
PHYSICAL REVIEW A VOLUME 46, NUMBER 1

Dynamics of a ring-laser gyroscope with backscattering
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We analyze the standard third-order model describing a laser gyroscope with backscattering in the
two limiting cases of dissipative and conservative coupling. In both cases we discuss the steady-state and

periodic solutions, determine their stability, and construct the locking diagram. In particular, in the dis-

sipative coupling case, an exact periodic solution is found analytically. It is also proved that the con-

cepts developed in the passive-cavity problem are useful tools to understand the dynamics of the laser

gyroscope.

PACS number(s): 42.60.—v, 42.65.—k

I. INTRODUCTION

The behavior of the counterpropagating traveling
waves in a ring laser in the presence of backscattering has
been intensively studied during the past two decades
[1—14]. The backscattering produces a linear coupling of
the two counterpropagating waves. It can lead to locking
phenomena if the ring laser is used as a gyroscope [1—7],
or more generally modify the intensity correlations of the
counterpropagating beams [8—14]. In particular it can
lead to so-called oscillatory instabilities [2,7,11,13,14] or
intensity oscillations and phase jumps [10,11,13]. An al-
ternative approach towards mode coupling in bidirection-
al ring lasers can be found in [15].

In this paper we want to discuss the locking behavior
of two-mode ring-laser gyroscopes induced by back-
scattering. The full analysis of such systems as presented
here substantiates the assumption that many of their
features can be related to the mode structure of the pas-
sive rotating ring cavity [15]. For instance, depending on
the nature of the backscattering, the mode structure of
the passive rotating ring cavity displays either frequency
locking or frequency repulsion. This distinction leads to
different locking behaviors in the active ring-laser gyro-
scope. Two limiting cases, referred to as the dissipatively
and conservatively coupled ring-laser gyroscopes, are dis-
cussed and the locking diagrams for both are shown to be
completely different. Theoretical discussions of locking
in laser gyroscopes so far have been mainly restricted to
the dissipative case.

The paper is organized as follows. In Sec. II we
present the theoretical model describing the ring-laser
gyroscope. In Sec. III we focus on the case of dissipative
coupling and discuss steady-state and periodic solutions
as well as their stability properties analytically. This
leads to the locking behavior of the ring-laser gyroscope.
Section IV deals with the ease of conservative coupling.
Again steady-state and periodic solutions with their sta-
bility properties are discussed, leading to a fundamentally
different locking behavior compared with the dissipative

coupling case. Finally the results are summarized in Sec.
V.

II. THE THEORETICAL MODEL

E =E exp[ i(p +cot—)], (2.2)

and separating real and imaginary parts, Eqs. (2.1) be-
come

B,E, =(a Ef JEST )E, + VE—&sin(p—+P),
t),E2 = (a E2 —gE f )Ez —VE&—sin(p —P),

(2.3a)

(2.3b)

The starting points of our analysis are the standard di-
mensionless third-order nonlinear evolution equations for
the counterpropagating complex electric fields E j and Ez
in a rotating ring laser with backscattering:

d, E& =(a —
~E& ~

—g[Ez ~ )E& i Ve'~E2 —i QE&,—(2.1a)

B,Ez=(a —(Ez~ —g(E& ( )Ez i Ve't'E&—+iQE2 . (2.1b)

Here a is the putnp parameter and g is the mode-coupling
parameter determining the strength of the nonlinear cou-
pling of the modes defined as the ratio of the cross satura-
tion and the self-saturation. Expressions for these param-
eters can be found in [3,16]. In general, we consider the
so-called weak coupling case 0 & g & 1, corresponding, for
instance, to the conventional He-Ne laser gyroscope
tuned off line center. The limit of neutral coupling, g= 1,
corresponding, for instance, to a He-Ne laser gyroscope
with a single Ne isotope tuned to line center, is studied
extensively in the literature [9,12,13] and is addressed
only briefly here. The strength of the linear coupling (or
backscattering rate) V& 0 is proportional to the fraction-
al amount of backscattering per round-trip. The rotation
rate is Q. The value of the phase P determines the nature
of the backscattering. We consider the two limiting cases
P=m. (2k+1)/2 and /=km. , with integer k, referred to as
dissipative (or in-phase) and conservative (or off-phase)
coupling, respectively [8].

Introducing the polar decomposition of the fields, i.e.,
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B,p= V[Ezcos(p+P) —E,cos(p —P)] +2Q,1

1 2

and determine their stability. The steady-state equations
are

with @=AM, —p2 and the phase equations

E,B,p, = VE2cos(p+P)+QE, toE-, ,

E2 d, pz = VE
&
cos(p —P ) —QE2 coE—2,

(2.3c)

(2.4a)

(2.4b)

(a E—f g—Ez )E, + VE2cos(p) =0,
(a E—

2 gE—, )Ez+ VE, cos(p)=0,

V (E
&
+Ez )sin(p) —2QE, Ez =0,

V (E, E2—)sin(p) —2coE, E2 =0 .

(3.1a)

(3.1b)

(3.1c)

(3.1d}

showing that one of the phases is only determined up to a
constant.

Equations (2.1) admit the trivial solution E, =E2=0.
To determine the stability of this solution, we substitute
Ej=egj(t) with 0&e«1 into Eqs. (2.1) and linearize
with respect to e:

B,g, =a(& i ve'—~(2 i ng—, ,

B,(2=a(2 ive—'~g, +in(2 .

(2.5a)

(2.5b)

The time dependence of g, (t} is governed by the roots of
a characteristic equation which is easily solved to yield

A, =a+( —V e '~ —Q )'

A, =a —
(
—V e '~ —Q )' A, =A, "

3 4 3

(2.6)

For dissipative coupling, P=m. (2k +1)/2, the four roots
are

~J=a+(V2 —Q2)1/2, Q& v,
A~=a+i(Q —V )', Q) V.

