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Ion pores in biological membranes as self-organized bistable systems
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It is shown that an ionic channel in biological membranes is a self-organized nonequilibrium dynamic
system functioning in a multistable regime. The different components of such a regime can be compared
with discrete conductivity levels of the ionic channel. For the case of a channel with two binding sites
we have shown that such an effect is a consequence of organization of the conformational channel struc-
ture at the expense of the energy of an ion flux itself. The possibility of the control of the channel func-
tioning due to the external electric field is also considered. Calculations show that one may effectively
modulate channel lifetimes in their open and closed states using the applied field. It is also shown that
the ensemble of channels which mutually interact in a cooperative manner via the bulk solution under
the sufficiently strong dependence of the rate constants upon the conformational variable may possess
various types of dynamic behavior such as monostability, bistability, and relaxation oscillations.

PACS number(s): 42.66.—p, 43.64.+r1, 43.70.+1,43.71.+m

1. INTRODUCTION

There are many physical systems in which the
phenomenon of bistability occurs [1]. For widely known
optical bistable systems, e.g., there are two mechanisms
that provide the bistability. In one of them, bistable
lasers are used [2]. In another one, the coherently driven
cavity filled with two-level atoms is taken and the feed-
back is realized due to nonlinear properties of the passive
medium [3].

In the present paper we wish to show that bistability
similar to the latter case may also occur due to interac-
tion of the ion flux through the pores (channels) in biolog-
ical membranes with conformational degrees of freedom
for some polar groups forming such pores. It is a sharp
difference between the relaxation time of the pore-former
protein and the passage time of the ion through the chan-
nel that provides, as will be seen below, the existence of
indirect interion interaction and therefore a nonlinear
character of ionic transport.

Several papers have appeared in recent years dealing
with the problem of understanding the physical mecha-
nisms of the self-organization of biological structures (see
Ref. [4] for a review). The ionic channels of biological
membranes are structures that have received much
theoretical and experimental attention [5-7]. It is well
established now that Na™, K™, and Ca®" ions in the cell
membranes are transported through pores formed by the
specialized proteins embedded in the phospholipid bi-
layer. New experimental methods give the opportunity
to study at the molecular level the features of the func-
tioning of a single ionic channel, and evidently a corre-
sponding physical description is needed [5,6]. Passive
ionic transport initiated by electrochemical potentials
that are different inside and outside the cell is described
usually within the framework of continuous or discrete
diffusion approaches based on the Eyring transition state
theory and on the assumption of the fixed energy channel
profile for a separate ion [5].
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The idea of a small number of the so-called ion binding
sites that correspond to the minima of the channel poten-
tial profile is widely held now. Such an idea is in agree-
ment with experimental data concerning the channel con-
ductivity dependence on the concentration of ions in the
solution [5], as well as with the molecular-dynamics
simulation of ion motion through the channel [7].

For the channel with the single binding site and for the
bulk concentration C,=C (outside) and C,=0 (inside)
the mean concentration N near the binding site satisfies
the following equation:

dN

—=@OC(1—N)—TN, (1)
dt

where the first term describes the average number of in-
coming ions proportional to the concentration of ions in
the solution and to a factor that corresponds to the ab-
sence of ions in the binding site; the second term de-
scribes the leakage of ions from this site to outer solu-
tions; ® and " are the corresponding rate parameters.
We can see from Eq. (1) that near a binding site the
steady-state ionic concentration can be plotted as a Lang-
muir function

N,=C/(C+C,,), C,,=T/0. 2)

This saturation curve is derived with the assumption
that simultaneous arrival to the binding site of more than
one ion is impossible, i.c., one takes into account the in-
teraction between ions inside the channel. Such depen-
dence becomes apparent only for the relatively large
values of C=C ;.

We start from the idea that the indirect ion interaction
has significant effect for high concentration. Such in-
teraction may play a substantial role for the channel
functioning even for the relatively low concentration of
jons. This interaction we connect with the alteration of
the equilibrium positions of some charged and polar
groups inside the channel. Then the corresponding
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influence on the movement of subsequent ions arises.

