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Generalized Bohr-Sommerfeld rule for quartic oscillators
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The generalized Bohr-Sommerfeld quantization condition up to the ninth-order approximation is

given explicitly, in terms of complete elliptic integrals, for two kinds of quartic oscillators
V(z )=v~z +v4z: (i) for the quartic double barrier, where v~ & 0 and v4 (0, and the energy is below the
potential maximum; and (ii) for the quartic double well, where v2 &0 and v4 & 0. Resonance energies for
some quartic double barriers and energy levels for some quartic double wells were evaluated by solving
the quantization condition numerically. In some cases the results are very good.

PACS number(s): 03.65.Sq, 03.65.6e

I. INTRODUCTION

R (z) = [4' —V(z0],2p

fi

V(z)=u2z +viz

(1.2)

(1.3)

(vz and u~ constants) has a considerable interest in many
branches of physics [1] and a great variety of methods
have been used to investigate the eigenvalues and other
properties. The quantum quartic oscillator has in fact
been the major proving ground for tests of approximation
methods in quantum mechanics. Quantum oscillators
with uz &0 and v~ &0 (quartic wells) and with uz (0 and
u4&0 (quartic double wells) have been the most investi-
gated [2]. By far the least studied quartic oscillators are
the double barriers: v2 &0 and v4 &0 with energy below
the maximum potential, 8 (V,„=—uz/(4u4) [3—5].

An old and well-known procedure for finding energy
levels of quartic wells, energy resonances of quartic dou-
ble barriers, and unsplit energy levels of quartic double
wells, is the Bohr-Sommerfeld (BS) rule [4,6]. It has been
known, since the pioneer work of Dunham [7], that this
quantization condition can be interpreted as the particu-
lar case of a more general quantization condition in
which only the first-order term is kept. This more gen-
eral condition can be obtained from the JWKB method of
higher order, but here I will use the quantization condi-
tion obtained from the closely related phase-integral
method of Froman and Froman [8], that, for several
reasons [9,10], is preferable to the JWKB inethod. In the
terminology of Lakshmanan, Karlsson, and Froman [11],
this quantization condition is called the generalized
Bohr-Sommerfeld (GBS) rule. An advantage of the GBS
rule with respect to other methods (e.g., perturbation or
variational methods) is that its application is computa-
tionally straightforward and not time consuming if

The one-dimensional Schrodinger equation for a quar-
tic oscillator potential

d2
+R (z)/=0

dz

with

higher-order terms are known. However, it is also true
that the GBS rule cannot, in general, give the energy
values with arbitrary accuracy because energies obtained
by means of successive higher-order approximations only
constitute an asymptotic expansion in the expansion pa-
rameter h. Perhaps the inajor disadvantage of the GBS
procedure is that higher-order terms involve the evalua-
tion of very difticult integrals. In 1981 Lakshmanan,
Karlsson, and Froman [11] and, independently,
Kesarwani and Varshni [12] were able to evaluate the in-
tegrals of the first few terms of the GBS rule for the sin-

gle quartic well and so obtain very accurate eigenenergies
(generally far better than those found by the BS rule).
However, to the best of my knowledge, similar work has
never been reported for the important cases of the quartic
double barrier and quartic double well. The principal
aim of this paper is to remedy this situation. I will give
explicit analytical expressions of the first five GBS terms
for the double barrier and double-well quartic potentials.
These expressions are obtained by applying the transfor-
mation properties of the elliptic functions with respect to
the elliptic modulus to the relationship found by Laksh-
manan, Karlsson, and Froman [11]in the quartic well.

The structure of the paper is as follows. Section II
gives a short presentation of the phase-integral method
and a summary of expressions and results given in Refs.
[11]and [12] for the quartic well. In Sec. III it is shown
how to exploit these expressions to evaluate the first five
terms of the GBS quantization condition for quartic dou-
ble barriers. Results obtained using this rule are then
compared with those reported by Drummond [3]. In Sec.
IV, the first five terms of the GBS rule for the quartic
double well are given, and the general expressions ob-
tained are applied to two particular cases and the results
compared with those reported by Hodgson and Varshni
[13]. Finally, some concluding remarks are offered in
Sec. V.

