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Berry's phase for anharmonic oscillators
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We study classical and quantum anholonomy for nonlinear oscillators which support linear or quadra-
tic spectra. The validity of the semiclassical relation between Berry's phase and Hannay's angle is inves-
tigated.
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I. INTRODUCTION manifests itself as an extra shift

The purpose of this paper is twofold. First we want to
calculate Berry's phase and Hannay's angle [1—4] for a
number of analytically solvable potentials and, second, to
explore the limits of validity of the semiclassical relation
that exists between the phase and the angle. Although
the semiclassical relation [2] was derived by Berry almost
simultaneously with the discovery of the phase named
after him, and was found to be exact for the generalized
harmonic oscillator, there were no subsequent attempts
to study its validity for other potentials. This is unfor-
tunate, considering the fact that semiclassical relations in
physics (e.g. , the WKB quantization formula) have long
been the subject of extensive investigation. It is common
wisdom that semiclassical mechanics is exactly valid for
quadratic Hamiltonians. Nevertheless there are other po-
tentials for which exact quantization conditions [5—8] do
exist. Here we choose this class of potentials for our in-
vestigation.

This paper is organized as follows. In Sec. II we give
the formulas for the anharmonic phases and angles,
which will be needed for our calculations. Section III is
the main body of our paper, where we calculate these
anholonomies for a class of potentials. We end with a
discussion of the results obtained in Sec. IV.

II. BERRY'S PHASE AND HANNAY'S ANGLE

V„=ImV„X (n ~V„~n ) (2)

with Vz being the gradient operator involving the pa-
rameter set (R).

For an integrable parameter-dependent classical Ham-
iltonian with one degree of freedom, the anholonomy re-
sulting from an adiabatic cyclic change of the parameters

The geometric phase acquired by a quantal system
whose Hamiltonian depends on a set of parameters which
are adiabatically varied in a closed cycle (C ) is given by

y„(P=Bs)=—f V„ds . (1)
S

The invariance of the quantum number n of the system is
guaranteed by the quantum adiabatic theorem which
holds for nondegenerate bound states. The vector field
V„ is given by

(3)

Therefore for a quasicontinuous spectrum one can write

The genesis of the above formula is a stationary phase
evaluation of the matrix element in V„ from Eq. (2), in
the coordinate representation, and use of the semiclassi-
cal approximation for the wave function associated with
a torus with given action values.

III. QUANTUM
AND CLASSICAL ANHOLONOMIES

A. Quantum anholonomy

We will consider quantum-mechanical Hamiltonians of
the form

H =(—,') [ Ap +8 [f(x)p +pf (x)]]+ V'(x), (8)

where A and 8 are time-dependent parameters and the
potential V'(x) also contains such parameters as its
strength and range. The choice of the functions f (x) and
V'(x) will be dictated by analytical solvability. The term
containing 8 is essential for the existence of anholonomy,
breaking as it does the time-reversal invariance of the sys-

in the angle variable 0, corresponding to the adiabatically
conserved action I. This is referred to as Hannay's angle.
The vector field W is given by,

W(I, R)=(1/2') fd8 Vttp(8, I;R)X Vaq (8,I;R) . (4)

The functional forms displayed in Eq. (4) represent in-
stantaneous transformations from coordinate and
momentum to action-angle variables for frozen values of
the parameters. The semiclassical relation connects the
vector fields V„and W in an amazingly simple way, viz. ,

V„(R)= —(1/A')W(I, R),
where the quantum number n and the action I are related
by the semiclassical action quantization,

I = (n + 1/2)A .
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with P satisfying the equation

2 2

+ V(x)Q=EQ,
dx

(10)

tern. The symmetrized form of this term ensures the
Hermiticity of the Hamiltonian.

The wave function 1{, which is a solution of the
Schrodinger equation, may be written as

f=P exp (i—B/A A) If(x)dx (9)

E =[(2n +a+ —,')(2AUOA' c )'~2] —2UO (18)

(n =0, 1,2, . . . ) and the corresponding energy eigenfunc-
tions (upon normalization) as

2Uc 1/2
0 I {n+1)

I (a+n + —,
'

)

ly be so.
The transformations (16) therefore enable us to directly

obtain the energy eigenvalues of this Hamiltonian as

the modified potential V(x) being given by Xexp[ —y /2]y +'L +'
(y ) (19)

Y(x)= V'(x) 8 f—/2A .