(2.7a)

(2.7b)

kj =a+i(n + V )' (2.8)

and therefore a degenerate Hopf bifurcation at ath =0.
Note that if there is no net gain, i.e., for a=0, Eqs.

(2.5) describe the passive-cavity case which has been dis-
cussed in detail in [15]. In this paper we focus our atten-
tion on the lasing domain, corresponding to the inequali-

ty a)a,„.
III. DISSIPATIVE COUPLING

A. Steady-state solutions and their stability

In this section, we analyze the nontrivial steady-state
solutions of Eqs. (2.3) and (2.4) for dissipative coupling

I

Hence there is a degenerate steady bifurcation (A, =O is a
double root) at a =+( V —Q )' for Q & V and a degen-
erate Hopf bifurcation (A, purely imaginary) at a=O for
0) V. Hence the lasing first threshold is

a,h
= —

( V —Q )'~ for Q & V and a,h
=0 for Q ) V.

For conservative coupling, P=m.k, we have a pair of
doubly degenerate roots

Equations (3.1c) and (3.1d) determine the frequency co:

E2 E2
co —0 E2+E2

{3.2)

From the two amplitude equations, Eqs. (3.la) and (3.1b),
we derive the relation

(E, +E2 —a)(Ef E2 )
=—0,

which admits two solutions, either E10
=E2p or

E210+E20 a
(1) The solution E&o=Ezo implies co=0. The intensity

and the phase difference are given by

a + V cos(po)
sin(po) =—,

cos(po) =+(1—Q /V )'i

(3.3)

E1o=2 =
{3.4)

The existence of these solutions requires that 0 & V; then
cos(po) has two determinations, corresponding to two
branches that bifurcate at a=+(V —Qz)'~ from the
trivial solution.

(2) The solution with E&o+Ezo=a has a markedly
different behavior because to%0. The intensities and the
phase difference are given by

1/2
a a (1—g) —4(V Q}—

E =—1+
a (1—g) +4Q

E2o =& —E1o2 = 2 (3.5)

20
tan(po) =-

where n. /2& po& n. Two cases have to be considered. (i)

For Q & V these solutions exist for a (1—g) & 4( V —Q )

and oscillate harmonically with frequencies +co. They
are still referred to as steady-state solutions because the
corresPonding intensities E,o and E2p are time indePen-
dent. These solutions do not exist if g= l. (ii) For Q & V
the steady-state solutions (3.5) bifurcate at a=O from the
trivial solution, the frequency co being equal to the fre-

quency of the Hopf bifurcation at this point.
The stability of the steady-state solutions (3.4) and (3.5)

is governed by the eigenvalues of the Jacobian of Eqs.
(2.3). Linearizing Eqs. (2.3) around a given solution E]o,
E2p, and Pp, the Jacobian is

—2$E,oEzo+ V cos(po)

a —3E2o —gE'„
2 2E 1o

—E2o
sin(po)

E1oE2o

a 3E~o gE~o

2gE &oE2o + V cos(po)
2 2E 1o

—E2o—V sin(po) V
E 1%20

—VEzosin(po)

VE &osin(po)

E1o+E2o2 2

—V cos(po)
E1oE2o

(3.6)
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Substituting the solution (3.4) into Eq. (3.6), the eigenvalues of the Jacobian are found to be

Ai= —2[2Vcos(po)+a(1 —g)]/(1+(), A2= —2[a+ Vcos(po)], A3= —2Vcos(po) . (3.7)

It follows that the branch with cos(po) &0 is always stable and the branch with cos(po) &0 always unstable. At
a(1 —g)= —2Vcos(po) we have A, , =O if cos(po) &0. From this point on the unstable branch of solutions (3.4), the
branches of solutions (3.5}bifurcate. Substituting these solutions into Eq. (3.6) the characteristic equation is

A, +2aP, —[a (1—
g )+[2(1—g) —4Q /a ](Eio —Ezo) ]A, +—[a (1—g) +4Q ](Eio —E20) =0 .

2
(3.g)

Since the constant term of this polynomial is always
different from zero (except at the bifurcation where
E,o =E20) there are no steady bifurcations on this
branch. The condition for a Hopf bifurcation can be de-
rived as

dC = —2Vcos(p)[C+(1+()e "],
df

(3.12}

tion 1=a/[1+g+C(t)exp( —2at)], this equation be-
comes a linear equation for C ( t):

a2((1+()+(1+g+4Q /a )(E N E20) =—0 . (3.9) which is easily solved, and l(t) becomes

Since the left-hand side of this equation is always positive
there are no Hopf bifurcations on this branch.

In conclusion, for 0& V this branch bifurcates un-
stably and remains unstable. For 0& V an expansion
in powers of a yields for the roots of the characteristic
equation (3.8} A, , = —2a +8(a 2) and A,z 3=ki2(Q —V2)'~ +a (1—g)+8(a ). This shows that
the branches of solutions (3.5) bifurcate unstably from the
trivial solution, except if g= l. In this case the expansion
up to 8(a} is exact and the solution is a continuum of
marginally stable points since Re(A2 3)=0.