II. GBS RULE
FOR THE QUARTIC WELL (u2 & 0, vi & 0)

This section is mainly a summary of expressions and
results given in Ref. [11]. Interested readers will find
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more details there. I will follow the notation of this refer-
ence as closely as possible. In the phase-integral method
of Froman and Froman [8] the exact solution of Eq. (1.1)
is written as

g(z)=a, (z)f, (z)+a&(z)f, (z), (2.1)

where the phase-integral functions f, (z) and fz(z) are

f, (z) =q ' exp +i f q(z)dz
r

f2(z) =q '~ exp i —f q(z)dz

(2.2a)

(2.2b)

The function q (z) is determined by imposing that

P(z)=q ' exp +i f q(z)dz (2.3)

satisfies Eq. (1.1), i.e., putting (2.3} into (1.1}, q(z) must
satisfy

2

q
—3n d

2 q
' +R(z)/q —1=0 . (2.4)

This equation is strictly equivalent to the original
Schrodinger equation, Eq. (1.1). Let Q (z) be an
unspecified approximate solution of (2.4). Then the quan-
tity

2

&
—

Q
—3/2(z) d

Q
—i/2(z)+ R(z) —

Q (z)
z2 Q2

(2.5}

will be small compared with unity. With the exact solu-
tion q(z) written as

q(z}=Q(z)g(z) (2.6)

Froman and Froman proved (see, for example, Ref. [14]}
that g(z) can be expressed as an asymptotic series:

g(z)= g Y„, (2.7)
i=0

There exists a recursion relation which allows one to find
any term Y2„[14]. (Expressions up to Ys are given in

[15] and up to Y20 in [16].) The N+1-term (or 2N+1-
order) approximate solution of (2.4) is

N

q(z) =Q(z) g Y2; .
i=0

(2.11)

Hereafter, a particular choice (in fact, the simplest and
most usual choice} of the as yet unspecified function Q(z)
that generates the phase-integral approximation is used,
namely,

Q (z)=R (z) . (2.12)

F,z(z, + ~)
b, =arg

22 zi
(2.14)

F22 being the fourth element of the F matrix defined in

[18],and I' a closed loop in the complex z plane enclosing
both calssical turning points but no other zeros or singu-
larities of Q (z)=R(z) [see Fig. 1(a)]. Neglecting the
term 5, we get the GBS rule of N+1 terms (order
2N+ 1):

At this point, some comments about the notation may
be appropriate. In this paper the most recent notation of
Froman and Froman [10] is used, Q(z) and R (z) denot-
ing the functions represented by Q,d(z) and Q(z), re-
spectively, in their previous papers [9,11,14,15,17].

In Froman and Froman's phase-integral method the
quantization condition of order 2N+1 for a single well is
given by [17]

N

—,
' f Q(z) g Y2, dz+h=(n+ —,')m, n =0, 1,2, . . . ,r i=0

(2.13)

where

Yo =Zo

Y2=Z2

d 6'p

Y4 =Z4 ——
8 dg'

T

Y6 =Z6+ 1 d dep d Ep

32 dg dg

etc., with

Zo =1,
Z2 26O

Z = gE
2

4 8 O

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.9a)

(2.9b)

(2.9c)

N N

T, =—,
' f Q(z) g Yz;dz=(n+ —,')n,

i =0 i=0

n =0, 1,2, . . . . (2.15)

Notice that for N=0 we retrieve the usual well-known
BS rule.

The mathematical structure of (2.8) has the general
form Yz„=Z2„+d Uz„ /d g, and therefore (2.15) is
equivalent to

N

T, = —,
' f g Z2;dg=(n+ —,')m, n=0, 1,2, . . . .

i=0 i =0

(2.16)

1Z = 263

32

etc., and

2
d E'p

dg
(2.9d}

As is shown in detail in [11],defining

(2.17)

g= f Q(z)dz . (2.10)
and after some partial integrations, one can write the
terins that appear in (2.16) equivalently as



GENERALIZED BOHR-SOMMERFELD RULE FOR QUARTIC. . . 5369

(a) Complex z plane a =2pb/R

b =2pu2/fi

C =2pU4/f1

(2.24a)

(2.24b)

(2.24c)

