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Initial events of protein folding from an information-processing viewpoint
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The initial events of protein folding can be described by the time evolution of a neural network
through the use of polymer-kinetics theory, where the fundamental variables are residue contacts. The
contact energies are analogous to chemical activation potentials. The resulting recurrent neural network
behaves like a partially frustrated spin system interacting with a random external field. A dynamical
phase diagram is derived from numerical studies of the model, and the basins of attraction for the net-
work are studied.

PACS number(s): 87.15.Rn, 87.15.Da

I. INTRODUCTION

Amongst their many applications, neural networks
have recently been used to predict secondary structure
[1—3] and tertiary structure of proteins [4—7]. At the
same time, the physical process of protein folding has
been studied [8—11] using ideas from the theory of spin
glasses. Many properties of neural networks can be ana-
lyzed using spin-glass theory. A family of energy func-
tions for folding proteins called associative memory
Hamiltonians has been introduced [4] with motivation
from the spin-glass theory of neural nets. Most neural
networks applied to protein structure, however, have not
been constructed on the basis of some physical analogy.

In this paper, we will discuss a way in which neural-
network equations for protein-structure prediction can be
derived from the physics of protein folding while focusing
on information-processing considerations. How can we
imagine that the protein as a computer can perform the
immense calculation leading from the initial disordered
state of a chain of amino acids to an "optimized" native
folded state while avoiding the trap of multiple minima?
It is natural to expect the possibility that a protein carries
instructions for a correct set of paths through intermedi-
ate steps, thus breaking the problem up. This will limit
the number of possible minima and lead to a much

simpler computational task. The question is, can most of
the Levinthal problem [12]be overcome in the first stages
of the folding?

We describe the early stages of protein folding using
contact variables giving the proximity relations between
different residues [13]. The kinetic equations for these
contact variables have the same structure as feedback
neural networks. The feed-forward networks that have
been used represent a short-time approximation to these
dynamics. The relationship between feedback neural nets
and the early events in folding can be exploited in two
ways. First, it can be used to design architectures for
protei. .-structure-prediction neural networks that have
some basis in physical processes. Second, one can use the
relatively well-developed theory of the basins of attrac-
tion of neural networks to examine, in a crude way, some
of the general features of the early stages of protein fold-
ing. This latter development complements nicely the

thermodynamic spin-glass theory, which concentrates on
the long-time-scale processes.

The organization of this paper is as follows. In the
next section we describe the free-energy functionals of
proteins written in terms of the contact variables and
show that the corresponding kinetic equations lead to a
neural-network formulation. In the third section, we ex-
amine how these feed-forward neural-network equations
describing the early events in folding behave in relation
to the thermodynamic properties of the model. In the
Conclusion, we speculate on how these ideas may be ap-
plied for real proteins.

II. KINETIC EQUATIONS
FOR CONTACT VARIABLES

1 if j is within a shell of (p,p+dp) from i
gP. . =

0 if j isnot.

The description of a protein in terms of a distance matrix
involves an integrated version of this variable,

S~~ OPJ dp (2)

which becomes equal to l if the ith residue is close
(within a distance p) to the jth residue and 0 otherwise.
These variables were predicted from sequence in the
Copenhagen feed-forward neural networks [5]. The same
variables also play a role in the approach to protein struc-
ture based on associative-memory functions [4]. The

There are many ways to represent the tertiary struc-
ture of a protein. The most familiar specification of this
structure consists of the coordinates R;, of each of the
atoms or of the backbone atoms in a protein. Alterna-
tively, we could give the pair distances between each of
the pairs of the atoms, but this is an overdeterrnined set.
The success of NMR structure-determination methods
show that, in fact, only a small fraction of the pair dis-
tances need to be known with some degree of accuracy in
order to reproduce the structure of a protein. We take in
this paper, then, the basic variables to be density vari-
ables O.P, which measure the correlation between the ith
and jth residue on the protein backbone. We define O.P

as
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associative-memory Hamiltonian for a protein is written
in terms of the backbone coordinates as

