability threshold for
the uniform solution with respect to such a nonoscillating
perturbation of wave vector K:

1+ Kz
~y(IO —— . , csin(6) & 0,2R sin 6

where 6 = crux . The inequality means that for focusing
media 8 g ((2mir, (2m+ 1)Ir), m = 0, 1, 2, . . .},while for
defocusing media 8 g (((2m —1)Ir, 2mIr), m = 1, 2, . . .}.
As 6 oc I&2 these conditions imply that the characteristic
size of the instability pattern is smaller in a defocusing
medium.

For fixed o, the value of 6 for which the threshold is
minimum dth is given by

For a defocusing medium 6th must be greater than vr

so that the length scale of the pattern does not change
significantly with o and is still approximately given by
Eq. (9). Therefore, in both cases the ratio of the char-
acteristic length to the diffusion length becomes smaller
and smaller as the diffusion length increases so that the
threshold intensity is bigger for smaller Ir (see Fig. 2).

Before starting a nonlinear analysis of the stationary
states it is worthwhile to explain more in detail what
we mean by the requirement that the slice should be
thin. It is a well-known fact that two counterpropagat-
ing beams in a slab of Kerr material may be an unstable
system [10,8], the plane-wave solution is unstable above
a certain threshold with respect to perturbation of ap-
propriate wave vector. For a self-focusing medium with
no standing-wave-grating contribution to the refractive
index change, the minimum threshold is given by Ir/4 in
the same units as Eq. (10). For a defocusing medium
the threshold is at least Ir/2. Thus in both cases the
feedback-mirror instabilities have the lower threshold.
Furthermore, the length scale of the pattern is, approxi-
mately,

tan(6, h) = 8,h + o. (8)

'/'„', , I
pattern-

s&0

We can see that for small diffusion (0 » 1) the mini-
mum instability threshold is at PIh Ir/2 for a focus-
ing medium, g & 0, or at 6,h 3Ir/2 for a defocusing
medium, y & 0. Remembering the definition of cr and
that space is scaled with the diffusion length we obtain
that the characteristic length of the pattern is

Lpattern—
4xL,

kp

where L, is the thickness of the slab. If L, && d, as in this
case, then the size of the pattern due to counterpropa-
gation instabilities is much smaller than that due to the
feedback effect. If transverse diffusion is significant, as in
the cases considered, the different space scales make the
feedback-mirror instability have a much lower threshold
intensity. We must remark, however, that for Gaussian
beams, rather than plane waves, it may be power rather

(10)

(0' » 1), i.e. , it is dictated only by diffraction (the diffu-
sion length being much smaller than this quantity). As
a consequence, the minimum threshold intensity IIh is
approximately independent of the slice parameters:

1
yIIt —

2R (0 )) 1).

10 I I

1)
I I I I

The intensity scaling is such that gIth is the light-induced
phase shift due to the forward field alone [cf. (4) and (5)].
Thus (10) shows that this need be only of order half a
radian if R 1. This is a reasonably modest phase shift,
achievable in many types of medium.

If diffusion is dominant with respect to diffraction (i.e. ,
0 « 1), then the size scale of the pattern becomes smaller
and smaller compared to the diffusion length. In the
case of a focusing medium, 6th tends to zero for small
o and tan(8, h) in Eq. (8) can be expanded in a Taylor
polynomial. We obtain that

=1.0

=10

p i i i i I I i i I I i i i I I

0 1 2 3
e / II

FIG. 2. Threshold curves for a focussing medium for three
diH'erent values of cr. R = 0.9, y ) O.6Ih - (3a)'~ («& 1)
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than intensity which is the limiting factor: in such a case
a small spatial scale for the pattern may make it easier
to observe on a finite beam width.

(—9'~ + Bg + 1)An(r, t)

= RgI[le' v~ "s' e'"+"
[

—1], I = ~I';
[ (l2)

III. NONLINEAR ANALYSIS

We first recast the problem as a single partial difI'eren-

tial equation, albeit of infinite order, as opposed to two
(rather trivial) ordinary differential equations, a partial
difI'erential equation, and a difI'raction integral. The ad-
vantage is that the multiple-scaling analysis as presented
by Dodd et al [1.1) is couched in terms of dispersion rela-
tions for the linearized problem, and the transformation
below adapts the present system to that approach. It
may conceivably also lead to new numerical approaches,
but that is not the primary objective.