One must take into account two circumstances for un-
derstanding the physical reasons for such a phenomenon.
First, the local electric field that is created by the moving
ion over the distances 0.5-1 A is 10°~107 V/cm. This
value is 102-103 times as large as the external fields ap-
plied to the membrane and thus a local field will have a
significant effect upon a selected polar group. Second, it
is well known that the protein macromolecule in the
phospholipid membrane possesses a certain mobility and
the relaxation times for its separate fragments are in the
wide range from 1071°-107° s to 1073-1072 s and more
[8]. Characteristic transfer time for two adjacent ions in
the channel equals approximately 10~ 6~107" s, therefore
molecular groups having the faster relaxation time will
accompany every moving ion, forgetting about its pas-
sage until the arrival of the next. As a result, channel
groups moving slower will average the effect of the large
number of ions apprehending it as some constant mean
field. In that way the portion of the energy of an ion flux
will be spent on the organization of conformational struc-
ture of the channel-former protein. For the simple case
of the one-site channel it was shown earlier that due to its
interaction with an ion flux, there may appear two possi-
ble channel conformational structures having rather
different permeability properties [9].

The important measurable quantities for a single ionic
channel are the ionic current, the mean channel’s life-
times in each of its possible states, and their dependences
on voltage and concentration differences at both sides of
the membrane. These parameters play the role of control
parameters for the channel. The physical mechanism
describing such dependences, in particular, the nontrivial
function of the kinetic constants of a potential-dependent
ionic channel in the Hodgkin-Huxley model [10] on an
applied voltage, was not earlier discussed.

In this study, for the case of a channel with two bind-
ing sites we will show that these dependences may arise
as a consequence of organization of the conformational
channel structure at the expense of the energy of an ion
flux itself. This general conclusion confirms quite well
the experiments for the investigation of the permeability
of calcium and gramicidin channels in respect to one type
of ion when another type is present [11]. Such experi-
ments clearly demonstrate the adjustability of a channel
structure to a given type of ion, thus inducing the change
of channel permeability in respect to another type of ions.
The dependence of the channel kinetic parameters on the
concentration of ions was also established [5]. This fact
may also be connected with “deformation” of a channel
by moving ions.

II. DYNAMIC MODEL OF IONIC CHANNEL
WITH MOBILE STRUCTURE

The case of mobile barriers for a potential profile in a
single ionic channel was discussed by Ciani [12] (see also
Ref. [13] and references therein). For such a notion,
which reflects the possibility of changing the equilibrium
positions of channel molecular groups, these authors used
a concept of polarized and nonpolarized channel states,
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the transition between them being described by the de-
tailed balance equation. Such an approach directly pos-
tulates the channel states with different levels of conduc-
tivity.

Using the idea of the continuous channel deformation,
we develop here an approach that takes into account in-
teraction between ionic and conformational degrees of
freedom in a self-consistent manner. Thus the channel
states with different levels of conductivity result as a
consequence of the theory.

Let us consider a single channel with a symmetric po-
tential profile and with two binding sites (Fig. 1). The
height €,, of the main central barrier (all values of the po-
tentials will be used hereafter in units of k5 T, where kj is
the Boltzmann constant and T is the absolute tempera-
ture) we assume to be a function of some conformational
variable r:

Jg,
g

512=812(0)+r/r0, (3)

r=0

The quantity 7 is a generalized coordinate connected
with a position of a charged group in a channel. The
characteristic relaxation time of the conformational coor-
dinate we assume to be much greater than the mean
transfer time for an ion in a channel (107¢—1077 s).
When there are no charges in the binding sites, the con-
formational coordinate r undergoes an action of recover-
ing (to the equilibrium position) force F = —«r, where «
defines the elastic properties of a polar group.

If there are charges g, and g, in the binding sites 1 and
2, respectively (g is a charge of an ion), the expression for
such a force transforms to F= —«kr —x(q,; —q,), where x
defines the interaction force of an ion with a polar group.

