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Chaos due to homoclinic and heteroclinic orbits in two coupled oscillators with nonisochronism
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We show that chaotic dynamics occur in a pair of weakly nonlinear coupled active oscillators when

nonisochronism, the dependence of oscillation frequencies on amplitudes, is included. The strange at-

tractor in this system develops from a nearby homoclinic orbit, the same mechanism that leads to chaos
in coupled active-passive modes. After analytically determining the most likely parameter region for
such a homoclinic orbit, we found the neighboring region of chaos predicted by Shilnikov s theorem.
These coupled oscillators also exhibit multistability and unexpected three-frequency oscillations.

PACS number(s): 05.45.+b, 84.20.+m, 84.30.Ng, 03.20.+i

Coupled oscillators provide fundamental models of the
dynamics of many biological, chemical, and physical sys-
tems. The addition of weak nonlinearity in these systems
produces a variety of dramatically different complex
dynamical features, particularly in cases in which non-
isochronism, the dependence of frequencies upon ampli-
tudes of the oscillators, is included.

Recently, we have shown that a system of two noniso-
chronous active-passive oscillators exhibits chaotic dy-
namics [1], but no chaotic region had previously been
detected for coupled active modes. Here we first estab-
lish that chaos in the active-passive system arises from
the Shilnikov mechanism [2—4]. By investigating the
possibility that this mechanism could be present in the
case of coupled active modes, we have been able to locate
the much more elusive chaotic region in this case.

Over 20 years ago, Shilnikov proved that a saddle-
focus homoclinic orbit under certain conditions has in its
neighborhood a countable set of periodic trajectories
which can lead to the formation of a chaotic attractor.
For chaos to occur within a three-dimensional phase
space, Shilnikov's work requires that the homoclinic's
equilibrium point, with eigenvalues —5 and y+ico, must
have 5& y) 0. Although this mechanism for chaos has
been known theoretically for a long time, it has only re-
cently been identified in physical systems, such as electri-
cal oscillatory circuits [5] and single-mode lasers [6]. It is
often recognized by the orbits with long periods which
exist in parameter ranges close to the homoclinic orbit.

In the present study, we show how Shilnikov chaos
arises in a fundamental system consisting of two weakly
nonlinear coupled oscillators with dynamics described by
the following differential equations:

x) e)F, (x„x2)x,+co,G, (x, ,x2)x) =Ex22

x2 ~2 2(xI&x2)x2+~2G2(xl~x2)x2 +xi2

where F; and G; are even functions with one maximum.
In the limit of weak nonlinearity, these functions can be
approximated by second-order polynomials:

F; (x, ,x2)=1—v, x2 —
p, x 22,

G;(x),x2)=1—5;x, —o;x2, i=1,2 .
(2)

If the two oscillators are weakly coupled and weakly non-
linear, solutions of Eq. (1) can be written with slowly
varying amplitudes and phases, as introduced by Van der
Pol [7],

x, (t)=a(t)cos[cot+P, (t)],
x2(t) =b(t)cos[cot +$2(t) ], (3)

where a(t) and b(t) are the amplitudes and P, (t) and
$2(t) are the phases of the two oscillators, which vary
slowly in time compared with cos(cot ). First-order
averaging methods [8,9] then yield the following equa-
tions for the amplitudes and the phase difference
0=—42-4i:

=(a, y, a p,—b )a+—kb sing,

db =(ab ybb pba—)b ka s—ing, — (4)

= —b, +Pa ab+ k ———.—cosf .d7. a b

Here, ~ is the "slow" time, 6 is proportional to the de-
tuning of the two partial frequencies, and a, and ab
characterize the linear, and y„yb the nonlinear, dissipa-
tion of the oscillators. In particular, an oscillator with
negative (positive) a exhibits an amplitude that is damped
(increasing) in the linear approximation, yielding a pas-
sive (active) mode. The coefficients P and a. represent
nonisochronous features of the oscillators.

System (4) includes two different coupling mechanisms
between the oscillator amplitudes a and b: resonant and
nonresonant. The resonant coupling occurs through the
phase difference g and its strength is controlled by the
coupling constant k. Nonresonant coupling of the two
modes links the two amplitudes directly through terms
with p, b and does not depend upon the phase difference.
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Similar equations have been derived previously [5] and
can be obtained by other first-order asymptotic methods
[7,8,10].