A As is well known [19],the general solution of the "classi-
cal equation of motion" for a11 three quartic oscillators,
i.e., the general solution of Eq. (2.20) with R(z)=Q (z)
given by (2.23) can be expressed in terms of the cn Jacobi-
an elliptic function:

(b) Complex u plane z = A cn(u, k ):—A cnu (2.25)

b' ~ c
I

2K

d'
a"

ef
I

4K

with

and

u =yr+5 (2.26)

FIG. 1. (a) The integration path I in the complex z plane,
where A and B are the classical turning points. (b) The integra-
tion path I"' in the complex u plane. The points A

' and B' cor-
respond to the classical turning points A and B and the points
a', b', c', d', e', and a" are points of F' corresponding to points
a, b, c, d, e, and a, respectively, on the path I in the complex z

plane [z and u are connected by Eq. (2.25) for the quartic well,

by Eq. (3.3) for the quartic double barrier, and by Eq. (4.3) for
the quartic double well].

y =(b+2cA z)'n (2.27)

(2.28)

The complementary elliptic modulus, k', is defined by

Here, A is the constant amplitude and 5 is a constant
phase. The elliptic modulus k is given by

CA 2

b+2CA

k' =1—k (2.29)

To=-,' f Q'dr

1 d Q
48 3rQ

f 35 dQ
2 768 Jr Q9

d 2Q

dH
12 dQ
Qs d

(2.18a)

(2.18b)

(2.18c)

The energy 6 and amplitude A are related by

O'= V( A) =U2 A + v4 A (2.30)

z dQ= = (A cnu)= —Aysnu dnu,
dr dr

(2.31a)

By using well-known formulas [20,21], it is not difficult to
write Q and its derivatives that appear in Eqs. (2.18) in

terms of Jacobian elliptic functions

etc.
From Eq. (2.17),

and so

dz 1 d(Q) 1 dR

dr 2 dz 2 dz

(2.19)

(2.20)

d = —Ay (dn u —k2snzu)cnu,
d'r

etc. In this way the terms T„Eqs. (2.18), become

KTo= sn g dn g dg
8 r'

1+4k —6k sn g
T] 2 2

dQ
12K r' sn g dn2g

(2.31b)

(2.32a)

(2.32b)

This expression will be known as "the classical equation
of motion, "as is readily understood if we define

etc. [11],with

K=4y A (2.33)

(2.21)

so that Eq. (2.20) adopts the usual form

d z dV(z)
p dt2 dz

(2.22)

R(z)=Q (z)=a bz cz——

with

(2.23)

For all three quartic oscillators (single well, double well,
and double barrier) one has

Here, I" is the integration path in the complex u plane
that corresponds, through Eq. (2.25), to the I integration
path in the complex z plane [see Figs. 1(a) and 1(b)]. The
path I" runs from uo (the image of the arbitrary starting
point, a, of the path I ) to uo+4E, where E:—K(k ), be-
cause 4K(k ) is the period in u of the classical solution
(2.25). The function K is the complete elliptic integral of
the first kind.

In their article Lakshmanan, Karlsson, and Froman
showed that the integrals T; can be (not trivially) decom-
posed in such a way that their values depend linearly on
three quantities only:
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(2 34) and

(2.35) E:E—(k ). (2.41)

dQI2=
f'I d 2

(2.36)

Bo =10=4k, (2.37)

(2.38)

For the quartic well (U2 ~ 0, v4 &0), the elliptic modulus

of the classical solution satisfies 0~ k ~
—,', and it is then

not difficult [21] to evaluate the integrals (2.34)—(2.36):

The function E is the complete elliptic integral of the
second kind.

After some lengthy algebra, Lakshmanan, Karlsson,
and Froman found explicit expressions for the first four
terms of the GBS rule. The fifth term was obtained by
Kesarwani and Varshni in Ref. [12]. For the sake of
completeness, since these expressions will be used in Secs.
III and IV and also because Refs. [11] and [12] use

different notations, I will now write out all five terms:

(2.39) T;=P;(k ) +(—1)'P, (k' ) 2
(2.42)

where

(2.40)
where k and P are given by Eqs. (2.40) and (2.41) and
where

~k'
Po(x) =

6
k2

P, (x)= (1+4x ),
3K

k
(56—153x+285x —9320x +32400x —37632x +14336x ),

45]c'k'4

2k2
P3 (x ) = ( 3968—12 952x + 19 393x +4342x —222 227x + 17 667 524x —141 913 296x

