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We study kink-impurity interactions in the P model, extending our previous results [Zhang Fei, Y.
Kivshar, and L. Vazquez, Phys. Rev. A 45, 6019 (1992)] to the case where the kink has an internal
degree of freedom which may be excited due to scattering. We demonstrate numerically that the kink
may be reflected by an attractive impurity when its velocity lies in some "windows, " and this effect
is due to a resonant energy exchange between the kink translational mode, its internal mode, and the
impurity mode. We observe additional features in the resonant interactions, e.g. , quasiresonances at
some intermediate velocities and "three-bounce" resonances. We also develop an analytical approach
taking into account three dynamical variables and show that such a collective-coordinate model may
explain qualitatively the resonance structures observed in numerical simulations.

PACS number(s): 03.40.Kf, 63.50.+x, 66.90.+r, 42.25.—p

I. INTRODUCTION

Wave propagation in nonlinear disordered media has
become an extensively studied subject in recent years
[1—3]. In linear systems disorder generally creates Ander-
son localization, which means that the transmission coef-
ficient of a plane wave decays exponentially with the sys-
tem length (see, e.g. , Refs. [4, 5] and references therein).
However, nonlinearity may drastically modify transport
properties of disordered systems when it contributes to
create solitons [3]. As a step towards understanding the
soliton transmission through disordered media, one has
to study in detail the scattering of a soliton by a single
impurity.

In the previous theoretical studies related to kink-

impurity interactions the possible excitation of the impu-
rity modes was not taken into account (see, e.g. Ref. [6]
for a summary of the main results). However, in our
recent studies [7, 8], we have observed that, due to the
resonant energy exchange between the kink translational
mode and the impurity mode, a sine-Gordon (SG) kink
can be totally reflected by an attractive impurity if its
initial velocity lies in some well-defined resonance "win-
dows. " As we have pointed out, this efFect is quite similar
to the resonance phenomena in kink-antikink collisions in
some nonlinear Klein-Gordon equations [9—11].

In the present paper, we analyze the resonance struc-
tures in the kink-impurity interactions in the P model
extenaing our previous study to the kinks with internal
modes. By numerical simulations we also observe a set of
resonance windows in which the kink can be reflected by
the attractive impurity. We show clearly that both the
kink internal mode and the impurity mode are excited
during the scattering, and the resonance phenomena ob-

served are due to an energy exchange between the kink
translational mode, kink internal mode, and the impu-
rity mode, so that it is impossible to explain the reso-
nance structure by taking into account only one local-
ized oscillating mode. Moreover, we observe two inter-
esting features in the resonant interactions: the missing
of some intermediate resonance windows and the possi-
bility of "three-bounce" resonance windows in which the
kink can escape after colliding with the impurity for three
times. Finally, we show that a collective-coordinate ap-
proach with three dynamical variables (namely, the kink
coordinate, the amplitude of the kink internal mode, and
the amplitude of the impurity mode) can provide a good
qualitative explanation to the resonance structures ob-
served in numerical simulations.

II. MODEL

The model we deal with is the well-known P4 system,
which includes a local inhomogeneity,

utt —u, + [1 —e6(x)](u —u) =0,
where 6(x) is the Dirac 6 function. The "pure" P model
[e = 0 in Eq.(1)] has numerous applications in solid-state
physics; e.g. , it can describe structural phase transitions
in ferroelectric and ferromagnetic materials [12—15], pro-
ton conductivity in quasi-one-dimensional systems like
biological macromolecules and hydrogen-bonded chains
[16, 17], nonlinear excitations in polymer chains [18,19],
etc. The solitary wave solutions (kinks) of the model
usually correspond to domain walls in the phase transi-
tions or polymerization mismatches in the dynamics of
macromolecules.
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In the absence of perturbations, the P4 model has the
kink solution, io

( x —X(t) )
ug(z, t) =0 tanh

~

2 1 —Vz) (2)

where a = +I is the kink polarity, X(t) = Vt+ Xp is the
kink coordinate, and X = V is its velocity. Linearizing
Eq. (1) around the static kink (V = 0), one may obtain
a linear equation that can be solved analytically. As is
well known [9], the corresponding eigenvalue problem has
two discrete modes with angular frequencies up = 0 and
uy ——/3/2 (in this notation the continuous spectrum
starts at ~ = ~2). The zero-frequency mode corresponds
to the translation of the kink. The mode with frequency
uq = /3/2 describes localized deformations around the
kink, and it can be considered as an internal oscillation
of the kink shape. The normalized eigenfunction of this
shape (internal) mode is

g(z) = (9/8) ~ tanh
~

~

cosh
E 2) (3)

As is well known, the existence of the kink internal mode
is very important to the resonance phenomena in kink-
antikink collisions [9—11] because the internal mode may
have energy exchange with the kink translational mode
during the collisions. Further, it was shown analytically
[20] that the P4 equation admits a long-lived wobbling
kink solution, i.e., a kink with an excited internal mode.