A
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FIG. 1. One-ion potential profile U (z) (solid line) and voltage
distribution of the external electric field U,(z) (dashed line)
along the channel in the Goldman approximation. The dotted
line marks the varying potential profile of the central barrier.
C, and C, are bulk concentrations (left and right, respectively).
The quantities €; are the energies of barriers and wells of the
profile; N; are the mean occupancies of ions in the binding sites.
L is the length of a channel, 1 defines the first and L —1 defines
the second binding site, respectively.
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For example, for the polar group with the dipole moment
D we have y=D /R?, where R is a distance of the polar
group from the binding site.

In this case the expression for the potential function
takes the form

@=k[r*/2—r r(N,xN,)],

where r , =g /k, and the equation of motion for the con-
formational variable 7 obtains the following form:

2
M~—+nvsz+kr=krw(N1iN2), (4)

where M is a mass of the conformational coordinate, and
7ys is a viscosity coefficient. Equation (4) corresponds to
the motion of the harmonic oscillator in the viscous envi-
ronment. In the real situation we will have, apparently,
the inequality

Ny > 2AMK)V? | @)

and therefore we can neglect the first term in Eq. (4). [In
Eq. (4) we did not include the term that describes direct
action of the electric field on the polar group, which we
must take into account in a more general case.] Owing to
the symmetry of the problem, a plus sign (+) on the
right-hand side of Eq. (4) corresponds to the scalar coor-
dinate r (e.g., the pulling into the channel of the molecu-
lar group perpendicularly to the z axis), while a minus
sign (—) corresponds to the pseudoscalar r (e.g., to the
angle of rotation of some group overlapping the part of a
channel).

It can be easily shown that the first case lead to trivial
results. We shall consider below only the second case.

Using the above-mentioned assumptions as well as the
mean-field assumption (the Goldman approximation [5]),
we can disregard the voltage drop on the fixed “entrance”
and “exit” barriers due to the inequality L >>1 (Fig. 1).

Then the kinetic equations describing the evolution of
the occupancies N, and N, in the binding sites will have
the following form:

|

N_=(ry/r.,)X ,
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7=Il —[A+Qexp(—r/r, +¥)IN,
+Qexp(—r/r,—V)N,,
5
& =I,—[A—Qexp(—r/r,—Y¥Y]N,

+Qexp(—r/r,+¥)N, ,
where the expressions
I, =Qpexp(—gp +5)C
I,=Qjexp(—¢g;,+¢€;)C,

define inward currents entering the channel (from the left
and from the right, respectively). They are regulated by
the corresponding concentrations C, and C,; the expres-
sions

A=Qpexplegte,)=Qyexp(—€,53+¢,)
are the exit ion rates from the channel, and
Q=Q,exp[ —€,,(0)+e] (g,=¢,=¢) .

Equations (4) and (5) define the evolution of a system:
channel plus ionic flux in a self-consistent manner due to
the ion-conformational interaction. Analysis of Egs. (4)
and (5) shows that the conformational coordinate and
ionic flux evolve to some stable values, and one can con-
sider this as a self-organization of conformational struc-
ture of the channel by mutual concordance with the ionic
flux initiated by the difference of electrochemical poten-
tials on both sides of the membrane.

We will use further the dimensionless quantities

X=r/ry, A=(r /ro)I,—1,)/A,
B:(rw/ro)(11+12)/A .

(6)

For the inward ionic flux J; and for the outward flux J,
we have the expressions

Ji:II_ANl) Jozlz—AN2 . (7a)
The following expression will be also useful:
J=(;+J)/2=10(A —X)/2, Io=(ro/r, A . (7b)

Assuming dN, /dt =dN, /dt =dr /dt =0 for the steady
values of the dimensionless variables given by Eq. (6), we
can find the following relationships:

X =[A —27nB exp(—|x|)sinh¥]/[1+2n exp(—|x|)cosh¥] , (8)

N=(Q,/Q))exp{ —[€,,(0)~€y)/ks T} .

The analysis of conditions needed for the appearance
of the bistability in a given system (Fig. 2) shows that the
necessary condition is just the inequality

>0 ©

[
where

nt=e? n*=2ncoshV¥ exp(B tanh¥) .