In free space, the amplitude F of a field propagating
in the positive-z direction obeys the fourth of Eqs. (4).
In the present problem we formally integrate from slice
to mirror and back to relate the incoming backward field
to the outgoing forward field:

B(r, t) = v Re" ~F„,(r, t —t~),

where F „&is the forward field immediately after going
through the Kerr slice. Since propagation through the
slice only multiplies the amplitude by exp(iyn), where

n(r, t) is the excitation density, and the time delay tR
can also be expressed via Taylor series as an operator,
we can rewrite the preceding equation as

Here F;„is the input amplitude, P is its profile, which is

included here for generality--in particular as a potential
starting point for analysis of Gaussian beam inputs —and

no is the constant, spatially uniform part of n, which

can be commuted through the operators. We will here
consider plane waves only so that P = 1 and can be
dropped, and then the only operand is the exponential
involving AN, the varying part of n, which we express
as a perturbation series

gAn(r, t) = en~(r, t)+ s nq(r, t)+ c ns(r, t)+

Vi ——Vo+ eVg+ e Vg+ )

= Tp+ 2eVp Vt + e (2Vp Vz + Vi) +

Dg —cip + EBy + e Dz +

where the derivatives are with respect to new coordi-
nates (R;,T, ), which are treated as independent of each
other and especially of the basic "fast" coordinates (r,t)
to which the subscript 0 refers in (13). Thus a wave with
an amplitude regarded as constant on fast scales can be
modulated on the slower scales: indeed, we have to intro-
duce the possibility of such a modulation to avoid secular
terms.

The pump intensity I can be regarded as a function of
~ expandable in a power series also:

I = Ipp = Ip(1 + p'e + 1/2p"E + ), (14)

where we anticipate that a minimum threshold intensity
Io will be found below, and will coincide with I&h defined

in Sec. II.
Setting

esnv~ tRB~ D-= 1 V2

Note that this is still an exact equation for plane wave,
constant illumination. It represents the first objective of
this analysis.

To this we must now apply the multiple-scales analysis
formalism. The basis of the method is to separate fast
and slow variations of the dependent variable(s) by in-
troducing "slow" coordinates with variations of progres-
sively higher order in c, and doing a rigorous perturbation
expansion in which one of the main criteria is that the
higher-order n, are always and uniformly smaller than
the lower order terms. To ensure this, we at each order
in e have to make sure that there are no "secular" terms,
which by definition are terms which grow linearly in time
or space, and thus invalidate the perturbation series on
scales of order c

The slow scales are introduced by writing

y has been absorbed into the n; to simplify the ensuing
expressions. We will be looking at low-order expansions
of that exponential: e is, naturally, a small parameter
(e & 0) and will be the basis of the multiple-scaling per-
turbation expansion. The fact that An is of at least first
order in c follows from the fact that n is uniform below
threshold, and our aim is to analyze the system close to
threshold, i.e. , where An is small.

For plane-wave input, the plane-wave steady-state so-
lution np is easily found (see Sec. II), and plays no role
in the following. When no is subtracted off, we find that
An obeys the following infinite-order, nonlinear partial
differential equation [cf. Eq. (4)]:

we have, at lowest order the linearization of (12),

Lng —0, (15)

I.(V, 0, ) = D —iRyI(E —E')
= D+ e 'R '2RyI sin(o. V'z).

Each successive approximation n; makes its first appear-
ance in an equation of the form

Ln;=S;,

where S; are "source" terms involving nz with j ( i:
(15) shows that S&

—0. These source terms include non-
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linear terms, linear terms involving slow-variable deriva-
tives, and mixed terms. Fortunately the last only come
in at third and higher order in e.

For i = 1 (15) may be solved by Fourier transforming:
a nontrivial solution exists if

L(iK, —iO) = 0, (17)

where L(u, v) is the function formed by replacing the op-
erators on the left-hand side of (15) as indicated. Equa-
tion (17) is the dispersion relation for this problem and is
a key element in the multiple scales analysis, especially
following the Dodd et al. approach. Even though (12)
is a rather complicated partial diA'erential equation, the
dispersion equation is quite easily obtained in this case:
it is

L(iK, —iQ) = 1 —iA+ Ii —e' '"2RyIo sin(os ) = 0

or, for a static instability, i.e. , 0 = 0,

2RgIp sin(8) = 1+ I~ (18)

where ID is now the threshold intensity and K is the
threshold wave vector. These two last equations are ex-
actly those found in the linear stability analysis of the
plane-wave solution [Eqs. (6) and (4)]. Therefore we can
use the same notation introduced in Sec. II: we will indi-
cate with the symbol I,h the minimum instability thresh-
old, with Itt-, h the most unstable wave vector, and with
6~h the corresponding value of 6.