In the presence of the impurity, the P4 equation (1)
supports also a localized solution at the impurity site,
the so-called impurity mode. To find the shape of the
impurity mode we may linearize the P4 equation near the
vacuum states P = +I obtaining the localized solution,

b (x, t) = ap cos(At 4- e)e '~*~, (4)

where 0 and e are connected by the dispersion relation

2 2 —62 (5)

Note that the impurity mode (4),(5) exists, provided
e & 0 (an attractive impurity). As follows from Eq. (4),
the impurity mode is periodic in time and localized in
space (it falls off exponentially). The energy stored in
the impurity mode is A2azp/2e.
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FIG. 1. The kink coordinate X vs time (at e = 0.5). The
kink initial velocity V; is taken from the three di8'erent re-
gions: the region of pass (solid line), of capture (dotted line),
and of reflection (dashed line).

Eq. (1), and carry out simulations for the case e & 0
(attractive impurity). The initial condition is taken as a
kink starting at Xp = —6 with the initial velocity V~ & 0
moving toward the impurity. The main ingredients of our
simulation results are summarized as follows.

First, we take the impurity amplitude e = 0.5. In
the numerical simulations, we find that there are three
different regions of the kink initial velocity, namely, the
regions of pass, of capture, and of refiection (see Fig. 1).
The region of pass is a velocity interval (V„l), V, =
0.1850 being the critical velocity, such that if the kink
initial velocity is taken from it, the kink will pass the
impurity and escape to the positive infinity. Such an
interaction is inelastic because the kink loses a part of its
kinetic energy to emit radiation and to excite its internal
mode and the impurity mode (see Fig. 2). In this case
there is a linear relationship between the squares of the
kink initial velocity V; and its final velocity Vy, i.e.,

V~
——n(Vz —V, ), (6)

where the constant parameter cr (= 0.85 at s = 0.5) is
determined empirically from numerical data.

Below the critical velocity V„ the final result of the
kink-impurity interaction is very sensitive to the initial
kink velocity. More precisely, if the incoming velocity of
the kink is smaller than V„ the kink cannot escape from

III. NUMERICAL SIMULATION RESULTS

Let us consider the kink-impurity interactions in the
P4 model (1). Suppose that there is a kink propagat-
ing toward the impurity (from far away) with a constant
initial velocity V;. When the kink is sufficiently close to
the impurity, its steady-state motion will be changed be-
cause the impurity may either repulse (e ( 0) or attract
(e & 0) the kink. Moreover, the kink will emit radiation
in the form of linear waves. Due to the kink scattering,
the impurity mode as well as the kink internal mode may
be excited. For such a nonlinear interaction process, it is
impossible to give an exact analytical solution. So first,
we will resort to numerical simulations.

We use a conservative numerical scheme to discretize
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FIG. 2. Excitation of the impurity mode (solid line) and
the kink internal mode (dashed) at V; = 0.2. The amph
tude of the internal mode is calculated by using a projection
technique.
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FIG. 3. The impurity displacement u(0, t) (solid line), and the amplitude of the kink internal mode (dashed). The kink
initial velocities are taken from the resonance windows: (a) V, = 0.18225 and (b) V, = 0.18253. Excitation and deexcitation
of the two modes are clearly seen.

(7)

the impurity after the first interaction, but it will stop
and then return to interact with the impurity again. For
most of the initial velocities, the kink will lose its energy
again in the second interaction and finally get trapped
by the impurity. However, for some special initial veloc-
ities, the kink may escape to the negative infinity after
the second interaction, i.e., the kink may be totally re-
flected by the attractive impurity (see, e.g. , Fig. 3). Note
that the kink reflection is possible only if its initial in-
coming velocity is situated in some well-defined narrow
resonance "windows" (the regions of the kink reflection).
By numerical simulation, we have found a series of such
windows for different values of e. The detailed results for
e = 0.5 are presented in Table I and Fig. 4.

We notice that the reflection of the kink is realized
by two steps: the first interaction removes kinetic energy
from the kink and make it trapped by the impurity, while
the second interaction retransfers enough energy to the
kink translational motion and allows it to escape from
the attractive impurity (Fig. 3). To explain this behav-
ior one clearly needs a mechanism for transferring and
restoring energy. As a matter of fact, the energy transfer
process can be clearly seen in Figs. 3(a)—3(b), where the
typical pictures of resonances are presented. From Fig. 3
we can observe the impurity mode and the kink internal
mode ocillations between the two interactions, but after
the kink reflection the oscillations almost vanish, which
means that the energy in the local modes is retransferred
back to the kink translational mode.