I (r) =Ei(r)

a(a +coo)'~ [Q+ Vcos(2coot —y, )]

(1+)}[Q(a +a)0)'~ +aV cos(2root —p2)]

(3.13)

COp coo(a + V)
tan(p, )=, tan(pi) =V' a V—

cop
(3.14)

where we set yp=0. The constants p& and y2 are defined
via

B. Periodic solutions and their stability

r},I=2I [a —(1+g)I+ V cos(p)], (3.10a)

B,p= —2Vsin(p)+2Q, (3.10b)

where I =E has been used. Note that Eq. (3.10b) is the
conventional locking equation, from which the phase
difference is obtained as

tan =—[ V+ cootan(coot +q&o) ],p(t) 1
(3.11)

where coo=(Q —V )'~ and pro is an arbitrary constant.
The expression for the phase difference can be substituted
into Eq. (3.10a). By means of the nonlinear transforma-

In the preceding section we found that there are no
stable steady-state solutions for 0 & V, except for the lim-
iting case /=1. Instead, let us show that there is a
branch of stable periodic solutions with
E&(t}=E2(t)=E(t). For solutions fulfilling this condi-
tion, Eqs. (2.3) reduce to

where 0&y ~~, j=1,2. The periodic solution defined
by Eqs. (3.11) and (3.13) exists for a &0 and Q& V, and
oscillates with a frequency independent of a. In terms of
the pump parameter a, it bifurcates at a=0 from the
trivial solution, together with the steady-state solution
(3.5). In terms of Q, the two branches of the steady-state
solution (3.4) coincide at Q= V. This limit point can be
considered as a degenerate Hopf bifurcation with zero
frequency from which the branch of periodic solutions
emerges. At this point all three branches coincide with
I =a/(1+/). Away from this point the periodic solu-
tions oscillate with a finite amplitude (Fig. 1). Note that
the solutions (3.11) and (3.13) can be analytically contin-
ued into the domain 0 & V. Indeed, using
coo=i(V —Q ) ~, the functions (3.11) and (3.13) ap-
proach the stable branch of solutions (3.4) in the long-
time limit.

To analyze the stability of the branch of periodic solu-
tions, we substitute in the Jacobian (3.6) E,o and E20 by
E(t), and po by p(t), where E(t) and p(t) are given by
Eqs. (3.11) and (3.13). In this way we find that the branch
of periodic solutions is linearly stable in the domain in
parameter space where it exists. The explicit calculation
of this stability analysis is presented in Appendix A.

To compare with the limiting case (= 1, we derive the
long-time limit of the general solution of Eqs. (2.1) for
Q & V, using a similar transformation as in [13]. The field
amplitudes EJ(t) and the phase difference p(t} are
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Ef 2(t)=

tan[@(t) ]=

a(a +ro2o)'~ [Q(1+R )+ron(l —R )+2RVcos(2root —|p))]

2[(1+R )Q(a +coo)' +2RaV cos(2ruot —tpz)]

2(1/Q)[ V+cootan(root)]+ [ V(1 —R) /2QR][1+tan (runt ) ]

1 —
j (1/Q) [ V+ruotan(root) ] j

(3.15a)

(3.15b)

where R is a constant parametrizing the family of solu-
tions. If R = 1, we recover the solutions (3.11) and (3.13)
with (=1. The steady-state solution (3.5) corresponds to
R =OorR~~.

To sum up the results of the previous two sections, the
laser behavior, as the pump parameter a increases above
threshold, is characterized by a constant output intensity
for 0 & V, and by a periodically modulated output inten-

sity for 0) V.

C. Locking behavior

The locking behavior of the ring-laser gyroscope is best
discussed by means of a so-called locking diagram. Such
a diagram displays the beat frequency as a function of the
rotation rate Q. The beat frequency is defined as the
average time derivative of the phase difference p:

0 &&QI d we recover the behavior of an ideal ring-laser
gyroscope, as can also be seen from Eqs. (3.11) and (3.13).
In this limit, the phase difference approaches
p(t) =, 2ruot =2Qt, leading to an observed beat frequency
which is linear in Q (Fig. 2).

Comparing the above results with the passive-cavity
case, which is essentially described by Eqs. (2.5) with
a =0 and P =@.(2k + 1)/2, we see that both the locking
range and the locking diagram are the same [15]. Lock-
ing occurs in the passive-cavity case since the eigenmodes
of Eqs. (2.5) are damped for Q & V. For Q ) V the eigen-
modes are harmonically oscillating with frequencies +Np
and the so-called Sagnac beat frequency can be observed.

IV. CONSERVATIVE COUPLING

A. Thecasea (&1

(3.16)

( () p ) 2 2(Q2 V2)1/2 (3.17)

Hence the locking range is given by QI d
= V which is in-

dependent of the pump parameter a (Fig. 2). For

6.0-

where T is the period of p(t). In the range 0&Q& V,
there is a stable steady state and (t),p) =0. The laser
gyroscope is said to be locked for this regime. For 0) V
there is a stable periodic solution (Fig. 1). Using Eq.
(3.11), the beat frequency is

For conservative coupling, the trivial solution becomes
unstable via a Hopf bifurcation at a=0. As in the case of
dissipative coupling for 0 & V, we expect that a branch of
harmonically oscillating solutions (with steady-state in-

tensity) and a branch of periodic solutions (with oscillat-
ing intensity) bifurcate from this point. To show this and
to make the connection to the passive-cavity case, we per-
form a local analysis in the vicinity of a =0. Our starting
point is the system of Eqs. (2.1), and we seek solutions of
the form

E) (r, t)=sE)t (7r, t)+s E zt(r, t )+s E)3(j t )+ ' ' '

(4.1a)

4.5-
20-

3.0-

1.5-

0.0

IC It Is It st st s~N Ic Ic ec g
r

rr

I )I g

s~~~~&

4a ~

15-

10-

5-

FIG. 1. Intensities Il of steady-state solutions (dashed and

solid lines) and maxima of the periodic solutions (crosses) vs

cavity-rotation rate 0 for dissipative coupling (a=4, V=2,
(=0.6). Solid lines and crosses indicate stable solutions, dashed

lines indicate unstable solutions. The square marks a steady bi-

furcation.

