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Generalization in an analog neural network
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We analyze the generalization ability of an iterated-map neural network when an extensive number of
patterns is stored through a Hebbian learning mechanism. We show that the model is able to create a
concept representative of a set of correlated patterns if a critical minimum number of patterns is present-
ed. This critical number depends on the correlation among the patterns, the slope of the transfer func-
tion at the origin, and the ratio between the number of memories and the total number of neurons.

PACS number(s): 87.10.+e, 64.60.Ht, 75.10.Nr

I. INTRODUCTION

One of the most interesting issues of neural-network
models is their generalization capacity, i.e., the ability of
the system to create a concept that represents a set of
patterns. In other words, irrespective of fine details, the
network will be able to generalize if it succeeds in captur-
ing the common features shared by the patterns. This
problem has been studied mainly in the context of feed-
forward networks [1-4], where the system is trained to
infer an optimal rule which maps a particular set of in-
puts to a given set of outputs. When the system learns
how to solve a certain set of examples, it eventually
reaches a configuration in which, for any subsequent in-
put, the correct output is inferred.

In a recent work [5], Fontanari analyzed the generali-
zation capacity of the Hopfield model with a two-level
hierarchical organization of its memories. He found that
the system is able to generalize when the sets at the lower
level are composed of a minimum number of patterns. In
this kind of model, generalization means that, as the
number of patterns in each branch increases, the system
loses the capability for recognizing single patterns, but in-
stead it creates a representation that contains the com-
mon features of each set. In the context of feedback net-
works, it has been found that models with continuous-
state variables and deterministic dynamics perform better
than discrete-stochastic systems. From a biological point
of view, a continuous (generally sigmoidal) input-output
relation is more realistic than the simpler step transfer
function.

In a series of interesting papers, Marcus, Waugh, and
Westervelt have studied the dynamical properties of ana-
log feedback neural networks in the context of associative
memory [6—8]. In particular, they proved that under
general conditions, these models present two important
properties for the implementation of fast computing de-
vices, namely, (i) the stability problems inherent to the
parallel dynamics of two-state networks can be
suppressed [6], and (ii) the number of spurious attractors
can be greatly reduced [8]. Trying to provide more in-
sight into the behavior of this kind of system, we study in
this work the dynamical behavior of a neural network
modeled by real-state variables, and whose dynamics is
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defined by a set of coupled nonlinear maps with parallel
updating. Taking into account the properties found by
Marcus, Waugh, and Westervelt, we study whether the
use of analog neurons also improves the performance of
these models as categorizing devices.

In Sec. IT we define the model: its dynamics, its archi-
tecture, how it stores information, its relation with the
generalization task, and the magnitudes of interest. In
Sec. III we first perform a statistical analysis of the mod-
el, and find a set of equations for the relevant magnitudes.
We then solve the equations and present our results for
two important cases: (i) when the input-output relation
approaches a step function, and (ii) for general values of
the slope of the transfer function at the origin. Finally, in
Sec. IV we present a discussion of our results.

II. THE MODEL

The system is composed of N neurons whose states at
instant ¢ are represented by the real-valued variables
X (¢t), i=1,...,N. The whole network is updated in
parallel according to the deterministic dynamics defined
by the following system of coupled maps:

X,(t+1)=tanh[gh,(1)], i=1,...,N , )

where g is the gain parameter of the transfer function and

N
hi(t)y= 3 J;X;(t) ()

4
j=1

is the input to neuron i at time ¢. J;j is the symmetric

sinaptic matrix that fully connects the neurons, and is

defined by the following Hebbian rule:

1 2
Jijzjv‘ 21 §f“§7’ Ji=0, (3)
=

where {&/==x1}, with u=1,...,p, are the stored pat-
terns. In order to study the generalization properties of
the model, we first create a random configuration {7},
where 7;£1 with equal probability. This configuration
will have the common features of a set of s patterns. The
components of these s patterns are statistically indepen-
dent random variables chosen according to the following
distribution:
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P(EH)=1(1+7,b)8(E4—1)+1(1—m;b)8(E+1), @)

with 0<b <1. We will consider the case in which s is
finite and p =aN. The components of the remaining p-s
patterns are also statistically independent random vari-
ables, taking the values =1 with equal probability. With
this choice, the model has the simplest possible hierarchi-
cal organization that allows the storage of an extensive
number of memories. The configuration {7} can be
thought as a concept not explicitly present in the learning
rule but introduced through s noisy examples. The pa-
rameter b measures the proximity between each example
and the concept.