In this case, when one has the inequalities
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I> ABtanh¥Y, Btanh¥< 4 ,

the system possesses Dbistability in the region
I, <I<I,,, where the values I are defined by the
equations

ﬂ*eXP( - Yi )Yi=Icr_ Yi ’
Y, =I,/2+(—1)I%/4—1)"* (i=12).

I, BZ:

B=1§

FIG. 2. Depenedence of the steady values of conformational
coordinate X on A4 for various values of ¥ (a) and B (b) (at
1n=20).

When the inequality I < AB tanhV is fulfilled, the system
possesses bistability in the region

I <I <Btanh¥(1+27cosh¥) .

Bistability is absent totally when the following inequal-
ity is fulfilled:

I=> AB tanh¥, Btanh¥> 4 ,
where
I=A+BtanhW=(I,e¥—1I,e¥)/cosh¥.

The inequality (9), as was shown above, is a necessary
condition for the appearance of the bistability needed for
the functioning of the ionic channel. For ¥ =0 it means,
in particular, that the height of the central barrier must
exceed the height of the entrance (exit) barrier no less
than on the value of 2k T:

£15(0)—g,9> 2k, T=0.05 eV (when Q,=Q,) .

The bistable character of the channel functioning man-
ifests itself also in the dependence of ionic current on the
voltage difference applied to the membrane (current-
voltage relationship). This dependence is shown in Fig. 3.
One can see that for 4 =10 is has a pronounced S-like
shape.

We must also estimate the values of quantity A in a
real situation. If the energy gain is (2-5)k; T for an ion
entering a channel, and the probability of occupancy of
the channel’s vestibule is C (we have let C, be equal to
zero), then

A=(10—10YYr ry ' .

Evidently, one can expect the appearance of attractive
nonlinear effects for the channels with »_ry; ' >10. In
other words this signifies that there is either sharp depen-
dence of the rate of hopping on the turning of polar
groups (small 7,), or large polarizing force for ions and

FIG. 3. Stationary current-voltage relationship for the chan-
nel with different values of 4 (p=20).
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the channel pliancy on the structural changes (large r ).

In that way for given concentrations C, and C, and a
field W it was established in a considered system the pos-
sibility of existence of two stable dynamical regimes for
the current flow.

ITII. KINETIC PROPERTIES OF CHANNEL
WITH MOBILE STRUCTURE

Within the framework of a model discussed in the last
section the dynamical behavior of the channel (its struc-
ture together with an ionic flux) is described by Egs. (4)
and (5). Equation (4) describes the relaxation of the con-
formational variable and Eq. (5) describes the relaxation
of an ionic flux.

If relaxation times for ionic and conformational vari-
ables differ substantially, we may put a “slaving condi-
tion” [14] on the fast variable and then the dynamical be-
havior of the ionic channel will be described by a single
nonlinear equation for assumed assumptions. We consid-
er this in detail below.

Let the channel permeability be small and the confor-
mational variable relaxes faster than an ionic flux
(r=7/k remains much greater than the characteristic
times for successive passing of the channel by two ions).
In that case the slaving condition derived from Eq. (4),
when the derivative on ¢ is put to zero, has the following
form:

X(t)=X_N_(), (10)

where X _ =r_ /ro=xk/kry,. Using the expression for
the quasistationary value of the dimensionless conforma-

J

tional coordinate (10), we may rewrite the system of Eqgs.
(5) as the following:

dx _
Tion ™, = A —[1+2ncosh¥ exp( —|X])]X
—27sinhW exp( —| X)X, , )
11
dX , (
Tion dt =B _X+ ’
where
X ()=(r, /ro)/No(t), Ton=A"". (12)

Instead of the variables N_ and N, are have used here
the quantities X_ and X, respectively. We note also
that the system of Eq. (11) is not gradient when ¥=-0.

Otherwise, the variables N, and N _ relax to their sta-
tionary values when X is fixed. Assuming that
dN . /dt =dN _ /dt =0, we will get the equations

N.=(ry/r,)B ,
N_()=(rq/r,){ A —2Bnexp[ —X(t)]sinh¥}
X {14+2nexp[ — X (¢)]cosh¥]} 7' .