0
0

FIG. 2. Beat frequency vs cavity-rotation rate Q for dissipa-

tive coupling ( V=2, /=0. 6). The beat frequency is indepen-

dent of the pump parameter a. The dashed line corresponds to
the ideal case ((B,p) =20).
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E,(r, t) =sE» (r, t)+ s'E»(r, t )+s'E»(r, t )+
(4.1b)

We refer to this solution as a steady state. If A %0 for

j = 1,2, the following equations for the amplitudes can be
derived:

where ~=a. t and c, is de6ned through a =a2c, a2=+1.
The solution (4.1) can bifurcate either subcritically (i.e.,
a (0) or supercritically (i.e., a )0). This is determined
by the following calculation, together with the stability
property of the emerging solution (4.1). Substituting the
expansions (4.1) into Eqs. (2.1) and collecting all terms of
8(s) gives

( V —2Q ) I
—azcooVE

+ [(1—g) V +2(1+()coo]A f ) =0, (4.7a)

(V —2Q )[ azcoo—Vb, +

+[(1—g)V +2(1+/)coo]A~] =0 . (4.7b)

c},E)) = i VE—» iQ—E(),
d, E» = —iVE„+iQE» .

The solution of this system of linear equations is

(4.2a)

(4.2b) coo(coo —Q)

(1—f ) V~+ 2( 1+g)coo
(4.8a)

Note that at Q= V/&2 the amplitudes are undeter-
mined. Otherwise they are given by

= A, (&) &
e '+ Az(~) & e ', (4.3)

21 +

coo(coo+ Q )

(1—g) V +2(1+/)coo
(4.8b)

with coo=(Q + V )'~ and 5~=(coo+Q)/V. The slowly

varying amplitudes A are determined by an analysis of
the 8(s }equations which are

c},E&3 = t VE»——tQE&3

+(ap —IE)) I' —PIED) I')Eii —~Qii, (44a)

c},E» = i VE,3+—i QE»

+(a& —IE» I' —CIEii I'}E21 ~421 ' (44b}

Substituting the solution (4.3} into Eqs. (4.4) there appear
inhomogeneous terms oscillating with frequencies +cup,
which are also the eigenfrequencies of the homogeneous
equations. Such a situation leads to secular terms, i.e.,
diverging contributions. To avoid these divergencies, a
solvability condition has to be used to cancel terms in-
creasing without bound in time [17], which yields a sys-
tem of coupled equations for the amplitudes A '
2cooVb +c},A, = [a~2cooVb+ —25+ [2coo—(1—g) V ]A f

—4[(1—g)V +2coog]A q] A ), (4.5a)

2co Vk c} A ~
=

[ a~2co V6 4[( 1 g) V +2coog] A ]

—2b, [2co(~)
—

( 1 —g) V ]A q I A ~, (4.5b)

ia.
where we set A =A e '. The equations for the phases
n. are trivial. To proceed further, the steady-state solu-
tions of Eqs. (4.5) are determined. There are two degen-
erate solutions:

~pV 2

A )p=a2
(coo+Q)[2coo —(1—g') V ]

2 A2p 0,

COp V2

(coo —Q)[2coo—(1—g') V ]

(4.6a)

(4.6b)

The condition Ajp &0 imposes a2=1. Substituting these
solutions for the amplitude into Eqs. (4.3) yields a har-
monically oscillating solution with constant intensity.

2co Vb c},5A =[2co Vb, —4[(1—g)V

+2coog]A fo]5A, .

(4.9b)

Substituting Eq. (4.6a) for A &0 the roots of the charac-
teristic equation are

(1—g)( V —2Q )

(1+/)V +2Q
(4.10)

The solution (4.6b) yields the same eigenvalues. In terms
of 0, the branch of steady-state solutions becomes unsta-
ble via a steady bifurcation at Q, = V/&2. For Eqs.
(4.8), representing the branch of periodic solutions, the
linearized problem is

2co Vb, c},5A, = —4b, ~ [2co~—(1—g) V ]A, 5A,

—8[(1—g) V +2coog] A, o A ~o5 A ~,
(4.11a)

2co Vb, c},5A = —8[(1—g)V +2coQ]A, A 5A,

—4h [2coo—(1—g)V ]A~05A~ .

(4.11b}

Substituting Eqs. (4.8) for A &0 and A&0, the roots of the
characteristic equation are found to be

2(1—g)( V —2Q )

(1—g') V +2(1+/)coo
(4.12)

where the solutions exist only for a2 =1. Thus we found
two branches of solutions bifurcating at a=0. The
phases aj are in both cases undetermined.

To determine the stability of the solutions (4.6) and
(4.8) we substitute A =A 0+5A into the amplitude
equations (4.5) and linearize with respect to 5A . For the
steady-state solution (4.6a} the linearized problem is

2co Vb, c1,5A, = —4b, [2co —(1—g)V ]A, 5A, ,

(4.9a)
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Thus in terms of 0 the branch of periodic solutions be-
comes stable via a steady bifurcation at 0, = V/&2. The
bifurcations on the branches (4.6) and (4.8) occur at the
same value of Q=Q, . There is a vertical branch of
periodic solutions connecting these bifurcation points,
due to the indetermination of A from Eqs. (4.7).

It turns out that for g= 1 the solution (4.3} is an exact
solution of Eqs. (2.1), which is marginally stable since
A, , = —2 and A,z=O. This means that the expansions (4.1)
are limited to the first term.

solution of Eqs. (4.14) (see Appendix B).
The frequency derived from Eqs. (2.4) is given by

r
co —0

z
(4.15)

[2a —( 1+g)r]x —20y =0, (4.16a)

20(a r)x+—[[2a —(I+))r](a r)+—2V ]y =0 .