Much work has been done to overcome the limitations
of the Hopfield model for storing correlated patterns
[9,10]. In these papers the retrieval properties of neural
networks with hierarchically correlated memories are
studied by introducing new learning rules. In the present
work we do not focus on the retrieval problem, but we
consider instead the learning process as a training stra-
tegy, i.e., we look for the minimum number of examples
required by the system defined by Egs. (1)-(4) in order to
have the concept as an attractor. Although all these sys-
tems share a hierarchical structure, the nature of the
problems is different, and the results cannot be easily
compared.

We are now interested in the asymptotic behavior of
the overlap between the state of the system and the con-
cept, given by

N
m, (=L S X0 . (5)
N =
Let us define the generalization error €, as the Hamming
distance between the concept and the asymptotic state of
the network. Then ¢, is related to the value of m, at the
fixed points of the maps given by Egs. (1) through

_1=m,
&=

(6)

III. STATISTICAL ANALYSIS
AND FIXED-POINT EQUATIONS

We start by looking for the overlaps between each
memory and the fixed-point state {X;*} of Egs. (1):

1
= SEEX* u=1,....p . 7
m N}}_‘,& S p=L...,p )

Following the ideas introduced by Marcus, Waugh, and
Westervelt [8], we search for a set of self-consistent equa-
tions for these overlaps. Taking into account that

X*= tanh [g 3 Eimt ] ) (8)
u

and using the self-averaging property, we can rewrite
Egs. (7) as

m“=<§"tanh [g%?‘m“]) , 9)

where ( ) denotes an average over the random variables
{&*} and {7;}, in this order. Since we want to recognize

the concept (and not the memories) and it has the same
overlap with all the examples, we only consider solutions
having the same macroscopic overlap with the s exam-
ples, and an overlap of order O(1/N 172 with the remain-
ing p-s patterns. In other words, we are interested in
symmetric solutions of the form

]> , (10)

g [msz:+ Z §“m“

smg= <zs tanh
u(>s)

where
s
z,= Y &
n=1

We consider the approximation in which, in order to
average over the s first £ variables, z; is treated as a
Gaussian variable, with mean value sbn and variance
o?=s(1—b?). Note that, at this stage, the average over
1 has not yet been performed. For finite values of a, the
second term in the argument of the transfer function is a
Gaussian variable with mean value zero and variance
oi=alg —C)/g(1—C)% Here, we have used the previ-
ous results of Marcus, Waugh, and Westervelt [8]. Cis
defined by

C= <g sech?

g(mz+ 3 §”m“”>. (11)

pl(>s)

After averaging over the Gaussian noise, the random
variables z, and 7, in this order, we arrive at the follow-
ing set of coupled equations:

m5=3szth[(b +0,z/s)tanh(®™)

—(b—o0,z/s)tanh(®7)], (12a)

-8 2@t 2@
=% [ Dz [ Dh[sech™(@*)+ sech*®7)],  (12b)

with @ =m (zo ,tsb)+ 0,k and

Dz= j%r exp(—z2/2), Dh= \f;’_ﬂ exp(—h2/2) .

A similar analysis for the overlap m, leads to the follow-
ing expression:

m.=1 [ Dz [ Dh[tanh(®")— tanh(® )] .

(12¢)

In the next section, we study the numerical solutions of
Eqgs. (12).
A. The limit of infinite gain

In the limit g— o, the equations for mg, C, and m,
take the form

. :‘/mms(l—bz) exp _ (mysb)®
s A 2A2
+b erflmiSb ] , (13a)
Vv2A
12 (mgsb)?
= A2 exp | — Az , (13b)
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FIG. 1. Generalization error €, vs number of examples s in
the limit g — o« for »=0.2 and =0, 0.1, 0.5, and 1.