Substituting N _ from Eq. (13) to (4) and taking into ac-
count Eq. (4'), we will obtain the following equation:

, X _ 93Ut

Yd o X

where for the case 4 =B (I, =0) we will have an expres-
sion

, Tx=n/k , (14)

U X)=X2/2+ A(X tanh¥ +sgn(X)exp(X)In{ (27 cosh¥ +1)/[27n cosh¥ +exp(|X|)]} /cosh¥) . (14")

The shape of the modified dimensionless conformation-
al potential (14') is shown in Figs. 4 and 5 for different
values of 4 and V¥, respectively.

The dynamically stable state of the ionic channel corre-
sponds to the minimum of the conformational potential.
From Figs. 4 and 5 we can see that bistability corre-
sponding to the two minima of the conformational poten-
tial, appears when control parameters 4 and ¥ take some
critical values. This is an accordance with a general no-
tion about a self-organization of an nonequilibrium sys-
tem [14].

For the description of a real behavior of the single
channel we must introduce the random force to the
right-hand side of Egs. (11) and (14). In the simplest case
it does not depend on r and it is a function of time &(¢).
For the delta-correlated noise

E()é&(t +7)=2Dd(1) (15)

(the bar here denotes an ensemble average and D is a con-
stant characterizing the intensity of the noise), one may
use the methods of the theory of the stochastic

A eff

x>

X 15 7

FIG. 4. Modified conformational potential for various values
of 4 (n=20, ¥=75).
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3 eff

5 vt

FIG. 5. Modified conformational potential for various values
of ¥ (=20, 4 =30).

differential equations [15] and define the probability den-
sity function for the realization of a value X at a time ¢

pX,H)=8(X —X (1)), (16)
which satisfies the Fokker-Planck equation
aUeﬂ'p
3p(X,1) oX 3%
3t X +D ax? 17

From Eq. (17) it follows that in the limit of t— — c the
distribution function p(X,t?) approaches an equilibrium
one,

p(X)=O exp[ — U*f(X)/2D] , (18)

where © is the normalization factor.

It should be noted that in the case of a double-well po-
tential the stationary distribution function will have two
maxima corresponding to minima X;™" of the conforma-
tional potential defined by Eq. (14). If these minima are
strongly pronounced and the time the system spent far
from their vicinities is very small, it is expedient to use
probabilities describing the sojourn of a system near the
first (I) and the second (II) minima p, and p,, respectively.
Then Eq. (17) takes an even more simple form [15], name-
ly,

dp,
E—Z_Kllpl—i_“ﬂpz’ (p1+p=1), (19)

where
k;=exp(—A,/D), A;=UTXM)—UHxm) . (19)

The stationary values p; and p, are defined from Egs.
(19) and (19) as
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p1=1/[1+exp( _AIZ/D)] Y
(20)
p2=exp( _A‘2/D)/[l+exp(—A‘2/D)] Py
A12= Ueﬂ’(xllnin )— Ueﬂ'(sznin) . (20"

Thus, from Eqgs. (18), (8), (20), and (20’) it follows that
the probability of finding an ionic channel in the state
with the currents J(X,) or J(X,) is defined by the value
of A,(I,¥). The dependence of the values p; and p, on
the control parameter A is shown in Fig. 6.

The mean lifetime for the channel in the state i —7; is
defined by the constant k; =7, I, i.e., by the value of
A(LW).

We must note here that dependences A; on ¥V were pos-
tulated earlier without the elucidation of their physical
nature (see Ref. [7]). The result of numerical calculation
of the stationary fluctuations described by the modified
random force £(¢) in Eq. (14) for the considered double-
well potential is shown in Fig. 7.

It can be seen from Fig. 7 that when the system
possesses monostability [Fig. 7(a)], it has small deviations
from the equilibrium position and in the case of the bista-
bility [Fig. 7(b)], the new effect of the switching of the
system between two stable states arises. It can be easily
shown that the time course of an ionic current deter-
mined by simulation coincides qualitatively with the
dependences that may be obtained in the single-channel
current recordings [5].