Example 1: Harmonic oscillator with centripetal barrier
(HOCB). We make the choice f (x ) =x;
V(x)=Uo[1/(cx) —cx] . Hence the Hamiltonian [9] to
be dealt with is

H =(A /2)[p+(8/A)x] + Uo[1/(cx) cx—], (12)

where A, B, and U0 are considered to be adiabatically
varying external parameters. In this case the wave func-
tion is

where we have introduced the dimensionless variable y
[ =(2Uoc /AA' )' x) and replaced the quantum number
l by a to indicate that it need not be an integer. The
complete normalized wave function is thus given by

1{„(x)=p„(x)exp[ iBx —/(2AR)] . (20)

Substituting for f„ in the expression for V„(in the coor-
dinate representation) yields

V„(R)= [(n—+a/2+ —', )/(&2c)]

1{t=pexp[ iBx —/(2Afi)], (13)
X[V„(A/Uo)' XV„(8/A)] . (21)

with P satisfying the differential equation

d k + [(E+2U&)—Uoc x —Uo/(c x )]/=0.

(14)

Stationary solutions of Eq. (14) can readily be obtained by
the identification of this equation with the radial equation

d2
+(2m/A )

dr

X[E mw r —l2 I l(l+—I)/(2mr )]y=0, (15)

for the modified radial wave function, y(r) =rR (r), of the
three-dimensional harmonic oscillator, under the map-
ping

f (x)=e '", V(x) = Uo[e '"—2e '"], (23)

the wave function is lit=/ exp[iB exp( —cx)/( Ac%)] with

P satisfying the equation

1 2Q
2cx 2

—
cx)]y

—
0

Afg2
(24)

Energy eigenvalues and standard normalized solutions of
Eq. (24), for E (0, are obtained in terms of the variables:

Berry's phase is hence obtained to be

y„(C)= [(n +a/2+ —,
' )/(&2c)]

X J [V~(A/Uo)' XVa(8/A)] ds . (22)
S

Example 2: The Morse potential I10,11}. For the fol-
lowing choice of the gauge function and the potential:

x~r, (2AUoc )' -+co, 1/A ~m,
E+2Uo~E, 2Uo/(Ac )~l(1+1)fi

The unnormalized solutions of Eq. (15) are given by

(16)
and

g=[8UO/(Acti )]e '", s =[ 2E/(Ac A' )]'—

n =[2UO/(Ac A' )]' —(s+ —,'),
y(p) =p'+'exp( p l2)L„'+' (p —), (17) as

where p=rao, ao=(mrs/A)', and L„'+' are the gen-
eralized Laguerre polynomials.

The energy eigenvalues of the isotropic three-
dimensional oscillator, in terms of the principal quantum
number N (=2n +1), are E =(N+3/2)%co. The pres
ence of the infinite barrier at the origin for the given po-
tential V(x) [Eq. (12)] ensures that we can treat the prob-
lem in the half space x )Q. The boundary conditions for
the radial problem therefore remain applicable to the
present problem as well. Although the quantization still
demands that the difference n [=(N —1)/2] be an in-
teger, the quantum numbers N and l need not individual-

E„=U0 1—
' 1/2

Acti
( +, )

2U 2 (25)

and

P„(g)=[2scI (n +1)/I (n +2s + 1))'~

Xexp[{ g l2)PL„'(g), — (26)

respectively [L„'(g) being the generalized Laguerre poly-
nomials. ]

Choosing A, 8, and U0 as the parameters, we get
Berry's phase to be
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y„(C )= —(n+ ,'—)f [VR(A/UQ)' XVR(B/A)] ds .
1

S

I =H/( 8 A UQC )' (38)

(27)

Example 3: The Poschl T-eller potential /11, 12'. On
choosing f (x)=tanhcx and V(x)= —UQsech cx we ob-
tain the wave function

upon substitution from Eq. (36) for p in Eq. (37) and in-
tegrating between the turning points [which are solutions
of H = V(x)]. The conjugate angle variable 8 is obtained
from Hamilton's characteristic function W(x, I) [13]
through the transformation equation

g=P„exp[( iB/—cfiA )ln(coshcx)], (28) a W(x, I)
(39)

b =(—,')[1+8UQ/(Ac R )]' n =0, 1,2, .. . ,

we obtain the normalized solutions

= ~Ni(1 —g )(" i iC"(g)

n!I (v)I (2v)
v'n. I (v—

—,
' )1 (2v+n)

(29)

(30)

(31)

where C„"(g) are the Gegenbauer polynomials. The ener-

gy eigenvalues are given by

P„being a solution of the Schrodinger equation corre-
sponding to the Poschl-Teller potential. In terms of the
variables g=tanhcx and y =b n, w—here

where W(x, I), which is the solution of the Hamilton-
Jacobi equation, is given by the indefinite integral,

8'= pHI x x. (40)

We therefore have in the case of the HOCB potential

H +2Up 2Upc x
t9= sin

(H +4UQH)'
(41)