The key to the mult, iple scales analysis is that the
higher-order n, in (16) can have wave vectors and fre-
quencies which satisfy (18), i.e. , they belong to the null

space of L. If the source term S; contains any Fourier
components in that null space, they are resonant and
lead to linear temporal growth of n;, which by defini-
tion is secular growth, and would invalidate the pertur-
bation expansion (11) in times of order c '. To avoid
this, it is necessary that any secular source terms van-
ish identically: since these terms typically involve slow
derivatives and nonlinear combinations of the amplitudes
of the lowest-order approximation, this condition yields
nonlinear partial diA'erential equations for these ampli-
tudes. The complex Ginzburg-Landau equation is the
generic amplitude equation for spatially unstable dissi-
pative waves [5], which is the case under consideration
here.

At order e2 we obtain

ng(r) = dp e' ~ 'a((p),

K& ——K,h ( cos(p), sin(p) ),

where a(p) = [a(p+ x)]" is required so that n, be real
everywhere. In principle a(p) can depend on the slow
coordinates as well as p, but we ignore that complication
in this outline treatment.

We will need the Fourier transform of n~

(2o)

Here we have introduced I~2, as opposed to I~t, h, to keep
track of the singularity in (20): we allow K2 ~ Ik(h
later. We also need the Fourier transform of n, ; this can
be obtained from the Fourier transform of nq by making
use of the convolution theorem and some algebra:

cally relevant condition. Thus at the minimum threshold
the slow space dependence of the amplitude is arbitrary,
which makes sense, since it just indicates that where the
threshold is insensitive to K, any slow spatial modula-
tion of the amplitude of the wave is consistent with the
threshold int, ensity.

The nonlinear third term in (19) comes from the
exp(ion() at second order. In the one-dimensional case
considered by Dodd et al. , the nonlinear terms have spec-
tral components at 0 and at 2A't, h, but not at I~t-,h, so they
introduce no secularity: then if (19) is obeyed, secular
terms are eliminated at this order. Thus in one trans-
verse dimension we do not get anything much from (19),
and have to go to order c3 to obtain an amplitude equa-
tion.

With two transverse dimensions, however, we do have
the possibility of secular nonlinear terms in (19). At
the minimum threshold, where by definition I = It, h and
K = K,h, the coefficient of the slow spatial derivative
term vanishes while stable, or at least time-independent,
patterns will have no slow time derivative either. In that
case the nonlinear terms in (19) can only be balanced by
the p' term if secular terms are to be eliminated. We now
evaluate these nonlinear terms, and show that they lead
directly to hexagonally coordinated patterns.

Let &p be the azimuth variable in the transverse plane
and write

Lr(lg —[1 —2Rgo'Ip cos(8)]2V'p V'ye]

c((Ay—[1 + t Jr 2RyIo sin(8)]
1

+RIoX[(Eo»)(&o») —
2 (&o + &o)&i]

+2RyIp sin(8) p'ng. (19)

Here the slow derivative terms can be obtained by sub-
stituting (13) into (15) and expanding in a Taylor se-
ries. Note that at minimum threshold the coefficient of
the space-derivative term vanishes and it can therefore
be dropped, because minimum threshold is the physi-

If a(p) is nonsingular, we cannot obtain a match in (19)
between the nonlinear and linear terms in n~, since the
Fourier transform of n& is, by (20), proportional to a b
function. The only way out is for a(y) to be itself a
b function, of azimuth: then both linear and nonlinear
terms are products of 6 functions and can be matched.
This evidently corresponds to a hexagonally coordinated
pattern.

The next step in the multiple-scales analysis would be
to complete the second-order calculation and use its re-
sult to evaluate the source terms at third order in e. This,
however, involves very lengthy algebra and it is conve-
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nient to use a simpler, but less rigorous approach. Using
the result that we have just obtained we shall suppose
that the carrier density is the sum of three rolls; their
axes are at 2tr/3 from each other and their amplitudes
are real functions of time, of order c, a smallness param-
eter (diFerent from the one used in the multiple-scales
analysis) needed for bookkeeping that can, eventually,
be eliminated:

n = c [A(t ) cos(ct) + B(t ) cos(p) + C(t) cos(p)],

(2 1)
ct=Ki x, P=K'2x, y=Ks. x,

vf here the wave vectors K; have modulus I~ &h, corre-
sponding to the minimum threshold for the instability
of the uniform solution and K q + K2 + K3 ——0 . This
choice of carrier densi ty is reason able in the region near
threshold. This suggests that, we should also expand the