The mean value of the single-channel current (J) for
the small interval ¢>>7; (or its average value on the
membrane) is defined by the equation

(J)=[P,J(X|)+P,J(X,)]q, 1)

where the expression for the stationary ionic flux J(X;) is
defined by Eq. (7b). Within the framework of an ap-
proach developed here it is possible to show that one can
get a reasonable physical interpretation for a notion con-
cerning so called “gating particles,” which was intro-
duced more than 30 years ago by Hodgkin and Huxley
[10], and describes the kinetics of the current evaluation
in an ionic channel.

1 e, f1

0 Py !

S5 A 25

FIG. 6. Dependence of the values p, and p, on the control
parameter 4 (n=20).
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FIG. 7. Time course of the ionic current. (a) The system is in
the monostability regime. (b) The system is in the bistability re-
gime.

IV. HOMOGENEOUS STABLE REGIMES
FOR BEHAVIOR OF THE ENSEMBLE OF IONIC
CHANNELS IN BIOLOGICAL MEMBRANE

Let us consider the principal scheme of an experiment
for the investigation of an ionic flux through the mem-
brane proposed in Ref. [16] [Fig. 8(a)]. The correspond-
ing equivalent electrical circuit is shown in Fig. 8(b).

The control parameters for this problem are the poten-
tial difference on the electrode E and the concentration of
ions C; and C,. (For the single ionic channel we have
used in Sec. III the values of ¥ and A.) It is convenient
for later discussions to take the transmembrance poten-
tial 2¥ and the ionic flux through the membrane J; as
new dynamical variables.

Using the equivalent electrical circuit shown in Fig.
8(b), we will find for the evolution of the transmembrane
potential the following equation:

dX __ 3U*(x) _
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electrode electrode

H (a)

electrolite r'_'"h
I

I:I
H [
H

membrane

|
l electrolite

v |
I
|

o |

(b)

QF ¢ ] veze

FIG. 8. Schematic representation of an experiment for study-
ing the behavior of the ensemble of channels (a). (b) Equivalent
electrical circuit.

dW¥(t)
¢4t

where 7o=R,C and J(t), is the current through the
membrane defined by the expression

J()=GSq[I,(t)+1,(t)]/2 . (23)

=E/2—V—R,J, , (22)

Here G is a surface density of channels, S is a mem-
brane surface, and I;(¢) and I,(¢) are the values of ionic
currents through the single channel corresponding to the
conformational coordinate X (¢). They are defined by Eq.
(7a). Thus, Eq. (22) with regard to Egs. (23) and (7) may
be solved in a consistent way with Eq. (12) when 7y > 7.,
or in a consistent way with Eq. (14) when 7, > 7y. In
the latter case J;=J,, and using Eq. (7a) we can get the
final system of equations in the following form:

T e —X + A[1—2nexp(—|X|)sinhy] /[ 1+2nexp(—|X|)coshy] , (24)

—J‘di E /2=v¢—v2nexp( —|X|+¢)/[1+2nexp(— | X|)coshy}] (24")
|
where x|
=In((4 —X)e'*' /(A —X)2
v=RGSq*lo/kyT v K
+{[(4—X)e¥ /(4 —X)27]

=RGSq2r0A/rkaT

For the isoclines of Eq. (24) we have the following
equations:

+(A4—-X)/(A4—X)}1?), 25)
Y=E /2—v2nexp(|X|+1)/[ 1427 cosh  exp(—|X])]
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The first of them is in a general case some sort of N-
shaped curve represented in X and ¥ coordinates. Com-
bining the first and the second equations in (25), we can
transform them in such a way that instead of the second
equation we will have

vX =y+ Av—E/2. (25"

It is evident that the line given by Eq. (25a) will cross
the first isocline no more than in three points [Figs. 9(a),
9(b), 9(c)]. We shall consider below Eq. (25') instead of
the second equation in the system of equations (25).

If there is only one intersection placed on section I of
the isocline where Xy <O, then the system moves to the
only one possible stable state [Fig. 9(a)], i.e., there is the
monostability. If the sole intersection takes place on the
same section (I) of the isocline and X, >0, then the sys-
tem possesses the periodical behavior [Figs. 9(c) and
10(b)}, i.e., there are relaxation oscillations [17].