= erf msb (130)

m.=er V3a | c
where A?=s(1—b*)m2+a/(1—C)%

In Fig. 1 we show the generalization error €, versus the

g
number of examples s for different values of a and for

b=0.2. As a grows so does the noise due to the uncorre-
lated patterns, and consequently the system must be ex-
posed to a greater number of examples in order to gen-
eralize. Given a fixed value of a, there exists a critical
value s, above which the system starts recognizing the
class in a continuous way, in contrast with results found
for the Hopfield model, where the transition is discon-
tinuous [5]. For s >>1, m —1, m;—b, and €, falls off
exponentially as

~ | -, 14
g 27172 €Xp 27, (14)
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FIG. 2. The critical lines b(s) in the limit g— o for
a=0.05, 0.1, 0.5, and 1. The system begins to generalize above
the corresponding line.
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FIG. 3. Generalization error €, vs b in the limit g— o« for
s=50 and for =0, 0.1, 0.5, and 1.

with

_ 1—b?
Y11= sz .

Since close to the transition m, <<1, we expand Eqgs.
(13a) and (13b), obtaining the following relation for the
critical values a,, b, and s,:

—2,4 2
1), 15
a, b/(s,—1) (15)

which is in agreement with previous results [11,12]. In
Fig. 2, we present the critical lines b,(s.), above which
nonzero solutions of Eq. (13a) appear for different values
of .. It is important to note that a, diverges with s, and
is not related to the critical storage capacity of the net-
work. Below these lines, the system presents either spin-
glass or retrieval solutions, depending on the value of a.
The detailed study of these solutions will be presented in
a future paper.

If we demand that the system creates a representation
of the concept without error, when a fixed number of ex-
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FIG. 4. Generalization error €, vs s for g=1, 5=0.2 and for

a=0,0.1,0.5,and 1.
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FIG. 5. The critical lines b (s), above which the system gen-
eralizes, for g=1 and g — o, with a=0.1.

amples is presented to it, then conditions b ~1 and a~0
must be fulfilled, and the error takes the same form as in
Eq. (14):

Y2

2

, (16)
2y,

€ exp

where

_a+sbX(1—b?)

B s2b* '

Figure 3 shows €, versus b for s =50 and for several
values of a.

2

B. The finite-gain case

Solving numerically Egs. (12), we study the perfor-
mance of the network for general values of the gain pa-
rameter g. In Fig. 4 we can see €, versus s for g=1,
b=0.2 and for different values of . Comparing these re-
sults with those obtained in the case g— o, we observe
an improvement of the network generalization capacity:
the system needs fewer instances of the concept in order
to begin to generalize. This improvement can be better
seen in Fig. 5, where the critical lines b (s.) are shown
for a=0.1 and for two values of g. Finally, Fig. 6 com-
pares the generalization error versus s for g=1 and
g — o, with b=0.1 and a=0.1. Note that, although for
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FIG. 6. Generalization error €, vs s for g =1 and g — o with
b=0.1,a=0.1.

g =1 the transition occurs for a smaller number of exam-
ples, the system with g— o works better when we re-
quire a small error €, (s >>1).

IV. DISCUSSION

In this work we showed that an analog neural network
is able to classify a certain number of inputs according to
their proximity, i.e., to generalize, provided a minimum
number of examples of the class is presented to it. If
compared with the two-state limit of the model (g — ),
finite values of the gain parameter introduce small im-
provements in the generalization capacity, that is, a
smaller number of examples is needed in order that the
network starts to generalize. In a future work we will
present a detailed analysis of the different phases of this
kind of model when correlation among the patterns is
present.

Finally, we believe it would be interesting to study the
generalization problem in feedback networks by working
in the space of interactions, trying to find an algorithm
for adjusting the couplings so that the generalization abil-
ity of the system is optimal.
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