Under steady-state conditions Eqs. (4.14a) and (4.14b) can
be written as

B. Steady-state solutions and their stability

x =2EiEzcos(p), y =2EiE2sin(p),

z=E —E r=E +E
(4.13)

where x +y +z =r Wit. h these variables Eqs. (2.3)
are

As pointed out before, at a =0 there is a Hopf bifurca-
tion on the branch of trivial solutions where a branch of
solutions with constant intensity, referred to as steady-
state solutions, and a branch of periodic solutions
emerge. To examine the steady-state solutions away from
a ((1 the following transformation is introduced:

(4.16b)

In order to have a nontrivial solution for x and y, the
determinant of the coefficients must vanish, which yields
an equation for r'=2a —(I+()r:
r' —a(1 g)r—' +[40 +2V (1 +g))r'

—a(1—g)40 =0 . (4.17)

We first discuss the solution of this equation as a function
of the pump parameter a. Solving Eq. (4.17) for a gives

r'[r' +40 +2V (1+/)]
(1 g)(r—' +40 )

B,x =[2a —(1+()r]x —20y,

B,y = [2a —(1+()r]y —2Vz +20x,
B,z =2(a —r)z +2Vy,

d, r = [2a —(1+()r]r —(1—g)z

(4.14a)

(4.14b)

(4.14c)

Since r must be positive, it follows that a & r /2 which
can be shown to be fulfilled by Eq. (4.18). As r'~ ~ we

have r' ~ a (1—g) and therefore r ~ a. The local extrema
of a (r') correspond to the limit points of r'(a). a (r') has
local extrema at

ro = V (1+()—40 +[ V (1+()[V(1+/) —160 ]]'

These equations present a useful symmetry property: if
the set Ix(t),y(t), z(t), r(t)] is a solution, then the set

I x( t), —y —( t },—z ( t), r ( t ) ] is also a solution. Solutions
which are invariant under this transformation are re-

ferred to as symmetric solutions. Due to the symmetry of
Eqs. (4.14), steady-state solutions are degenerate. For the
special case g= 1, it is straightforward to get the general

(4. 19)

which is real for 160 & V (1+)). Hence Eq. (4.17) has
three real solutions if this condition is verified and the
solutions display a hysteresis domain when plotted versus
the pump parameter a. In terms of a, the loci of the limit
points in parameter space are given by

ao, 2(1 —g) =9[V (I+()—40 ]+ [V (1+()—16Q ]([V (I+()—160 ]+I V (I+()[V (1+()—160 ]]' ) .1

(4.20)

r'[ [r' —a(1 g)]r'+2V (1—+g)]
4[r' —a(1 —g)]

(4.21)

The two limit points coincide at 160 = V ( 1+g)
where ao, =aoz =27V (1+/)/[4(1 —g) ]. For 16Q
& V (1+/} it is straightforward to show that ao
&27V (1+/)/[4(1 —g') ]. For 0~0 we have ao, ~oo
and a02~8V (I+/) j(1—g) (see the solid lines in Fig.
3). In the limit /~1, the two limit points recede to
infinity.

%'e now discuss the branch of steady-state solutions as
a function of 0 by solving Eq. (4.17) for this parameter:

(1 k) +i [ 2(1 g)2 8V2(1+/}]1/2
1,2

(4.22)

which is real for a (1—g) )8V (1+/). Since, in the in-

terval (r', , rz), 0 (r') is negative, r'(0} has a gap at 0=0
in this case (Fig. 4). The condition for multiple solutions
is a (1—g) )27V (I+/)/4. If this condition is not
fulfilled, r '( 0 ) has no limit points, since

This function is negative for r'&0 and for r'&a(1 —g),
i.e., r' is confined to the interval (O, a (1—g) ). In terms of
r, this condition is a &r &2a/(1+/). In the interval

(O, a (1—g)) the function given by Eq. (4.21}has zeros at
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au~(1 —g) )27V (I+))/4 as pointed out before. Final-
ly, if we expand r as ro+ar

&
+ . with a ((1,we obtain

from Eq. (4.17}

2(Q +V )ro=0, r&
=

2Q + V (I+() (4.23)

FIG. 3. Loci of bifurcation points (dashed lines) and limit

points (solid lines) in the parameter plane (a, Q) for conserva-
tive coupling (V=2, /=0. 6}. The upper dashed line corre-
sponds to bifurcation points on branches of periodic solutions.
The lower dashed line corresponds to Hopf bifurcation points
on branches of steady-state solutions. In the hatched region the
laser gyroscope is unlocked. In regions I and II it is locked.
For a smaller than the value corresponding to the cusp formed

by the two solid lines, the boundary between locked and un-

locked domains lies in region III.

derived directly from Eqs. (4.3) and (4.6) in the small-a
limit.

The expansion for a ((1 yields that the steady-state
solutions bifurcate stably at a=0 for Q (Q, and unstably
for Q) Q, . As a increases, the unstable branch of
steady-state solutions remains unstable. For
Q, &Q& V&1+(/4, the branch of stable steady-state
solutions is destabilized via a Hopf bifurcation (Fig. 5).
For the values of V and g chosen in Fig. 5, it can be
shown graphically that there is only one Hopf bifurcation
on the steady-state branch. In the case of multiple solu-
tions (hysteresis domain), i.e., if Q& Vv'1+(/4, the
branch of steady-state solutions is destabilized at the lim-
it point ao& (Fig. 6}. We have observed that, in general, it
is not restabilized at the other limit point, i.e., at ao2,' an

example of this situation is displayed in Fig. 6. The ex-
ception is, however, a very small domain of values of Q
just below Vv'1+(/4. In this case the branch of steady-
state solutions is stable from the other limit point up to a
Hopf bifurcation.

Discussing the stability of the steady-state solutions in
terms of Q, the behavior is similar (compare the lower
dashed line in Fig. 3). As Q increases, the branch of
steady-state solutions is destabilized via a Hopf bifurca-
tion for 0&a & 3V&3(i+/)/[2(1 —g)] as shown in Fig.
7. This happens at Q=Q, for a (&1. Otherwise the de-
stabilization occurs at a limit point (Fig. 4).