H, =A, g g y('(q(', q, , q('q, ).8(r,, r—(,')+Ho
p i,j

(& (j)
=A, g g y "cr;"o,, +Ho,

term:

Fpo =kj( T g f cr,j 1Ilcr,jdp .
l7J

The higher-order terms may be expanded in orders of the
contact densities

b,F = g W, o, + g g W;.k(cr,)crk(+
l7 J ij k, l

where A, is a scaling constant and y, j( qt', q;, q "j, qj ) is
a comparison function which was originally chosen to be
related to the hydrophobic charge, p is an index for the
memories, and 7' stands for the target. 8 is a pairwise
distance overlap function and Ho is the part of the energy
that includes the constraints of backbone geometry and
chain connectivity. If one notices the resemblance of the
o variables to spin variables, we see that this interaction
energy resembles that of a Hopfield spin system [14] (but
the spins already refer to pair variables and thus are fields
rather than interaction terms).

At first sight it is difficult to write the free energy in
terms of these contact variables because of the chain con-
nectivity part of the Harniltonian Ho. One can, however,
introduce fields proportional to the o;j(p) and calculate
the partition function of a chain with a prescribed set of
fields. The usual procedures of liquid-state density-
functional theory [15,16] then give us the general form of
the free energy coming from the chain connectivity con-
straints. It has the form of

F (o;()=Fpo(cr;()+hF (o;j),
where Fpo(o, ) is a Boltzmann "perfect-gas" entropy

I

st= f' o&,'dp,

Fpo =k((T g s;. lns,"+(1—s,, ) ln(1 —s,, )
f7J

bF = g Wiojs;(+ g g W; k(s; sk(,
i J k, lf7J

where, of course, the Taylor coefficients in the functional
expansion will be different. These coefficients, 8', are
properties of connected polymers and do not depend ex-
plicitly on the sequence. We also point out that certain
contacts are formed through hydrogen bonding, for
which there are stoichiornetric constraints. Thus if we
choose densities corresponding to the formation of an a
helix, cr; or P sheet, cr~, then the perfect-gas entropy
should be rewritten in terms of the number of bonded
contacts giving a free energy of the form

The first term here measures the free-energy gain for
forming the contact (i,j ), and the second term measures
the free energy from forming a contact (i,j ) when contact
(l, k) has already been formed. One can also use the in-
tegrated contact variables s," to obtain a free-energy func-
tion

F =k T ~ o~' ' lnoI" ' + ~ o.I"~'1no~'~'+ 1 —~ o~'~' —o~.' ' ln 1 —~ o~'~' —o~' '
&j ij ~ ij &J'

17J J J

x y w;,'~;, +woj'~j', + y w„"„j'~;,~j' .

While F is a property of polymer chains in general, the
interactions must depend on the character of the resi-
dues. Thus we can write a functional Taylor-series ex-
pansion:

i7J

g Wij sij g g Wijk($(j sk( g yijsij sij
ij k, l i,j,al7J

F= g fdp kj(T[(1—s;j) ln(1 —s,j)+s;j lns;j]

F = g W;, cr;, + gg W,,k(cr;, o„, . (10)
l7 J ij k, l

The problem is to determine the expansion coefficients
[ W;. [q,. j j. The associative memory Hamiltonian ansatz
gives an explicit form for 8;-. and thus essentially in-
structs the values of the interactions. But the minimiza-
tion of the total free energy gives a representation leading
to a neural network and one can alternatively learn the
interaction matrix by methods such as back propagation
[17]. If we stop then with the linear associative memory
Hamiltonian, the free-energy function reads

This equation agrees with the mean-field free energy of a
magnet. The sequence information gives a field on each
site and the cooperativity comes from the chain con-
straints in the Wj~. If contacts (ij ) and (kl) are mutually
favorable, this interaction is ferromagnetic. But, if, on
the other hand, they are inconsistent, this would be an
antiferromagnetic interaction. Thus, the equivalent mag-
net has a deterministic amount of frustration in it. A nat-
ural equation of motion for the contacts arises by consid-
ering gradient descent with this free-energy functional:
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ds;j gF
dt Bs;

(12)
ds;- QF

dt Bs,
(19)

and

dp,
=k„, ,P„,—k„„,P„

dt
(13)

We can write our contact dynamics in terms of a set of
chemical kinetic equations. In that case, we consider the
transition from an occupied state, with probability P, to
a nonoccupied state, with probability P„, and define a
variable, analogous to the contact variable, as
o; =P, —P„, and with stoichiometry P, +P„,= 1.