315~'k'

Pz(x)=—

+459 879 744x —766 823 424x +699 572 224x —333 185 024x ' +65 011 712x "),
k

P4(x) =— ( 390 144—1 652 352x +2 933 792x —2 566 163x —2 812 943x —3 313449x
315m k'

(2.43a)

(2.43b)

(2.43c)

(2.43d)

+315 349 451x —42426 225 088x +563 786 106016x —3 172 896 651 264x

+9 945 571 750656x ' —19 344051 593 216x "+24405 366407 168x i2 20085 735 424000x '

+10440335687680x' —3119354216448x' +409095634944x' ) . (2.43e)

By using Eqs. (2.42) and (2.43), one can write the GBS
quantization condition, Eq. (2.15), in an explicit analyti-
cal form up to the ninth-order (five-term) approximation.
For a given quartic well (U2 and U4 fixed), the left-hand
side of this equation is only a function of the amplitude A
via the elliptic modulus k [see Eq. (2.28)]. I will denote
by A„ the amplitude that satisfies this equation when the
quantum number is n. The value of A„ is determined by
solving the equation numerically. The energy for the
state with quantum number n is obtained from Eq. (2.30):
A'„= V(A„). As we pointed out in Refs. [11] and [12],
the evaluation of 8„by solving the quantization condi-
tion Eq. (2.15) numerically is computationally straight-
forward and not time consuming. The interested reader
can find a careful analysis of the results obtained using
the GBS rule for the quartic well in these references.

III. GBS RULE
FOR THE QUARTIC DOUBLE BARRIER

(v2 &0, v& &0, 4( V,„)

For symmetric double barriers the phase-integral
quantization condition of N+1 terms (order 2N+1) is
the same [see Eq. (32) of [22] ] as the phase-integral
quantization condition of N+1 terms in a single well,

Eq. (2.13), but now with

b, =——arg[F, 2(
—~,0)]—arg[F22( —~,0)], (3.1)

F,2 and F22 being elements of the F matrix defined in

[18]. The integration contour I is now a closed loop in

the complex z plane enclosing the two inner classical
turning points but no other zeros or singularities of Q (z)
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[see Fig. 1(a)]. The quantity b, is usually negligible for en-
ergies that are not close to the potential maximum V,„.
Neglecting this term, we have the GBS rule for sym-
metric double barriers

necessary to evaluate the same three integrals as in Sec. II
for the quartic well:

S,=I,= f du, (3.5)

N N

T, =—,
' . f g Zz,.dz=(n+ —,')m, n =0, 1,2, . . . ,

i =0 i=o

(3 2)

dQ dQ

r' sn (u, k ) r' o' sd (u /o', o )

I~= dQ dQ

t" dn (u, k ) r'nd (u/o', o )

(3.6)

(3.7)

where use has been made of the equality between Eqs.
(2.15} and (2.16). Notice that the GBS rule is formally
the same for the single well and for the double barrier {we
will see in the next section that it is also the same for the
double well).

Using the same definitions as in Sec. II, it is clear that
Eqs. (2.18)-(2.24) are also valid for the quartic double
barrier. The general solution for the classical equation of
motion, Eq. (2.20), is

z=A cn(u, k )=2 cd(ulo', o ), (3.3)

where u, y, and k are given by Eqs. (2.26}—(2.28), re-
spectively. A11 symbols have the same meaning as in Sec.
II. Now k is negative and, therefore, using the transfor-
mation properties of the Jacobian elliptic functions with
respect to the negative elliptic modulus [20], the classical
solution can be conveniently expressed in terms of the
Jacobian elliptic function cd, whose elliptic modulus is
given by

k

1 —k2
(3.4)

The complementary elliptic modulus, cr', is defined by
o' =1—o . This solution form has the advantage that
the elliptic modulus o of the Jacobian elliptic function cd
is nonnegative and lies between zero and one: 0 & o & 1.