If the intersection occurs at three points X, X,, and
X3, then according to the initial conditions the system
may possess two steady stable regimes X; and X [Figs.
9(c) and 10(c)), i.e., there is the bistability. The unstable
stationary regime is realized for X =X, and the point X,
divides the region of initial values X (0)E(— 0, o) into
two regions (— «0,X,) and (X,, + o).

From the first region the system moves to the station-

30 3 x

FIG. 9. Isoclines for Egs. (24) and (25). (a) Monostability re-
gime (v=2.3). (b) Oscillatory regime (v=1.4). (c) Bistabiltiy re-
gime (v=0.5). The parameters are =20, 4 =30, and C =20.
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(a)

20 X,V

FIG. 10. Time course of the current. Regimes correspond to
Fig. 9. (a) Monostability state. (b) Two stable states that corre-
spond to the upper and lower intersection points of the iso-
clines. (c) Relaxation oscillation of the potential (dashed line)
and of the conformational variable (solid line). The parameters
are v=1.4,1=20,and 4 =30. C =20, 7,,,=0.5, and 74, =5.0.

ary solution X, and from the second to the stationary
solution X;. The limiting case of a contact of the two iso-
clines corresponds to the situation where the points X,
and X, or X, and X; coincide and therefore only one
stable state is realized.

For the given parameters 17 and v any of the three re-
gimes of a dynamical behavior of the system described
above is realized for the suitable values of the control pa-
rameters A and E (i.e., the differences of the concentra-
tions and potentials, respectively).

If we add to Eq. (25) the condition of contact of the
isoclines ¥y =v given by

Qe+ Q)[1+v(4 +X)]=[(p+Q)px—X](4 +X),
(26)

where

p=(4—Xexp(|X])/2n, Q=(¢’+4*~XxH'"?,
Py —[sgnX (4 —X)—1], 26
we can obtain the system of equations that are satisfied in
the space limited by the curve

E=f,(4). (27)

The curve (27) f,(A) divides the space of control pa-



5240

42 C

13

(e)

13

o
:

0 A 30

FIG. 11. Phase diagrams of the system. The region of the
monostability is defined by M. The region between two solid
lines corresponds to the oscillatory regime (0). The bistability
domain is shaded.

rameters into two regions. In one of them the monosta-
bility or the oscillator regime is realized and in the other
there is only the bistability.

If we add to Eq. (25) the condition ¢y =0, taken in a
form

Qlp+O)=[(p+Q)py—X](4 +X), (28)

we can get the system of equations that are satisfied in the
space limited by the curve
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E=f,(4). (29)

Evidently, the curves (27) and (29) together determine
the phase space on the 4 and E plane, i.e., the regions in
which only one of the regimes discussed above is realized.
The phase diagrams for various values of the parameters
7 and v are shown in Fig. 11.

V. SUMMARY AND CONCLUSION

According to the above results we can see that when
the protein macromolecules forming the ionic channels
have some conformational degrees of freedom with
characteristic frequencies that are less than the rates of
ionic hoppings (or are of the same order), the essentially
new qualitative phenomena appear for the ion transport
through the channels. The interaction of the ionic flux
with the conformational structure of the channel leads to
the appearance of discrete conductivity states. The num-
ber of these states and their lifetimes depend on the type
and concentrations of ions as well as on the relation be-
tween the membrane’s parameters and the parameter that
describes the length of structural correlations inside the
channel.

The possibility of the control of the channel function-
ing due to the external electric field seems very encourag-
ing. Our calculations show that one may effectively
modulate channel lifetimes in their closed and open states
using the applied field. Therefore the new physical mean-
ing for the “gating particles” is strongly connected with
substantial nonlinear character of the ion transport
through the channels of the biological membranes.

Within the framework of an approach considered here
the construction of molecular computing devices may be
also suggested [17]. As was shown above, the ensemble
of channels that mutually interact in a cooperative
manner via the bulk solution under the sufficiently strong
dependence of the rate constants upon the conformation-
al variable may possess various types of the dynamic be-
havior such as monostability, bistability, and relaxation
oscillations. Therefore, one can use the ensemble of
coherently coupled channels as a basic element of a
molecular computing device.
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