C. Periodic solutions and their stability

The periodic solutions obtained from the small-a ex-
pansion, i.e., Eq. (4.3) with A given by Eqs. (4.8), can be
written in terms of the variables [x,y, z, r I as

32- -24

which is compatible with the result

2 Q +V
/E /

+/E
/

=(I+5, )/A
2Q + V (I+))

(4.24)

Qx = —4a—A, A2cos(2coot+a, —a2},

COp

y = —4a A
& A&sin(2copt +a& —a2),

z =4a A, A zoos(2coot +a, —az),
r =2a(A, + A~) .

(4.25a)

(4.25b)

(4.25c)

(4.25d)

24-

16- -12

8- -6

0
0.0 o.h 1.0

0
1.5

0
2.0

FIG. 4. Intensity differences z of steady-state solutions, maxi-
ma of the periodic solutions, and their period T vs cavity-
rotation rate 0 for conservative coupling (a=24, V=2, /=0. 6}.
Same conventions as in Fig. 1 for lines and crosses.

These solutions are symmetric as can be seen from the
change of t into t +n. /2coo. In terms of the variables E„
E2, and p, the symmetry of these solutions takes the form
E2(t) =E&(t + T/2) and p(t + T/2) =p(t)+m. where T is
the period. It was proved in Sec. IVA that these solu-
tions bifurcate unstably at a =0 for Q (Q, and stably for
Q) Q, .

For Q )Q„ it was found numerically that for
suSciently large Q, the branch of symmetric periodic
solutions remains stable. For smaller values of Q, this
branch has a finite domain of instability, beginning and
terminating with symmetry-breaking bifurcations. This
pair of bifurcations is connected by two branches of
stable asymmetric periodic solutions. These two asym-
metric branches of solutions are related by the transfor-
mation Ix,y, z, r J ~ I

—x, —y, z, r I . In the origin—al rep-
resentation of Eqs. (2.1), the asymmetric solutions corre-
spond to quasiperiodic solutions.

For Q, )Q) VV'I+//4 the branch of unstable sym-
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FIG. 5. Intensity difFerences z of steady-state solutions and (a) maxima of the periodic solutions, (b) minima of the periodic solu-

tions, vs pump parameter a for conservative coupling (0=1.2, V=2, /=0. 6). Same conventions as in Fig. 1 for lines and crosses.
Circles indicate unstable periodic solutions and black squares mark Hopf bifurcations.
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metric periodic solutions becomes stable at a very special
bifurcation point, which is both a symmetry-breaking bi-
furcation and a limit point for the branch of asymmetric
solutions which emerge from the Hopf bifurcation on the
branch of steady-state solutions. This is clearly displayed
in Fig. 5.

In Fig. 3 we have summarized the stability results for
the conservative case in the (a, Q) plane. The upper
dashed line is the locus of symmetry-breaking bifurca-
tions that appear on the branch of symmetric periodic
solutions. All the other lines refer to instabilities of
steady-state branches and have been documented in pre-
vious sections. A homoclinic point occurs at
(a, Q) =(3Vi/3(1+/)/[2(1 —g)], Vi/1+//4) as far as
numerica1 simulations can be trusted. From this point, a
cusp emerges, which is formed by the two solid lines in

Fig. 3 whose equations are given by Eq. (4.20). For
0& Vi/1+(/4, the bifurcation diagram is drastically
modified, as shown by comparing Figs. 5 and 6. We first
notice that the steady state becomes bistable. The main
modification, however, is the disappearance of the
symmetry-breaking bifurcation on the branch of periodic
solutions which now splits up in two branches. The
branch of periodic solutions emerging from the origin is
still unstable. However, it ends abruptly with a horno-

clinic point which has the same coordinate as the limit

point ao2 [defined by Eq. (4.20)]. Likewise, at the other
limit point, ao&, a new branch of periodic solutions

emerges from a homoclinic point. This second branch,
however, is stable. This situation is similar to the case of
dissipative coupling.

Note that if we scan the (a, 0) plane vertically, keeping
a constant but less than the cusp value

3 Vi/3(1+ g) /[2(1 —g) ], the symmetry-breaking bifurca-
tion always occurs (Fig. 7). Thus the domain between the
dashed lines in Fig. 3 is characterized by the existence of
stable asymmetric periodic solutions.

To sum up the results of the previous two sections, the

laser behavior just above threshold is characterized by a

constant output intensity for 0 & Q„and by a periodical-

ly modulated output intensity for 0 & 0, . When a is fur-

ther increased, a quasiperiodic regime appears for 0 veri-

fying either 0, )Q) Vi/1+//4 or 0—0, «1. For
sufficiently large values of the pump parameter a, the out-

put intensity is always periodically modulated. The
domains in parameter space where the intensity is con-
stant or quasiperiodically modulated decrease with the
backscattering rate V. The limiting case /= 1 is dealt

with in Appendix B.

FIG. 6. Intensity differences z of steady-state solutions and

maxima of the periodic solutions vs pump parameter a for con-
servative coupling (0=0.4, V=2, /=0. 6). Same graphical con-

ventions as in Fig. 5.

D. Locking behavior

For a « 1 an analytical expression for the beat fre-
quency as a function of 0 can be derived using Eq. (4.3).
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FIG. 7. Intensity differences z of steady-state solutions and (a) maxima of the periodic solutions, (b) minima of the periodic solu-
tions, vs cavity-rotation rate 0 for conservative coupling (a =8, V=2, /=0. 6). Same graphical conventions as in Fig. 5.