The equilibrium states a =A, b=B, g=% of Eq. (4)
are situated along the two branches of the resonant curve
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where

B = (a& —A (p, +p&)
1

~b

+[[a —A (p, +p„)]
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Equation (4) also has a trivial equilibrium point,
A =8 =0 and 4 undefined. The stability of each fixed
point can be determined analytically by calculating the
eigenvalues of system (4), linearized about the fixed point.
Hopf and saddle-node bifurcations were located analyti-
cally using Routh-Hurwitz conditions.

Figure 1 shows the resonance curve corresponding to
an active-passive case of system (4). Within the parame-
ter range —22. 562&6, & —16.246, Eq. (4) has only one
nontrivial equilibrium point, the saddle-focus point at the
center of the lower spiral in Fig. 2(a). From the saddle-
node bifurcation, a pair of fixed points emerges with the
same complex-conjugate eigenvalues ( —1.237+19.531i)
and with real eigenvalues close to zero but of opposite
signs. One of them represents a stable steady state, and
the other is a saddle focus, the point whose existence is
anticipated by the behavior of the trajectory at the upper
spiral of Fig. 2(a).

The regular orbit of Fig. 2(a) resembles a classic
heteroclinic orbit. The center of the lower spiral is a
saddle-focus equilibrium point of Eq. (4) with one eigen-
value real and negative and a complex-conjugate pair of
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FIG. l. Equilibrium states for an active-passive case of
system (4) with parameter values a, =3.0, ab = —1.0,
1', =1'& =@,=pq =p=0.3, @=100,k =6.5. Each line style in-

dicates a different type of equilibrium. For each, the eigenvalue
positions in the complex plane are indicated by X's. Saddle-
node and Hopf bifurcation thresholds are marked by S and H
respectively.
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FIG. 2. Regular and chaotic attractors for the active-passive
case of system (4). For (a)—(e), parameters are those of Fig. 1;
the frequency detuning 5 is equal to (a) —16.30, (b) —16.80, (c)
—21.50, (d) —22.40, and (e) —20.60. For (fl, a, =3.8,
aq= —1.2, y, =1. 5y~ = 08, p,, =2. Opb=P=O. , 0=sI 00. , 0
k =22.0, and 6= —62.0.
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tions have not yet been formulated for a heteroclinic con-
nection, in our case eigenvalues of at least one saddle-
focus equilibrium point do satisfy the Shilnikov condi-
tions.
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FIG. 2. (Continued).

eigenvalues with a positive real part, A, &= —11.88 and

3 4.93+5.73i for 6,= —16.225. Thus, the phase-

space trajectory approaches this point along the eigenvec-
tor corresponding to the real eigenvalue, and then exits
by spiraling until it reaches the basin of attraction of the
upper saddle-focus point with eigenvalues 0.04 and
—1.21+9.43i for 6,. Then, the trajectory spirals toward
this point and stays for a long time in its vicinity before
returning to the lower equilibrium point. As 5 ap-
proaches 6„the time spent near the vortex of the upper
spiral approaches infinity. The shape of this orbit sug-
gests that a heteroclinic orbit also forms for other param-
eter values. Although the Shilnikov eigenvalue condi-
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FIG. 3. Bifurcation diagram of system (4) as a, is varied,
with ab =y, =yb =k = 1, p, =pb =P=0, and a =50. The dot-
dashed curve depicts conditions (6). Lines 1 and 2 denote
thresholds of saddle-node bifurcations. The Hopf bifurcation
threshold is denoted by line 3. The two hatched regions indi-
cate locations of chaos and orbits of homoclinic origin (above
chaos). 2p and 4p indicate period-doubling thresholds.