We can write the rate of change of the probabilities in
terms of the corresponding rate constants k„, , and
k o no'

aF
ds,l,'

(20)

If we insert the expression for F from before, redefine the
variable s,"~(s; +1)/2, absorb the constant term W,. in

W,', and define co= Xk, laql , qI ski we have

s,
&

= tanh (k&T) '
W,"+q;qjco ,' g —W;&I,lsl, (21)

which can be solved iteratively:

s; o= tanh[(k& T) ( W; +q, q co)],

We can solve the dynamical equation by an iterative pro-
cedure where we first consider the static equation

dP, dP„,
dt dt dt

=(IC„, ,—k, „,+cr( —k„, , —k, „,) . (14)

s;,= tanh (kz T) '
W, +q, q co

(22)

H „"= W,~) + g W;, I, I cr rl', I + W;
k, l, p'

Glauber kinetics then gives

do
]~

—
lIH g~ I ~k~ T

dt
= sgn(H'J )( —1+e "

)

(15)

—(1+e ' )o,j,
or with finite time steps

—IH'~ I/k„&
o,, (t +1)—o;, (t) = sgn(H„'J )( —1+e "

)

(16)

The energy cost to change occupation can be obtained
from the free-energy function in (11). This gives the ac-
tivation energy functional H ~~:

+—,
' g Wr~j„,st', I, o

k, l, p'

With the expansion of the lower-order contact variable
s, o which depends on the sidechain properties q:
s, o= A +8'q, q +, it becomes an ordinary mul-

tineuron feed-forward neural network.
This network is similar to a neural network [5] con-

structed for distance matrices from sequence information

q, ~ We see that the thresholds and weights are deter-
mined partly from polymer-chain dynamics. The
sequence-dependent parts of the thresholds are undeter-
mined and thus should constitute the essential part of the
training of the neural network for predicting distance
matrices and hence the three-dimensional structure.

If we insert the expression for F in the time-dependent
equation (19), we have

(17)

where we have changed the differential equation into a
difference equation. In the low-temperature limit we then
obtain

dsv Slj= —k~T ln
dt 1 —s,

+ Wj + W jkl ski + W' j+

(23)

o;,(t+1)= sgn (ksT) ' g W;„IcrrI', t

k, l, p'

+W,-+

where

f(H„"),

(18)

and if we again consider the low-temperature limit, and
transform the logarithm into a sign function and consider
our dynamics close to equilibrium, we obtain the equa-
tion

s,"(t+1)=sgn (k&T) ' g W, J,lsjd(t)+W, . +WJ.
. k, l

(24)

—laq I/k~ Tf(H„)=(e " —1)~—1 for T~O .

The equation describes the evolution of a Boolean neural
network similar to the equation of steepest descent for
contact dynamics, as we shall see in the following.

We shall now proceed with the time-dependent equa-
tion for the fast downhill folding process of the protein
contacts:

which is a Boolean net, as in the case of the chemical ac-
tivation energies.