For Q(Q, the steady-state solution (4.6) is stable and
(B,p) =0. For Q)Q, the periodic solution (4.8) is
stable. With Eqs. (4.25a) and (4.25b) the phase difference

p is determined by

COp

tan(p) = tan(2toct +a, —az), (4.26)

where tan(p)=y/x has been used. Calculating the in-
tegral (3.16) with Eq. (4.26) the beat frequency is

&a,p) =2co0=2(Q + V )'~' (4.27)

Thus for a &&1 the locking range is given by QL, =0,.
At 0=QL, the beat frequency as a function of 0 shows
a gap. If the pump parameter a is relatively small the sit-
uation is similar to the passive-cavity case, since the
passive-cavity eigenmodes are described by solution (4.3)
with A~ arbitrary constants and either A& =0 or A&=0.
These eigenmodes have a frequency difference 2cop. Thus
there is no locking in the passive-cavity case. The gain
saturation or nonlinear coupling of the modes determines
the competition between them and causes one of the
eigenmodes to be extinguished for small Q. Which one is
extinguished depends on the difference in gain for the
eigenmodes. Hence if the ring laser is set into rotation no
beat frequency can be observed since only one of the
eigenmodes is present; the laser gyroscope is locked since
(B,p) =0. Increasing Q the nonlinear coupling weakens
and two-mode oscillations with a Sagnac-related beat fre-
quency are observed. This explains the gap in the ob-
served beat frequency.

For a (3V&3(1+/)/[2(1 —g)], the locking diagram,
as displayed in Fig. 8, is similar to the case a &( I, except
that the end of the locking range does not coincide with
the Hopf bifurcation on the branch of steady-state solu-
tions. A manifestation of this difference is seen in the
time behavior of the phases. Somewhere on the branch of
asymmetric periodic solutions, between the Hopf bifurca-
tion on the branch of steady-state solutions and the
symmetry-breaking bifurcation, the phase difference IJ,(t)

displays a transition from a periodic to an increasing
function. The occurrence of different behaviors of p has
also been reported by Chyba in [13], though without
correlating it to the topological properties of the fields.
Looking at the field portraits in the (x,y) plane, we ob-
serve that the orbit does not include the origin when p is
periodic, whereas it does include the origin otherwise
(Fig. 9). This is in agreement with a recent analysis
which relates in a similar way the topology of the field
portrait to the behavior of the relative phase [18]. For a
periodic function IJ,(t), the beat frequency defined by Eq.
(3.16) is zero. In the other case, we have determined the
beat frequency numerically by integrating Eqs. (4.14), cal-
culating the period T of the orbits to get (B,p, ) =n. /T.
Hence, for increasing 0, the laser gyroscope becomes un-
locked and suddenly a beat frequency larger than expect-
ed in the absence of backscattering is observed.

For a )3 V&3(1+g) /[2(1 —g) ], the locking range
ends at the limit point where the steady-state solution is

20-

15-

10-

5&

r

rr I
r

0

FIG. 8. Beat frequency vs cavity-rotation rate 0 for conser-
vative coupling (a=g, V=2, g'=0.6). The dashed line corre-
sponds to the ideal case ( (B,p ) =20).
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FIG. 9. (a) Field portraits in the plane (x,y) and (b) corresponding phase differences p(t) for solutions on the branch of asymmetric
periodic solutions of Fig. 7 for A=1.27 [p(t) periodic] and 0= 1.28 [p(t) increasing, the field portrait includes the origin marked by
a cross].

a,E, =(a fE, f' fE, f—')E, i-VEz-
+(1 g)E~E2E2 —i QE, ,

— (4.28a)

destabilized. Since the branch of periodic solutions is ap-
proaching a homoclinic orbit at the limit point there is no
gap in the locking diagram because a homoclinic orbit
has infinite period (Fig. 10). Thus the laser gyroscope un-
locks in a way similar to the dissipative coupling case.
This is due to the fact that for large values of the pump
parameter a the nonlinear coupling of the electric fields

E& and E2 due to gain saturation becomes larger than the
strength of the conservative linear coupling. Since this
nonlinear coupling is of dissipative character the gap in
the locking diagram vanishes. This dissipative character
can be seen by separating terms containing g in Eqs. (2.1)
and writing them as

a,E,=(a —fE, f' —fE, f')E, —iVE,

+(1 g)E2E;E—, +iQE~ . (4.28b)

V. CONCLUSIONS

Considering the nature of the coupling terms
(1 g)E,EzE—2 and (1 g)EzE,'E—„ the resulting cou-

pling matrix has a dissipative character. The critical
value of the backscattering rate above which the back-
scattering is of conservative nature is given by
V, =2a (1—g)/[3v'3(1+()]. A sitnilar case is discussed
in [14]. For large values of Q the nonlinear coupling is
diminished and the system behaves as a truly conserva-
tively locked laser gyroscope, i.e., the observed beat fre-

quency approaches the ideal limit from above. The lock-
ing range decreases with increasing a (see upper solid line
in Fig. 3).

10.0-

7.5-

5.0-

2.5-

FIG. 10. Beat frequency vs cavity-rotation rate Q for conser-
vative coupling (a=24, V=2, (=0.6). The dashed line corre-
sponds to the ideal case ( (B,p ) =20).

Discussing the stability of the solutions of the non-
linear Eqs. (2.1), we derived the locking behavior of the
ring-laser gyroscope for the limiting cases of dissipative
and conservative coupling. In the case of dissipative cou-
pling, the locking range for the nonlinear problem is
found to rnatch the locking range neglecting the gain,
losses, and saturation. Thus the locking behavior is
determined by the characteristics of the passive-cavity
case. However, the nonlinear coupling due to the gain
saturation leads to intensities oscillating very anharmoni-
cally near the locking threshold Ql d. In the limit

O&&QL d the intensities oscillate harmonically and are
identical to the ones found in the case of a passive cavity.