Expressing x and p in terms of these action and angle
variables and evaluating the integral of Eq. (4) gives

W(I, R)=[I/(v'2c][VR( A/U )Q'i XVR(8/A)] . (42)

8UoE„=—(Ac A /8) —(1+2n)+ 1+
Ac A

' 1/2 2 Hence from Eqs. (3) and (42) we obtain Hannay's angle
for the HOCB potential as

Hence the normalized wave function is
(32)

68= — — f [VR(A/UQ)' XV„(8/A)] ds .
2c s

(43)

g„(x)= i Nip„(tanhcx)exp [
—[iB/( Ac%) ]in(coshcx ) ]

(33)

Example 2: Morse potential. For the classical Hamil-
tonian,

H =( A /2)[p +(8/A)e '"] + UQ[e
'"—2e '"], (44)

and Berry's phase is obtained as

(2b —n)(2n +1) n-
4b

X VR(8/A) ds .

B. Classical anholonomy

(34)

I =(1/c)[( 2H/A)' +—(2UQ/A)' ],
H exp(cx)+ UQ

0=sin
[U (U +H)]' '

(45)

(46)

the action and angle variables are, respectively, found to
be

The classical analogue of the quantum-mechanical
Hamiltonian given by Eq. (8) will be taken to be

H =(—,')[Ap +28f(x)p]+ V'(x)

To simplify the subsequent evaluation of Hannay's angle,
we make a canonical transformation from x and p to a
new pair of variables x ' and p': x ~x ' =exp( —cx ),

p ~p'= —(p/c)exp( —cx). Expressing x' and p' in terms
of the action and angle variables, (8,1), we have

or

H =( A /2)[p +(8/A)f (x)] + V(x), (35)

H (I)
V, + [ V', + V,H(I)]'" '

where V(x)= V'(x) —(82/2A)f (x).
With the choices of f (x) and V(x) given earlier we

need to cast this Hamiltonian in action-angle form, in or-
der to calculate the anholonomies in the classical case.

Example 1: HOCB potential. With the Hamiltonian
given by

H =(A/2)[p +(8/A)x] + UQ[1/(cx) —cx], (36)

p'=(8/cA )+
2UQ[UQ+H(I)]

cos0 .
Ac H(I)

W(I R)= — [VR(A/UQ)' XVR(B/A)],I
v'2 (47)

Substitution of x' and p' in Eq. (4) yields the vector field

the canonical action I, defined as

I =(1/2n. ) fpdx,
is found to be

(37)

and hence Hannay's angle

68= —(1/v'2) f [V (AR/U )'iQXV„(8/A)] ds,
S

(48)
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The semiclassical relation between the quantum and
classical anholonomies is thus seen to hold exactly for
both the HOCB potential and the Morse potential.

Example 3: Poschl Te-ller potential .We consider the
classical Hamiltonian

H =( A /2)[p +(8/A)tanh(cx)] —Uosech (cx) . (49)

Rather than going through the straightforward, although
tedious, action-angle formulation, we demonstrate for
this potential a WKB-like procedure for solving the equa-
tion of motion. It may happen that for certain potentials,
a point coordinate transformation together with a scaling
of time casts the equation of motion into that of an oscil-
lator, which can then be easily analyzed to extract the
anholonomy. This seems to be the case for both the
Poschl-Teller and the Morse potentials. It is obvious that
Hannay s angle, being insensitive to the rate of time evo-
lution of the parameters, will remain unaffected under
such a time scaling. Transforming the coordinate x to
the variable g=tanh(cx) and scaling the time such that
dr=sech (cx)dt reduces Hamilton's canonical equations,
in this case, to the pair

g'= Ac[p+(8/A)g], p'= (8/A)g—' —2cUog, (50)

The above expression matches with the exact quantum-
mechanical energy eigenvalue [Eq. (32)] only in the "deep
well" limit for which 8UO/( Ac fi ) »1. Hence in coin-
paring the classical and quantum anholonomies for the
Poschl-Teller potential, we confine ourselves to this limit.
Moreover we consider small values of the quantum num-
ber n.