Such a Boolean net arising from this special low-

temperature limit is unlikely to be valid for real proteins,
since it implies a rigid code for the protein folding. In
the general case of all temperature regimes, we can in-

stead transform the logarithms into a tanh function and
obtain
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&,J(r +1)= tanh (k//&)
' y ~~j/, /s/, /(r)

k, l

+ W;-+ W;. (25)

III. NUMERICAL STUDIES
OF COMPETING STRUCTURES

%'e first performed a numerical investigation of the
evolution equation for protein contacts when we only
consider two basic memory structures (simplified versions
of an a helix and an antiparallel P sheet) competing. We
include these memories in the instructed term W," of the
evolution equation and give them weights 1 and 5 and
then study the development as time evolves with varying
temperature T and weight factor 6. The terms W, k& and
8', representing the synaptic weights and neuron thresh-

olds in neuron network terminology are stemming from
polymer physics and are here approximated by the fol-
lowing constants:

(26)

where d is the dimension of the configuration space, l& is
the persistence length, and y is a parameter that can in-

clude hydrogen bonds. The synaptic weights 8'-~k& are
approximated by constants close to unity.

In the actual simulation, we consider an a-helical

representing a feed-back neural network. This neural
network processes an initial structure of zero contacts
into an orderly structure with patches resembling or be-

ing a combination of the patterns in the instructed set. It
is we11 known that this equation will have fixed-point
solutions if the synaptic weights are symmetric and the
nonlinear function tanh (hyperbolic tangent) is never de-

creasing, as in the case here.
The fixed points determine the patterns in the early

structures of the folding process. %'hat are those pat-
terns? They are partly determined from polymer-chain
connectivity through the weight factors W, , W, k&, which

have been worked out in the literature; e.g., [18]. They
are basically the logarithm of the reduction factor, i.e.,
the ratio of the number of conformation of a chain with

the given contacts over the number of all conformations.
Already, here, in the case of contact interactions, we re-

cover the known types of secondary structures of helices
and antiparallel sheets as the only topological possibilities
of constructing the two-loop factor 8', .

k& for periodic
structures as fixed-point solutions (helix if i & k &j & t,
antiparallel sheets if i & k & t &j, and coil if i &j & k & t).

To summarize, we have shown that the dynamics for
residue contacts in the early events of protein folding can
be formulated as evolution of neural networks. In the
next section we shall consider simple numerical solutions
to the evo1ution equation that can give us some insight
about the phase diagram for formation and competition
between simple secondary structures.

structure as the target competing with a sheet structure
that has an energetic weight 5. In such a case we were

able to "fold" a linear structure according to the
memories and thus study the various phases of protein
structure formation. The memories are constructed as
specific patterns of contacts that are realistic. For our +-
helix pattern, only contacts s,-, for which i =j+4, are
different from zero. Similarly, the other type of memory
is constructed as an antiparallel P-sheet structure with
S~AO for n i—=j —2, n being the number of residues

forming contact. We chose n to be around 10, thus hav-

ing 100 contact possibilities.
The actual simulation is an iterative procedure for

solving the evolution equation (25) or written with the
memories:

S, (t +1)= tanh (k//T)
' g W//, /S/, /(t)

k, 1

+ W; +S; +5S~

where we start with a pattern [S;/] with zero contacts,
insert it as the initial condition into the evolution equa-
tion at time t =0, and insert the term W; as a linear
combination of the two memories with weights 1 and 5,
and then obtain another pattern at t =1. The weights are
chosen according to Eq. (26). In the next step, the pat-
tern at t =1 is the initial condition to be inserted in the
evolution equation to find a new pattern at t =2. This
procedure is repeated until the patterns have converged
and a definite structure has been obtained. The folding
has occurred when the correct structure (a-helix pattern)
has been recalled. The temperature can be varied, and
then we can determine the folding temperature 7 F.

In Fig. 1 we have sketched an approximate dynamical
phase diagram of these numerical studies that can be
compared with the usual equilibrium phase diagram for
the random energy model (Refs. [19,20]). The overall
features are similar, with a "folded" phase where the
helix structure is completely recalled, and a distinct
phase as a mixture between the helix and sheet structures
at higher temperatures. These phases are divided by a
transition line that determines what we would call the
folding temperature. The mixture phase that is similar to
the phase termed "the molten-globule phase" in Ref. [20]
is again separated from a completely unfolded phase with
no structure at all (less than 1% of the correct helical
structure) and at very high temperatures. When increas-

ing the disorder parameter 5 up to 6„;„„&=1.1, the abili-

ty to recall the correct structure breaks down, and a
phase with the recall of the sheet structure starts to be
present. The choice of parameters used here and given in

Eq. (26) favors slightly the helix formation when the
thresholds are chosen as constants in i and with y dom-
inating in O';. . Near the critical line the helix structure
can be recalled up to 40go accuracy.