I

pump parameter p in powers of tc', around one, as done in
Eq. (14). However, we have not done this: we write the
intensity as

I = I,hp (22)

and we do not put any restrictions on the values of p and
suppose that the modulation of the carrier density is the
only small quantity. There is no real justification for this
perturbation-expansion approach, except that it works.
The main caveat is that one should bear in mind that
the results are "correct" only in the region near thresh-
old . The only exception is when the three amplitudes
A, B, and C are zero (uniform solution): in this case
the expansion is correct w h atever the value of the pump,
but the results are rather trivial, being those derived in
Sec. II. We can rewrite Eq. (12) using Eqs. (21) and (22)

(—T + 0t + 1)~[A(t) cos(n) + B(t) cos(p) + C(t) cos(y)]

[~etoV ige[At( ttR) cos(o)+B(t—t~) cos(P)+C(t —t~) cos(7)] )2 1] (23)

Our aim is to find the dynamical equations for the three
amplitudes We will not write down the intermediate
steps in the computations as they are all very lengthy:
the results of this section would have not been possi-
ble without the help of a computer algebra package (we
used MApLE) and even so much manual calculation was

needed. What follows is a schematic description of the
procedure that we h ave devised .

(i) Expand et&". Expand e'&" = exp(its[A cos(n)
+Bcos(p) + C cos(p)]) in a Taylor series around c = 0

up to third order in c. This expression contains terms
with wave vectors of moduli 0, Itth, +3I&th, 2I&th, . . .

+~« ~
(ii) Evaluate e+' + e'"". The propagator operator in

+2 Kthe space of functions e'~ becomes e ' + = e ' in
Fourier space. This must be applied to each term in
the expansion of e' &", i .e . , we must multiply the uniformte™(I~ = 0) by 1, the terms with wave vector Itth by
e ta'", the terms with wave vector ~3I4t~ by e tss", and
so on, i .e. , each term in the expansion is an eigenfunction
of the propagation operator .

(iii) Evaluate ~e+' e'x"~ . Take the modulus square
of the expression obtained at point (ii), again keeping
terms only up to third order in e. Another simplification
that reduces enormously the number of terms is that we

are interested only in resonant terms, i .e ., only in terms
that have wave vectors of modulus Kttt. writing Eq. (21)
for the amplitude of the carrier density we have implicitly
supposed that the nonresonant terms are negligible (see
later for a discussion of this hypothesis). The resulting
expression has this form:

1 + [eDi i + c Di2 + c Dis] cos(n)
+ [6D2i + E D22 + C Dgs] Cos(p)

+ [6Dsi + E Ds2 + E D33] cos( f))

where the D,
&

are functions of the amplitudes A, B, C
and of 6gh .

(iv) Equate the right hand sid-e and the left hand side-
of Eq (88) and .put t = I (there is no need for bookkeeping
now) The final r.esult is

A

c)t

Ot
= pA+ gAC —[(iB +(2(A p C )]B,

Bt
= pA + gAB —[(iC- + j2(A' + B' )]C;

p = 2RyIth sin(6th )(p —1),

tl = RIth py [1 —cos(t}th)],

(i ——-„'RI,h p}( [3 sin( t), h ) —sin(36, h)],

(2 ——
—,
' RI,hp}{ [2 sin(t)th) —sin(2t},h)].

As stated in Sec. II, for focusing media (y & 0) 0 & 6t„
tr/2, while for defocusing media ( g & 0) tr & 6th 3tr/2. It
follows that the four parameters p, , ), (i, and (2 are all
positive quantities independently of the sign of the non-
linearity. The left-hand side of these equations is evalu-
ated at time t, while the right-hand side at time t —t ~ . If
the recombination time of the carriers is very long com-
pared to the return-trip time t~, then we can neglect this
detail and evaluate both sides of these equations at the
same time. In fact, multiple-scales analysis shows that
the correct time constant for the amplitude equations is
p[l+2tR sin(8)]: this term reduces to p if the return-trip
time is much smaller than the recombin at ion time .
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A

t
B

= s A+ nB'C —KilAI'+ C~(IBI'+ ICI')]A

= pA+ ~A'C' —K~ IBI'+ Cz(IAI'+ ICI')]B, (24)