Now from Eq. (34) for Berry's phase we obtain, upon
differentiation with respect to n,

7n

Bn

b —n+ —,
'

X Vs(8/A) ds,
b2

(56}

where b =(—,')[1+8UO/( Ac fi )]' . In the "deep well"

limit, for small quantum numbers, b = ( —,
'

)[8 Uo /
( Ac2i)t'2)]'~ &&n —

—,'. Therefore

The semiclassical quantization condition for this action
yields the energy eigenvalues

E„=—(AA' c /8)[ —(2n+1)+(8UO/Ac fi )' ]

(55)

where prime denotes differentiation with respect to ~.
The solution of the differential equation resulting from
the decoupling of the above equations is g=z/&2, with z
satisfying

'))'n

Bn f [Vs (1/b) X Vs (8/A ) ] ds
1

cg s

—f [Vs(A/Uo)' XV„(8/A)].ds .
2 2 $

co=(2AUoc )'i 1 — (8/A)'2 1/2

4cUo
(52)

It is to be noted that the second term in eq. (52) is a
scaled time derivative. Hence its integral with respect to
~ can evidently be expressed as a line integral over a
closed circuit in parameter space. It is therefore a purely
geometric angle shift which is to be identified as the
Hannay's angle 60. Thus

ls.e= (1/2&v) f—'( A /U, )'"(8/A)'dr

= —(1/2&2) f ( A /Uo)'~ Vs (8/A). dR

or by Stokes' theorem,

68= —(1/2Y2) J [Vii(A /Uo)'~ XV„(B/A)].ds .
S

(53)

The canonical action variable for the Poschl-Teller poten-
tial is given by

I =(2/Ac )' [(Uo)' —& H] (H (0) . —(54)

z"+[—cA(8/A)'+2c AUD —3A /(4A )

+ A "/(2A)]z =0 . (51)

The resemblance of this equation to that of simple har-
monic motion allows us to interpret the coeScient of z as
the square of the "frequency" co. Now, since the parame-
ters A, B, and Uo vary adiabatically, only terms linear in
their first-order derivatives are significant. Hence in the
adiabatic case we have

Thus it is seen that in the deep well limit the semiclassical
relation is valid for the Poschl-Teller potential as we11.

IV. DISCUSSIONS

We therefore observe that for all the potentials con-
sidered the vector field governing the phase has (apart
from numerical factors) the form Vs ( A /Uo)'
X Vs(B/A }. Moreover, the quantum number depen-
dence is linear in all the cases, although the Hamiltonians
considered were either linear or quadratic in the actions.
To understand this fact let us cast the Hamiltonian of the
generalized harmonic oscillator in the form

H =(A/2)[p +(8/A)x] +(Uo/2)x

for which the frequency is ( A Uo)' and Hannay's angle
turns out to be

6 8= —
( —,

'
)f [V„(A /Uo)'i XV„(B/A)] ds .

S

We have seen that for the Poschl-Teller potential, the
classical equation of motion can be cast into an oscillator
form through a canonical transformation coupled with
time dilation. This can also be seen to be true for the
Morse potential. For the HOCH potential, the equation
of motion is the same as the radial equation for the
three-dimensional oscillator. Thus at the classical level
the equations for all the three potentials have the same
structure. We must reemphasize that time dilation has
no effect on the angle anholonorny, which has a purely
geometric nature. We also observe that for other choices
of parameters for which the equations cannot be brought
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to the oscillator form, the semiclassical relation is violat-
ed. For example, for the Morse potential, if we choose
the range (c) instead of the strength ( Uo ) of the potential,
along with A and 8, to be the relevant parameters,
Berry's phase has an additional contribution, apart from
the one satisfying the semiclassical relation. Time scal-
ing, in this case, fails to transform the equation of motion
to the oscillator form.

We are also aware of the role of symmetry in determin-
ing geometric phases. For the generalized oscillator, the
Hamiltonian can be written as a linear combination of
SU(1,1) group generators and the anholonomy can be cal-
culated directly from symmetry considerations [14].
However, for other potentials, the generators do not pos-
sess such simple forms and one therefore does not know
how to extract the anholonomy directly from symmetry.
We have shown elsewhere [15] that whenever the Hamil-
tonian can be written in terms of the generators of a Lie
group the geometric phase factorizes into a part which
depends on the representation of the group and another
part which is purely geometric and representation in-
dependent. This seems to be the case for the Hamiltoni-
ans considered above and moreover the fact that they
provide identical geometrical parts must imply that the

underlying symmetry is the same.
In conclusion, we want to make a few more observa-

tions. As remarked in the Introduction, the potentials
considered are the ones for which exact quantization con-
ditions are available. Another common feature is that
the bound-state spectra of these potentials can be con-
nected to the irreducible representations of SU(2) by a
technique of embedding in a higher-dimensional space
[16,17]. Furthermore these potentials share the property
of "shape invariance" in that they can be constructed as
supersymmetric partner potentials [18] which are related
in a particular way. The other unifying feature which
emerges from our work is that their anholonomies are
governed by the same vector field and also that the semi-
classical relation holds exactly. Thus the present work
extends the class of problems that are illustrative of clas-
sical and quantum anholonomies and thereby presents
several interesting interrelationships and generalizations.
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