Finally, we shall discuss the basin of attraction for the
fast downhill processes where there are many competing
structures. Consider the case where the linear associative
memory rule is used to develop the interaction Hamil-
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Phase diagram

10—

5 ~~ MX

L.
0L
0.0 0.5 1.0

8
1.5 2

This equation corresponds to a single spin reorienting
the field, partly coming from the correct instructions,
partly from the neighboring interacting spins, and a ran-
dom part from the incorrect instructions. At this level,
the evolution equation, therefore, looks like the evolution
equation in a conventional feedback neural net that car-
ries out association, and we can follow precisely the
analysis given by Amit, Gutfreund, and Sompolinsky
[21], Krauth, Nadel, and Mezard [22],-and Gardner and
Derrida [23] to write down an equation for the overlap
between a contact and the correct pattern (in the approxi-
mation of dilute nets):

m,,(t +1)= J exp(z l2)
21T

FIG. l. A phase diagram in temperature and 5 (5 is the dis-

order parameter, i.e., the weight on the undesired sheet struc-

ture) arising from a simulation of the network performance
defined by the evolution equation (25) with two types of struc-

tures, a desirable helix structure and an undesirable sheet struc-
ture. The various phases found are the following: UF, unfolded

phase; MX, mixed phase; F, folded phase; MF, misfolded phase.
These phases are separated by lines and defined as follows: The
folded state appears when the correct helix structure is recalled

up to 1% accurately and an order of magnitude better than the

wrong one, the sheet structure. The misfolded state is defined

similarly but with the sheet structure instead of the helix struc-
ture. The mixed state is a distinct phase and defined when the
good structure is recalled up to 75% correct and simultaneously
the bad structure up to 25%. The unfolded phase covers the
rest of the cases. The correct memory consisted of five a-helical
patterns, the uncorrect memory of five antiparallel P-sheet pat-
terns. The number of residues for each unit of pattern was 6
and the synaptic weights were fixed to a constant. Units for
"Temp T" are in k~.

tonian. In this case we take the inhuence of the incorrect
memories to be equivalent to a Gaussian field. In t;he

contact representation, we have seen that the Harniltoni-
an is the same as a regular partially frustrated spin glass
with an external field that is basically ferromagnetic, i.e.,
favoring a single configuration and a random part coming
from other memories:

H= —g W;ktS; Ski+ g W, S; + Q y;JS"JSJ,

X tanh p g Wjk&mk&(t)
k, l

+h,', +&az

or in the more familiar notation, in terms of the error
function P,

0 0g k, t Wij kl m k i +h 1
m, (t+l)=4

ar
(30)

similar to the spin overlap equation of conventional neur-
al networks, where r is the parameter of overlap with
noncondensed memories.

The size of the basins of attraction is determined from
the slope of the error function near the fixed points mf.
The size of the basins of attraction is thus proportional to
(1—mf ), which means the fraction of nonhelical contacts
that can be recalled to a helix.