Finally, the hypothesis that A, B, and C are real quan-
tities is not important: its main purpose is to simplify
the algebra and can be easily dropped. We can write the
carrier density as

n = (Ae' ' "+ Be' '"+ Ce' '"+ c.c.)/2

and obtain three Ginzburg-Landau type equations for the
complex amplitudes

become stable cannot be reached in our model whatever
the value of the pump; (iii) hexagons, given by

lA= B=C=+A, Ac R, p= 1+TA+TA''
(25)

sin (Bing/2)

sin(8qr, )

z 11sin(tltq) + 4 sin(2tl&r, ) + sin(38~r, )
8 sin(tier, )

, =s A+ nA'B* —K~ICI'+(~(IAI'+ IBI')]C.

Similar equations have been obtained in a number of
fields of physics, from hydrodynamics [4, 12] to flame
physics [13]. This should not be surprising as they de-
scribe the most simple form of interaction of three waves
whose wave vectors satisfy the condition: K ~+K2+K3 ——

0. The first term is the linear decay or growth of the
wave; the second is due to the sum of the other two waves
(K~ ———K2 —Ks). It is a characteristic feature of two-
dimensional systems as all three waves need to be present
in order for this term to be active. Finally, the last term
is the only form of third-order nonlinearity which is res-
onant and represents a saturation of the triad coupling.

It is possible to analyze the stationary states of this
model exactly in the same way as in Ref. [4] (see Fig. 3),
but the form of the coeScients poses some constraints on
the solution types (there are no mixed states of hexagons
and rolls) and their stability. There are three kinds of
stationary solutions: (i) The uniform solution (A = B =
C = 0) is stable for p ( 1, unstable otherwise (line U in
Fig. 3); (ii) rolls (curve R in Fig. 3), given by

A=Ae'+, B=C=O,

1 8(p —1) sin(6t, h)
3»n(6~~) —»n(3~~~)

'

and any cyclic permutations exist for p & 1 and are al-
ways unstable. The point ps in Ref. [4] where the rolls

0.6
R

0.2

H+, ,

0
0.9

p 1 2

FIG. 3. Bifurcation diagram of Eqs. (24). The continuous
lines indicate stable solutions, the dashed lines unstable ones.
R=0.9, o =10, and y=1.0.

The + sign in the equation for p corresponds to the +
sign in the amplitudes. As Tq and Tq are, respectively,
positive and negative independently of the sign of the
nonlinearity, the bifurcation diagram (Fig. 3) is the same
for both focusing and defocusing media. This solution
exists only if

4'
4T2+ T2p)

The plus sign in Eq. (25) gives the two curves H&+ and
H&+ in Fig. 3. The upper branch is always stable, the
lower branch is unstable, The minus sign, instead, gives
the curve H; this solution is phase unstable. The point
p4 in Ref. [4], where even the solutions on the H&+ curve
become unstable, cannot be reached in our model what-
ever the value of the pump.

We have checked numerically the amplitude of the
hexagons and rolls for various values of o. in the re-
gion near threshold (see Sec. IV for a detailed descrip-
tion of the numerical method used). For both hexagons
and rolls we have started our simulations well above
threshold and we have decreased the amplitude step by
step until we were below threshold, making sure that
each step was long enough so that equilibrium could be
reached. We have used a two-dimensional version of the
program for the hexagons (256 x 256 points grid) and a
one-dimensional version for the rolls (256 points). Fig-
ure 4 is a typical example of the output of one such
run. The pump intensity is decreased and the carrier
density relaxes towards an equilibrium value. The relax-
ation time increases as we reach the instability threshold
of the hexagons. The inset shows a plot of the relaxation
time versus the pump intensity and provides an estimate
of the threshold value. The agreement with the theoret-
ical estimates is quite good for high values of o (weak
diffusion), but there is definitely no agreement between
theory and simulations for o = 0.1 (strong diffusion) (see
Fig. 5). Why is this? The main approximation in the
procedure outlined above is that the carrier density has
Fourier components only with the most unstable wave
vector I~tg. This component, however, acts as a source
term for higher-order harmonics. For example, the A
component of Eq. (21) generates a second-harmonic term
source term given by

(yA)' sin'(26, g).

This is very small for weak diffusion: in this case Pter
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FIG. 4. Plot of the modulation amplitude A as function
of time. The intensity of the pump field p is decreased step
by step. r is an estimate of the relaxation time. The inset
shows r vs p. o = 0.1, y = 1.0, t R = 0.05.