Notice that the classical solution z=A cn(u, k ) for
the quartic double barrier has the same form as the solu-
tion used in Sec. II (and in Ref. [11])for the quartic well.
The only difference is the range of values of the elliptic
modulus: k &0 for the quartic double barrier and
0(k ~

—,
' for the quartic well. But the range of the

modulus is not involved in the manipulations and decom-
positions made in Ref. [11] (summarized in Sec. II), so
that the formulas (2.31)—(2.33) are also valid for the quar-
tic double barrier. Therefore, to evaluate the terms T; of
the GBS rule for the quartic double barrier, it is only

The rightmost expression in Eqs. (3.6) and (3.7) has been
obtained by using the transformation properties of the
Jacobian elliptic functions with respect to the negative
modulus [20]. Here I" is the integration path depicted in

Fig. 1(b), i.e., the path corresponding [through Eq. (3.3)]
to the integration path I in the complex u plane. This
runs from uo to uo+4E, where k=o'E(o ), since the
period of the classical solution (3.3) in u is 4rJ'E(a ).

Evaluation [21] of the integrals of Eqs. (3.5)—(3.7)
shows that ko, Io, Sz, and Iz are also given by Eqs.
(2.37)—(2.39), but now (k &0)

k:—cr'K(a ),
g E'(tr')

0

(3.8)

(3.9)

Notice that So, Io, kz, and Iz have, in terms of E and P,
the same values as for the quartic well. Therefore terms

T; of the GBS quantization condition for quartic double
barriers have the same form as for quartic wells, Eqs.
(2.42) and (2.43},but now with E and P given by (3.8) and
(3.9).

The first five resonance energies of five quartic double
barriers calculated by using the GBS rule together with
the values obtained by Drummond [3] by means of a per-
turbation method are listed in Tables I and II. The nu-

merical energy values that appear in the present paper
are in units with R /2p= l. The results for the first po-
tential (Table I) are very good: the first five energies cal-
culated with the two-term approximation are accurate to
five or six significant figures, and they are accurate to
nine or ten figures if the five-term GBS rule is used. For
the other four quartic double barriers (Table II) the num-

ber of terms n (from two to five) employed in the GBS
rule to evaluate each energy is the highest that verifies

~T„~ & ~T„,~
& . [Remember that the series expan-

sion (3.2) is, in general, only asymptotic and in some cases

TABLE I. The first five energy levels (in units with A /2p=1) of the quartic double barrier
V(z) =z —0.01z calculated by means of the GBS rule of one to five terms. The results are compared
with those obtained by Drummond in Ref. [3] using a perturbation technique. The GBS rule of one
term is the usual Bohr-Sommerfeld rule.

Ref. [3]
BS
GBS-2
GBS-3
GBS-4
GBS-5

0.992 363 220 6
0.996 223 064 6
0.992 365 422 6
0.992 363 227 5
0.992 363 220 7
0.992 363 220 6

2.961 401 903 5
2.965 501 459 6
2.961 404 737 8
2.961 401 9144
2.961 401 903 6
2.961 401 903 5

E

4.898 302 036 6
4.902 678 065 6
4.898 305 751 9
4.898 302 054 5

4.898 302 036 8
4.898 302 036 6

6.801 432 758 5

6.806 131467 3
6.801 437 733 5

6.801 432 788 7
6.801 432 758 9
6.801 432 758 5

8.668 928 127 8
8.674 008 758 4
8.668 934 960 3
8.668 928 181 1

8.668 928 128 9
8.668 928 127 9
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TABLE II. The first five energy levels of four quartic double barriers V(z) =z —M, where A, is 0.02,
0.03, 0.04, and 0.05, obtained from the GBS rule (a) and from Ref. [3] (b). An asterisk beside a value

means that it has been calculated using the GBS rule of four terms; a dagger, the same but with three
terms; a double dagger, the same but with two terms. No symbol means that the value has been calcu-
lated with the GBS rule of five terms.