Numerical methods can again be applied to the solu-
tion of this equation. As before, we shall use an iterative
simulation technique, where we first solve the equation
for m(t =1) with m(t =0) inserted as zero. In the next
step, m (t =1) is inserted, and the equation is solved for
m(t =2), and so on, until a stationary value is reached.
We have assumed a uniform pattern of overlaps as in the
case of one long a helix and dropped the indices in the
overlap, so m; =m. Therefore, the first equation for
m(t =1) is

i,j,k, l

m (1)=I —e tanh[p(h +&az)] (31)

where the second term g; W, .S, represents an external
field, and the third term g„k ly, jk&SkIS;~ is the random

part where there are many conAicting memories. The
corresponding evolution equation for the spins in the fast
downhill motion is

m(2)= f —e

X tanh[P[nW m(1)+h +&az]}, (32)

which is inserted in the equation at the next time t =2:

s,j(t +1)= sgn (k&T) ' g Wj~ktSki(t)+ W;~
k, l

+ g Y .klSkl
a, k, l

= sgn(h, "+h, +h,") . (28)

where n is the number of contacts in the overlap. The in-

tegration is done by a numerical forward Euler algo-
rithrn. Again, the synaptic weights are chosen to be con-
stants and the threshold h0 is chosen to have realistic
values between 0.1 and 0.5. The temperatures are varied
over a wide range from 0 to 20 in kz units. To find the
fixed points, we calculate m (t + l) as a function of m (t)
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1.0
Overlap Eq.

a=5

T=.7

0.5
E

0.0
T=20

0.0 0.5
m(t)

1.0 1.5

FIG. 2. Graphs of the numerical solutions to the overlap
Equation (32), where the overlap m (t +1) is shown as a func-

tion of m(t). (The overlap m has been made homogeneous in

the indices i,j according to an a-helix structure. ) The various
curves represent evaluations for different values of the tempera-
ture T and the randomness parameter a. A straight dashed line
describing m(t+1)=m(t) has been added in order to deter-
mine the fixed points that are given by the crossing of the
straight line and the curves. For high temperatures and for
large randomness, no nontrivial fixed points can occur, and the
corresponding net cannot recall correct patterns.

and see where that curve crosses the straight line
m(t+1)=m(t). For temperatures below 2 and for the
random factor &a less than a critical value &a-1.5,
there exists a unique fixed point for which the "correct"
helical structure can be recalled.

In Fig. 2 we have drawn the curves for m (t +1) as a
function of m (t) at different temperature T and random
parameter &a=a. As we expected, the position of the
nontrivial fixed point m&(m&%0) moves up towards
m = 1 as temperature and random parameter a decrease,
having helix patterns containing less noise. Furthermore,
if we increase the thresholds, which here means increas-
ing the y factor and thus increasing the hydrogen-bond
content, we enhance the helix-forming tendencies (the
size of basins of attraction is increased) and the neural net
can tolerate much more noise in making a perfect recall.

IV. CONCLUSIONS

This paper describes a way in which the initial events
of protein folding can be thought about using the con-
cepts of neural-network statistical mechanics. We have
shown that a natural expansion of the free-energy func-
tion for a biomolecule in terms of contacts leads to a ki-
netic equation for the formation of contacts that resem-
bles a recurrent neural network. The dynamics of the
network imitate the initial events of folding in which no
collective barrier-crossing processes are involved. Thus
the theory complements the approaches to protein fold-
ing based on spin glasses that discuss long-time events in-
volving the surmounting of barriers. Just as in the theory
of neural nets, we have shown how to analyze the case of
a dynamical competition between a finite number of
structures. The case in which one structure dominates
and many other structures can be thought of as random
noise was also analyzed using methodology analogous to
that of [22,23] for neural nets. This gives an estimate of
the size of the basin of attractions as a function of the
noise. The analysis was simplified by assuming a spatially
uniform degree of overlap of the initial structure with the
final structure. Some of the directions for future exploi-
tation of this viewpoint include the use of recurrent net-
work learning algorithms in order to develop practical
structure prediction schemes. In addition, considerable
work needs to be done on the problem of the size of
basins of attraction. The analysis here for a helices needs
to be generalized to include the non-mean-field nature
and the spatial inhomogeneity of the degree of overlap.
In addition, the analysis of P-sheet formation using these
methods would seem to be possible. Finally, it should be
possible in this neural-network formulation to use some
of the work of Gardner [24] on the phase space of in-
teractions and get information-theoretical constraints on
the possibility of a protein-folding code that operates in
the extremely rapid regime of initial folding events.
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