7r/2. For strong diffusion, however, 6 decreases away
from n/2, and this term is not negligible. This suggests
that we can obt, ain a better fit between theory and nu-

merical simulations by using two Fourier components in

the expression for the carrier density. We have checked
t, his hypothesis in the case of the rolls. The procedure
that we have followed is similar to the recipe for obtain-
ing the amplitudes equations, Eqs. (24). The main differ-

ences are (a) we are dealing with a one-dimensional case;
(b) the carrier density has two Fourier components:

n: e[At cos(ICth 8) + A2 cos(2' th z));

0.6

FI&G. 6. Amplitude of the rolls vs the pump parameter p
considering one (1) or two (2) harmonics in the carrier density.

= 0.9 and y = 1.0. The stars are the amplitudes obtained
numerically.

(c) we are interested only in the equilibrium state so that
the amplitudes Aq and A2 are time independent quanti-
ties.

Taking into account two Fourier components requires
a great deal of algebra. Again we had to use MAPLE and
the final plot has been obtained by a FoRTRAN program
generated automatically by it. The final expression for
the equilibrium value of the carrier density is very long
and there is not much point, in writing it down. The
agreement, between theory and numerical simulations is
good even for o = 0.1 (Fig. 6).

Concluding, we have seen that linear stability analysis
provides only limited information on t, he phase space of
the system: the instability threshold for the uniform so-
lution. Nonlinear analysis, however, shows that the sys-
tem has other equilibrium solutions, hexagons and rolls;
moreover, their amplitudes are governed (to first order)
by Ginzburg-Landau-type equations, in a similar fashion
to many problems in other branches of physics.

p

0.2
IC

~)II+

)IF o =0. 1

0.9
p

1 2

0 4

0.2 o= 'I 0.0
J ~ I I

1.1 1.2

FIG. 5. Amplitude of the A mode for the hexagonal H+

stationary solution of Eqs. (24) vs the pump parameter p.
8 = 0.9 and y = 1.0. The stars are the amplitudes obtained
nu merically.

IV. N U M ERICAL ANALYSIS

Linear and nonlinear analysis give a rough map t,o the
parameter space of the Kerr-slice model. However, nu-

merical analysis is fundamental to get a more complete
understanding of it, and to check that t,he approximations
done in the analytical study are correct. Therefore we

have developed a numerical code to integrate the Kerr-
slice equation. Since this model system is relatively sim-

ple, the code can run at, a reasonable speed on computer
work stations of the class of a Sun Sparcstation l.

Both the elect, r.ic field arid the carrier de»sity are rep-
resented by square arrays (typical dimensions in our sim-
ulations have been 128 x 128 or 256 x 256 points). The
propagation of the electric field from the slice to the mir-
ror and back (free-space propagation) is handled by a
fast- Fourier- transform routine:

(1) Fourier transform e'""t'l
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(2) Multiply the result by e ' '~, where K;I is the
wave vector in Fourier space associated with the grid
point (i, j).

(3) Anti-Fourier transform, take the modulus square,
and multiply by the reHectivity of the mirror.

At the end of this step we have the backward field at
time t + k„.This quantity is stored for later use as the
source term in the equation for the carrier density n.

The equation for the carrier density, instead, is inte-
grated with an implicit-explicit method, the Hopscotch
algorithm [14]. The source term, the sum of the intensity
of the forward and backward field at time t, is already
known from the previous procedure, so the carrier den-
sity equation is just a diffusion equation with a driving
term and can be integrated very fast. An analysis of the
work load of the program shows that nearly 80% of the
time is spent in the Fourier transform routine.

Hexagons and rolls have been chosen as initial condi-
tions for the simulations described in Sec. III, in order
to shorten the transient. In all the other simulations the
initial condition was a random perturbation of the uni-
form solution. In the region near threshold the random
noise grows until bright spots appear and arrange them-
selves on an hexagonal grid (Fig. 7). This behavior is
t pical both of a focusing and a defocusing medium. Inyp
the latter case we can see that the spots at first arrange
themselves on a square lattice, a symmetry induced by
the grid, but after a short time the hexagonal structure
becomes dominant. Figure 8 shows what happens to the
field intensity in the stable hexagonal phase during the
propagation from the slice to the mirror and back. In
the case of the focusing medium the situation is rather
trivial: the bright spots are focusing lenses that concen-
trate the field; diffraction then broadens the spots. In
the defocusing case the bright spots are defocusing lenses
and they diffuse the field, which has the appearance of
a honeycomb. However, during propagation there is a
crossover and the bright spots begin to appear and grow
to dominance.