Eo

E)

E4

(a)
(b)
(a)
(b)
(a)
(b)
(a)
(b)
(a)
(b)

z —0.02z

0.984 427 670 4
0.984 427 669 8
2.920 282 165 9
2.920 282 161 3
4.786 335 09
4.786 335 05
6.573 553
6.573 552
8.268 8

8.268 8

z —0.03z

0.976 146 247 1

0.976 146 1974
2.875 949 52
2.875 948 30
4.659 258
4.659 247
6.29005*
6.291 08

7.698

z' —0.04z'

0.967 452 516
0.967 451 234
2.827 110
2.827 103
4.501 0
4.504 5

5.86~

5.91

z —0.05z

0.958 243 06
0.958 233 36
2.770 93
2.771 26
4.254$

4.315

it is possible that
i T, i

&
~ T, , ~. ] The agreement is good,

although it worsens as the energies approach the top of
the potential, as is expected since the term 5 neglected in
(3.2) increases as the energies approach the top of the po-
tential.

b, =——
—,'arg[F, 2(

—x4, x~)]+arg[F&1(x&, + 00 )]

+—,'arctan [exp( —1t. ) /F22 ( —x4, x4 )], (4.1)

where x4 is a point of the real axis on the classically al-

lowed region, E is a real quantity, and F», F,2, and F22
are elements of the F matrix defined in [18]. Neglecting
the 4 term, one finds the generalized Bohr-Sommerfeld
rule of X+1 terms (order 2N+1) for symmetric double
wells:

N N

T, =—,
' f g Z2;dz. =(n+ —,')m, n =0, 1,2, . . . ,

i=0 i=0

(4.2)

IV. GBS RULE
FOR THE QUARTIC DOUBLE WELL

(u2 &0, u4) 0)

For symmetric double wells, the phase-integral quanti-
zation condition of order 2N+1 is the same as the
phase-integral quantization condition of order 2N+1 of
the single well, Eq. (2.13), but now [23]

where use has been made of the equality between Eqs.
(2.15) and (2.16).

For the quartic double well, the general solution of the
classical equation of motion, Eq. (2.20), is

z= A cn(u, k )=A dn(ulri, ri ), (4.3)

(4.4)

This way of expressing the solution has the advantage
that the elliptic modulus lies between zero and one:
0&g (1. The GBS quantization rule is given by Eq.
(4.2), the integration path I' being a closed loop in the
complex z plane encircling the two classical turning

where u, y, and k are given by Eqs. (2.26), (2.27), and
(2.28), respectively. I will distinguish two possibilities: (i)

8&0, and hence —,
' &k &1, and (ii) 6 &0, and hence

k'& 1.
When the energy is greater than zero, the analysis

made in Sec. II for the quartic well can be strictly repro-
duced for the quartic double well, the only difference be-
ing that now —,

' & k & 1 instead of 0 & k &
—,
' for the quar-

tic well. Therefore the terms T; are the same as those
given in Sec. II for the quartic well, Eqs. (2.42) and (2.43).

When 8 & 0, one has k & 1 and, using the transforma-
tion properties of the Jacobian elliptic functions with
respect to reciprocal modulus [20], the classical solution
can be expressed in terms of the Jacobi elliptic function
dn [see Eq. (4.3)] with an elliptic modulus ri given by

TABLE III. Energy levels for the quartic double well V(z) = —50z +z calculated by means of the
GBS quantization condition of n terms (GBS-n) with n =1,2, 3,4, 5. These values are compared with
those given by Hodgson and Varshni in Ref. [13].

Ref. [13]
BS
GBS-2
GBS-3
GBS-4
GBS-5

Eo

—615.020 090 902 757 8166
—615.015 042 736 058 959 3
—615.020090 788 697 9196
—615.020 090 902 744 364 8
—615.020 090 902 757 812 8
—615.020090 902 757 8166

E20

—422.068 788 468 852
—422.062 444 427 153
—422.068 788 160 819
—422.068 788 468 806
—422.068 788 468 891
—422.068 788 468 891

E3s

—261.112800 996 988 49
—261.104 188 796 91932
—261 ~ 112799 864 301 05
—261.112800 996094 02
—261.112800 996 986 72
—261.112800 996 988 48
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TABLE IV. Energy levels for the quartic double well V(z) = —5z +z calculated by means of the GBS quantization condition of
n terms (GBS-n) with n = 1,2, 3,4, 5. These values are compared with those given by Hodgson and Varshni in Ref. [13].