0.9

a sin+'

FIG. 4. Regular and chaotic attractors for the active-active
case of system (4) with parameters as in Fig. 3 with a, =1 and
with 5 equal to (a) —61.3000, (b) —61.4480, (c) —61.4490, and
(d) —61.4492.
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Formation of such an orbit can imply the presence of a
strange attractor in the neighboring parameter space.
Indeed, increasing the magnitude of the detuning leads to
the formation of this attractor [Figs. 2(b) and 2(c)].
Chaos is well developed in this region, with a maximal
Lyapunov exponent of about 0.05. These chaotic regions
are interrupted by numerous windows of order with
periodic orbits, such as Fig. 2(d), which subsequently un-

dergo cascades of period doubling, returning to chaos.
Another attractor is the limit cycle [Fig. 2(e)) that ap-

pears via the Hopf bifurcation at 6= —22. 562 and coex-
ist with the regular and chaotic attractors discussed
above almost throughout the entire parameter range. At
certain points, this limit cycle merges into the chaotic at-
tractor and then is subsequently recovered through an in-
verse sequence of period doublings. Such bistability is
typical for these coupled oscillator systems in both the
active-passive and active-active modes.

Guided by these results from the active-passive case,
we decided to look for homoclinic orbits in the case of
two active oscillators, since the development of chaos
might be due to the same mechanism in the two cases. In
a previous study [11],we had used an asymptotic method
to determine the boundaries of competition between a
stable fixed point and a stable periodic orbit for this sys-
tem. There the dynamics of Eq. (4) for large tt and
P=)tt, =p, b

=0 were shown to be well approximated by a
nonlinear pendulum equation. Within this approxima-
tion, the condition for two separatrices to form a hetero-
clinic loop in the phase plane of that equation is

r =3
(g —y )

2 2 &y4
(6)

with

v=3ybB ab, g= —2tcABk, y—=2tcB (y&B ab) . —

(7)

For system (4), with O'E[0, 2sr], Eq. (6) means that a
homoclinic orbit has formed. Figure 3 shows a bifurca-
tion diagram for Eq. (4) for a„ab)0 in the paratneter
plane (b„a,). Lines labeled 1 and 2 indicate saddle-node
bifurcations, and line 3 shows the Hopf bifurcation
threshold. The dash-dot curve traces parameter values
where condition (6) holds. For values of a, =1.05, the
curve Battens, forming a broad minimum. In this vicini-
ty, a homoclinic orbit could form over a relatively wide
range of detuning A. One would expect orbits with long

periods close to the homoclinic orbit, due to the continui-
ty of solutions as parameters are changed. By numerical-
ly searching this parameter region, the expected long-
period orbits were found [Fig. 4(a)]. They do look
structurally identical to those found for the active-passive
case, approaching a homoclinic orbit as 5 goes to
—61.2525. In a parameter space region near these orbits,
chaotic dynamics occur (Fig. 3), in the vicinity of the ex-
trernum of Eq. (6), as hypothesized.

The dynamics of active-active and active-passive sys-
tems show further similarities. In both cases, a simple
limit cycle and a limit cycle of homoclinic origin coexist
within a certain parameter range. As 6 approaches the
threshold of the saddle-node bifurcation, the "soon-to-
emerge" fixed point in the upper spiral attracts the phase
trajectory with increasing strength, which causes bending
and folding of the limit cycle, eventually initiating a se-
quence of period doubling bifurcations [Fig. 4(d)]. This
cascade finishes with the formation of a band-type chaot-
ic attractor. With further increases in 6, intermittency
occurs between this attractor and the limit cycle of
homoclinic origin. The length of chaotic bursts grows,
eventually leading to the formation of the strange attrac-
tor [Fig. 4(c)]. This attractor goes through an inverse se-
quence of period doublings [Fig. 4(b)] and approaches a
homoclinic orbit [Fig. 4(a)]. As in the case of active-
passive oscillators, this orbit also coexists with a simple
limit cycle which appears as a result of the Hopf bifurca-
tion.

Bistability and multistability are typical within the pa-
rameter regions where chaos occurs. For instance, for
the active-passive case, the chaotic attractor coexists with
a stable equilibrium and with a limit cycle, so one-
frequency, two-frequency, and chaotic oscillations are all
possible for the same parameter values.

It is noteworthy that the active-passive system also
displays three frequen-cy oscillations. Figure 2(f) displays
quasiperiodic oscillations, indicating three-frequency dy-
namics in the original system, Eq. (1). This phenomenon
is unexpected for a weakly nonlinear system with two de-
grees of freedom, but has been previously observed in
electrical oscillatory circuits [12].

We thank M. Friedman for providing unpublished re-
sults of his numerical investigations of homoclinic and
heteroclinic orbits in this system and B. Deng for helpful
drscussrons.
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