In the analysis outlined in the two preceding para-
graphs we have made the assumption the the most un-
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FIG. 8. Intensity of the field forming a stable hexagonal
4pattern as it propagates to the mirror and back in a xocusing

(top) and a defocusing (bottom) medium. Gray scale, from
white (high intensity) to black (low intensity), is used. Time
increases from left to right; the first image is the field intensity
just after the slice, the last one just before going through it
again. R = 0.9 and tR ——0.05 in both cases. o = 1.0 and

y = +1.0 for the focusing medium, o = 0.5 and g = —1.0 for
the defocusing case.

stable wave vector is the dominant feature of the model
dynamics, at least in the threshold region. To test this
hypothesis we have averaged over the angle the power
spectrum of an hexagonal structure similar to that shown
in the top part of Fig. 7. The final result is the power
spectrum as a function of the modulus of the wave vector
P(It). In Fig. 9 we have plotted the logarithm of P(I&)
over the threshold curves; the most unstable wave vector
is also the most intense, being roughly ten times greater
than the second most important wave vector.

What happens as we increase the pump intensity'? The
nonlinear analysis says that the hexagonal pattern is al-
ways stable, but this result is not correct. The hypothesis
that the carrier density has just one Fourier component
is acceptable near threshold: it is false at higher pump
values. Generally speaking, for increasing values of the
pump, the hexagonal structure becomes unstable and the
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Backward field intensity in a focusing (top) and
a defocusing (bottom) medium. Gray scale, from white (high
intensity) to black (low intensity), is used. Time increases
from left to right. R = 0.9 and tR ——0.05 in both cases.
o = 1.0 and y = +1.0 for the focusing medium, o = 0.5 and

g = —1.0 for the defocusing case.

FIG. 9. Power spectrum of a hexagonal structure similar
to that shown in the top part of Fig. 7 as a function of the
modulus of the wave vector superimposed on the threshold
curves. R = 0.9, tR ——0.05, ~ = 10.0, y = +1. Pump value is
roughly 1.5 times the threshold.
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FIG. 10. Plot of the maximum (continuous line), mini-

mum (dashed line), and modulation amplitude (dotted line)
of the carrier density and total field intensity for various pump
values. The pump is increased at regular intervals; the start-
ing value is just above threshold, the final value is roughly
three times the threshold. 8 = 0.9, tR = 0.05, cr = 10.0,

y = 1.0.

bright spots wobble around their position. If the pump is

increased further the motion becomes more pronounced
until the system reaches a state of spatiotemporal chaos.
An example of such behavior is shown in Fig. 10; in this
simulation we have increased the pump intensity every

forty units of time from a value just above threshold to
a value roughly three times threshold. In Fig. 1Q we plot
the extrema and the modulational amplitude of the car-
rier density on the left and of the total field intensity on

FIG. 12. Images of the carrier density in the case of tur-
bulent dynamics and weak diffusion. In the top row p = 2.3
and the time interval between two successive images is 2.5; in
the bottom row p = 3.1 and the time interval is 1.0. Same
coding as in Fig. 7. 8 = 0.9, tR ——0.05, o = 10.0, y = 10.0.

the right. We can see that while for low pump power
these two quantities reach an equilibrium, for high power
they fluctuate without ever settling down. The details
of this figure depend on the relative strength of diffusion
versus diffraction.

Let us first analyze the case of small diffusion (0 &) 1).
Near threshold the spots are very smooth; as the intensity
is increased, their edges become more steep. For higher
pump values the spots acquire an inner structure, until
they finally break down into small spots (see Fig. 11).
These begin to wander around. Their motion gets more
and more chaotic as the pump is increased to higher and

higher values. In Fig. 12 we show four images of the car-
rier density at different times (from left to right) and for
two different values of the pump (from top to bottom):
in the top part of the picture the pump intensity is just
above the threshold value for the hexagons' breakdown.
The pattern has still an overall hexagonal symmetry even

though the spots change position in time. In the bottom
part of the picture the intensity is well above the instabil-
ity threshold for the hexagons: the spots wander around
faster than in the previous case and there is no trace of
any symmetry.

FIG. 11. Spot structure for various pump intensities in a
case with weak diffusion. Contour plots of the carrier density

are used. The four contour plots are a detail of the same

region of the slice for p (1, 1.6, 1.8, 2.1}, respectively, from

left to right, top to bottom. 8 = 0.9, tR = 0.05, cr = 10.0,

y = +1.0.