Ref. [13]
BS
GBS-2
GBS-3
GBS-4
GBS-5

Ep

—3.410 142 76
—3.254 226 49
—3.327 726 86
—3.333 438 34
—3.336063 71
—3.339078 73

El
—3.250 675 36
—3.254 226 49
—3.327 726 86
—3.333 438 34
—3.336063 71
—3.339078 73

E2o

96.101 737 842 7
96.091 968 480 0
96.101 741 071 9
96.101 737 839 5

96.101 737 842 7
96.101 737 842 7

E38

244.366 964 364 5
244.360 394 139 1

244.366 964 908 9
244.366 964 364 6
244.366 964 364 6
244.366 964 364 6

253.583 300 287 527
253.576 836 926 231
253.583 300 793 432
253.583 300 287 561
253.583 300 287 526
253.583 300 287 526

points of a single well but no other zeros or singularities
of g (z) [see Fig. 1(a)]. The classical solution
z= A cn(u, k ) of the double well has the same form as
the classical solution used in Sec. II for the quartic well.
Therefore formulas (2.31)-(2.33) are also valid for the
double well. The difference is that now k & 1 and the in-
tegration path I" in the complex u plane, corresponding
to I in the complex z plane [through Eq. (4.3)], goes from
up to up+4k, where k =

—,'gK(rl ), since the period in u

of the classical solution, Eq. (4.3), is 2rlK(rl ).
Repeating for this case the analysis made by Laksh-

manan, Karlsson, and Froman [11] for the quartic well
will again convince us that it is only necessary to know

S,=I,= J du, (4.5)

dg da
2 r'sn2(u, k ) r' rlsn (ulrl, rl )

dQ dQ

r' dn (u, k ) r' cn (u/rl, ri )
(4.7)

to evaluate the terms T;. The rightmost expression of
Eqs. (4.6) and (4.7) has been obtained using the transfor-
mation properties of Jacobian elliptic functions with
respect to the reciprocal modulus (Jacobi's real transfor-
mation) [20]. Solving these rightmost integrals [21], it is
found that Sp Ip Sp and I2 are also given by Eqs.
(2.37)—(2.39), but now (k & 1)

t —= —,'qK(q'),

P=——,'rl[E(g ) —rl' K(vP)] .

(4.8)

(4.9)

Notice that Sp Ip S2 and I2 have, in terms of k and E,
the same expressions as in the quartic well case. There-
fore, for quartic double wells with energies e & 0, the
terms T; of the GBS quantization condition have the
same form as for quartic wells, Eqs. (2.42) and (2.43), but
now with E and P given by Eqs. (4.8) and (4.9).

Tables III and IV list the values of the energy levels of
two quartic double wells taken from Ref. [13], and the
unsplit energy levels obtained by means of the GBS rule
with from one to five terms. The GBS results for the po-
tential V(z) = —50z +z4, Table III, are, in general, very

good. For example, the energy of the ground state agrees
to nine significant figures using the GBS rule of only two
terms and to 19 significant figures using five terms. For
the double well V(z)= —5z +z, Table IV, the barrier
between the wells is thin enough to make the energy split-
ting large. In these cases, the GBS rule only serves to
evaluate roughly the mean of the two split energies. The
mean value of Ep and E

~
taken from Ref. [13] is

—3.33040906, which is close to the values obtained us-

ing the GBS rule. The results are once again good. For
instance, the GBS rule of four terms gives the energy of
the 39th excited state to 14 significant figures.

V. CONCLUDING REMARKS

We have found the first five terms of the generalized
Bohr-Sommerfeld rule (Bohr-Sommerfeld quantization
condition of higher order) for quartic double barriers and
for quartic double wells. In terms of the functions k and
E, this generalized rule has the same form [see Eqs. (2.15)
and (2.42)] for all three quartic oscillators (well, double
barrier, and double well). These functions are defined by
(i) Eqs. (2.40) and (2.41) when 0&k &

—,
' (quartic well)

[8,9] and also when —,
' & k & 1 (quartic double well with

8 & 0); (ii) Eqs. (3.8) and (3.9) when k &0 (quartic double
barrier, 8& V,„); and (iii) Eqs. (4.8) and (4.9) when
k & 1 (quartic double well with v & 0).

These expressions have been used to calculate reso-
nance energies of quartic double barriers, and energy lev-
els of quartic double wells, by means of the Bohr-
Sommerfeld quantization condition of n terms, with
n = 1,2, . . . , 5 (first- to ninth-order GBS rule). Compar-
ison with published values shows that in some cases the
agreement is excellent (see Tables I—IV).
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