In the conservative case, the locking behavior is com-
pletely determined by the nonlinear coupling, whereas for
the dissipative case, it is solely determined by the
strength of the backscattering. For suKciently low

pump, the passive-cavity eigenmodes can be used as a
good approximation of the exact eigenmodes. However,
in the case of an active cavity, the ring-laser gyroscope is
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locked for 0(QL, as well. The locking diagram
displays a gap at the locking threshold QL, . As the
pump increases, the passive-cavity eigenmodes are found
to become less and less useful. The frequency jump van-
ishes. The locking diagram then resembles the one for
dissipative coupling, as it starts with a zero beat frequen-
cy and increases as a function of Q. However, at a cer-
tain rotation rate it exceeds the limit of an ideal laser
gyroscope. This is in contrast to the case of pure dissipa-
tive coupling. In general, in the case of conservative cou-
pling the locking range is always smaller than in the case
of dissipative coupling and can be decreased further by
increasing the pump parameter a (Fig. 3).
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APPENDIX A: STABILITY OF PERIODIC
SOLUTIONS FOR DISSIPATIVE COUPLING

Substituting E&D=EzQ=E(t} and pa=p(t), where E(t)
and p(t) are given by Eqs. (3.11) and (3.13), into Eq. (3.6)
the system of linear equations with periodic coefficients
governing the stability of the branch of periodic solutions
1s

a —(3+/)E (t)
8, ez = 2(E (t)—+ Vcos[p(t)]

Pi 0

2' (t—)+ Vcos[p(t)] —VE(t)sin[p(t)]
a —(3+/)E (t) —VE(t)sin[p(t)] ez

0 —2Vcos[p(t)] pi
(Al)

where e„e2, and p& are small deviations from E&p E2p,
and p0. Adding and subtracting the first two of Eqs. (Al)
we get the following system of equations:

B,e', = [a —3(1+/)E (t)+ Vcos[p(t)]]e'&

1

ez = —1 exp f dt [a —(3—()E (t)
P&

—2 VE(t)sin[p(t) ]p, , (A2a) —Vcos[p(t)]]
B,ez = [a —(3—g)E (t)—Vcos[p(t)]]ez,

B,p&= —2Vcos[p(t)]p& .

(A2b)

(A2c)

et d, E(t)
ez = dtE(t)
p&, d, p(t)

ei
ez = 1 exp f dt ja —3(1+))Ez(t)
P&

(A3a)

+ Vcos[p(t)]], (A3b)

Here e', =e, +ez and ez=e, —ez. By means of Eqs. (A2)
the set of fundamental solutions of Eqs. (Al) is obtained
as

Solution (A3a) corresponds to the one with a Floquet
multiplier of unity and is bounded, since the derivatives
of E(t) and p(t) are bounded. To evaluate the integrals
in Eqs. (A3b) and (A3c) we use Eq. (3.10a) to express he
integral over I:

f dt I(t)= 2at —lnI(t)

+2Vf dt cos[p(t)] ' . (A4)

Substituting this expression the integrals in Eqs. (A3b)
and (A3c) are

dt a —3 1+ I t + Vcos p t = —2at+ —', lnI t —2V dt cos p t (A5a)

f dt[a —(3 g)I(t) —Vcos[p(t}]—] = . —2(1 g)at+(3——g)lnI(t)/2 4Vf dt cos[—p(t)]1+ (Asb)
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Apart from a constant the remaining integral in the
right-hand side of Eqs. (A5a) and (A5b) is evaluated as

2vf 'dt. os[i (t)) =1 ""+""'"("/2][
1+tan ( coot +yo)

(A6)

which is a bounded function of t. So is lnI(t). Hence the
integrals in Eqs. (A3b) and (A3c) decrease exponentially
as exp( 2a—t) and exp[ —2(1 ()—ctt/(I+()], respectively.
Note that (&1. Thus the solution given by Eqs. (3.11)
and (3.13) is stable in the domain in parameter space
where it exists.

BtX = 2'
B,y' = —2 Vz'+2Qx',

B,z'=2Vy' .

X
y' =C&

.z' .

COp

0 + —
C& cos(2coot )0

V
V —C—0

The solution of Eqs. (84) is

C2

(84a)

(84b)

(84c)

APPENDIX B: THE CASE 4'= 1
FOR CONSERVATIVE COUPLING

For conservative coupling, it is easy to deal with the
well-known case (= 1 (see [13])using the variables (4.13).
Equations (4.14) simplify considerably in this case:

t),x =2(a r)x —2—Ay,

d,y =2(a r)y —2—Vz +2Qx,

B,z =2(a —r)z +2Vy,

d, r =2(a r)r . —

(8 la)

(8 lb)

(81c)

(8ld)

The solution of Eq. (Bld) which is only dependent on r is

r(t)= 2Q

2+C
(82)

x (t) =r(t)x'(t), y(t) =r(t)y'(t),

z(t) =r(t)z'(t),
(83)

where x' (t)+y' (t)+z' (t)=1, the following linear sys-

tem of equations can be obtained:

with Cp an arbitrary constant. Introducing the transfor-
mation

C3

+ C2

V—C—0

sin(2coot), (85)

with coo=(Q2+ V )'t . From the condition x' (t)
+y' (t)+z' (t) =1 there is a constraint on the constants
C&, C2, and C3..

co C+ (C+C) =11 1
0 V2 1 ~2 2 3 (86)

0
C~ =4—A, A&sin(a&

—az)
(87)

is selected, with A, A2 = V/4coo from Eqs. (4.8). Similar-

ly the steady-state solutions (4.6) correspond to
C, =+V/coo and C2 =C~ =0.

In the long-time limit we have r (t) =a and the solution is
given by (85), apart from a multiplication by a. Compar-
ing the family of solutions (85) with the result (4.25) from
the expansion for a «1, we see that for (~ 1 the solu-
tion

0
C, =0, C2= —4—A, A2cos(a, —a2),
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