FIG. 13. Images of the carrier density in the case of tur-

bulent dynamics and strong diffusion. In the top row p 2,
in the bottom row p 3; the time interval between two suc-

cessive images is '2. 5 in both cases. Same coding as in Fig. 7.
8 = 0.9, tR = 0.05, cr = 0.1, y = 1.0.
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smaller spots that wander around more and more rapidly
as the intensity is increased. If the diffusion length is
large, the spots just shrink a little, but do not fragment.
In a window of pump values the dynamics seems to be
dominated by the interaction of two kinds of spots, bright
and gray. As the intensity is increased further, the gray
spots disappear and we are left with only the bright ones.

V. CONCLUSIONS
(

& I '/'/. . . '. -' ': '. ."««

'«f~r ~~N'~l'lw""
($(u ~ uo/I /

' & & lu& ~ ". 'ui&'l '~ p iinu. , "ot it i, ~
i t 11 la" ii 9'«%~~ ~ &xrtI':. . '.;in I I ~

I i \ r'\'6" . . ~XWkN~ ~~pi' ':'.;'i jl I I
iltllhg "w " ' s~ ww '

~ /

rg r

0—
0 1 0

FIG. &4. Contour plots of two bright spots (top) and two

gray spots (bottom). These spots were selected from the top
right image shown in Fig. 13. The length units are scaled so
that the gray spots have dimension 1, 8 = 0.9, tz = 0.05,
o = 0.1.

If diffusion is large (o (( 1), instead, the bright spots
do not change shape significantly with increasing input
power. Diffusion washes out the details that were visi-
ble in the o = 1Q case. As the intensity is increased the
spots become smaller and then begin to move. For val-
ues of the intensity roughly double the threshold (top of
Fig. 13) there are two types of spots: bright and gray.
All the spots on the slice seem to fall into one of these
two categories; Fig. 14 shows the contour plots of two
bright and two gray spots: both their shape and their
height are the same. Moreover, the bright spots seem
to interact one with the other by exchanging gray spots
in a particlelike manner. All this suggests that we are
looking at a coherent structure that is preserved in this
turbulent motion. However we have not managed to put
this "suggestion" in a more formal and rigorous frame-
work. At higher values of the pump this phenomenon
disappears: there is no trace left of the gray spots and
the bright spots just move around quite independently
one from the other (bottom part of Fig. 13).

We have given in this section an overview of the dy-
namical behavior of the Kerr slice with single feedback
mirror: near the instability threshold for the plane-wave
solution the system has a fixed point with a hexagonal
symmetry, as predicted by the theory. As the intensity
is increased to higher and higher values, the dynamics
becomes turbulent; its main features in this phase are
determined by the diffusion length. If it is small, the
spots that were on the hexagonal structure fragment into

In this work we have demonstrated that almost un-
limited complexity can be generated from perhaps the
simplest system which combines optical nonlinearity with
extension in all three spatial dimensions. In particular,
the fact that rolls are never stable in this model shows
that suppression of the second transverse dimension for
computational economy can result in predictions which
are qualitatively in error over large domains of parameter
space.

Given the richness of the complexity displayed in this
model, the close similarity of the bifurcation structure to
those found, for example, in fiuid convection gives wel-
come guidance for analysis and interpretation. How far
the analogy can be extended into the highly nonlinear
and turbulent domains remains an open and interesting
question. This is one of a number of interesting features
and extensions of our model which remain to be explored.

Within the present model the effects of finite (Gaus-
sian) beams need to be examined, both numerically and
analytically. The effects of a curved feedback mirror
(or equivalent lens-mirror combination) will enable closer
comparison with past [7] and potential experiments. For
defocusing media, the predicted regime of dominant 2t~
oscillation [2] remains completely unexplored. Detailed
simulations of experiments will involve a more compre-
hensive set of properties for the nonlinear medium, in-
cluding linear and nonlinear absorption and, in the case
of such media as liquid crystals [9] and photorefractive
materials [15], polarization and other vector properties.

Finally, it should be stressed that, even if the model
proposed is unrealistically simple, it clearly demonstrates
that space-time complexity in nonlinear optics does not
require complex material response. Basic and universal
phenomena such as the effect of propagation in convert-
ing phase modulation to amplitude modulation, in con-
junction with some nonlinearity, are already sufBcient to
produce a huge variety of interesting phenomena.
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