To analyze the problem quantitatively, we define the
center of the kink X(t) as the spatial point z at which the
field function u(z, t) is equal to zero. Let Ti2(Vi) be the
time between the first and second interactions, V, being
the kink initial velocity. More precisely, Ti2(V, ) is the
time difference between the first two instants at which
the center of the kink is just at the impurity. Similarly,
we define Tzs(V, ) as the time interval between the second
and the third collisions.

It will be seen in the next section that the attractive
potential created by the impurity falls off exponentially,
so we can use a simple argument of classical mechanics
as in Ref. [9] [see, e.g. , Eq. (3.6) of Ref. [9]] to obtain an
approximate formula to estimate Tiz(V, ),

Tip(V, ) = +b,
Vz —V2

where the parameters a and b are (empirically) deter-
mined by numerical data. At e = 0.5, we find a —3.0,
b = —0.4. Table I shows that this formula is rather
good for the kink initial velocities lying in the interval
(0.136,0.183).

In our previous work [7, 8] we showed that the reso-
nance condition,

Tiz(V) = nT+7, (8)

TABLE I. Two-bounce resonance windows in the
kink-impurity interactions in the P model (1) at e = 0.5.

Resonance
n windows

5 (0.136, 0.1390)
6 (0.1548, 0.1560)
7 Quasiresonance
8 Quasiresonance
9 (0.1735, 0.1739)
10 (0.1757, 0.1761)
11 (0.1774, 0.1777)
12 (0.178 65, 0.1788)
13 (0.17963, 0.1797)
14 Quasiresonance
15 (0.18102, 0.18108)
16 (0.18149, 0.18158)
17 (0.18189, 0.18197)
18 (0.182 21, 0.182 28)
19 (0.182 51, 0.182 56)
20 (0.182 76, 0.182 79)

Window
centers

&n

0.1375
0.1555
0.1648
0.1703
0.1737
0.1759
0.1775

0.178 73
0.17966
0.18043
0.18105
0.18153
0.18192
0.182 25
0.182 53
0.182 77

Ti2(V„)

Numerical
24.8
30.1
35.6
41.2
46.6
51.8
57.0
62.4
67.6
73.1
78.6
83.8
89.0
94.1
99.1
104.4

From
Eq (7)

23.9
29.5
35.3
41.1
46.7
51.9
57.1
62.4
67.6
73.0
78.5
83.7
88.9
94.0
99.2
104.4

is always satisfied in case of kink reflection, where T =
2n/u; is the period of the impurity-mode oscillation, ~
is an offset phase, and n is an integer. However, it is
easy to verify that this resonance condition is not valid
for the resonant kink-impurity interactions in the present
model, and it is impossibleto use a general formula, Vz =
V, —P/(nT + 6), to predict the resonance windows.
Furthermore, from Table I it is seen that the average
difference between Tiz(V„+i) and Tiz(V„) is about 5.30,
which is more or less close to the kink internal mode
period T;„=5.13, but far away from the impurity mode
period T; = 4.75. From Figs. 2 and 3(a)—3(b) we can
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FIG. 4. Final kink velocity as a function of the initial
kink velocity (e = 0.5). Zero final velocity means that the
kink is captured by the impurity. The three stars indicate the
quasiresonance velocities (missing windows) .

observe clearly the excitation and deexcitation of the kink
internal mode whose amplitude is considerably large, so
it seems that the kink internal mode is more important
than the impurity mode in the resonant interactions.

Another surprising feature in the resonance structure
is that there are some intermediate windows that do not
show up, but are replaced by quasiresonances. Analyz-
ing the numerical data of Table I, and applying the res-
onance condition (8) (with T=5.13), we expected to ob-
serve the next two windows near velocities V7 and Vs,
such that Tq2(V7) - 35.4, Tqz(Vs) - 40.7. Although a
much smaller velocity step (hV = 10 s) has been used
to scan these windows, we have not found real kink re-
flection. Instead, we have only observed quasiresonances,
i.e., if the kink initial velocity is close to some velocities
(see Table I), the second interaction will cause the kink
to be reflected farther away from the impurity, or equiv-
alently speaking, the time between the second and third
interactions, T2s(V;), will be larger (see Fig. 5), yet the
kink cannot escape to infinity. Therefore, the resonance
structures observed here are quite difFerent from those for
the SG model in which the resonance windows come out
one by one and they can be easily predicted by a simple
formula.

We have also investigated the kink-impurity interac-
tions in the case of e = 0.7, and observed the similar
phenomena as described above. In this case, the criti-
cal velocity V, is found to be about 0.3124, above which

60

FIG. 6. The same as in Fig. 4 but at ~ = 0.7. The
two stars indicate the quasiresonance velocities (missing win-

dows). Additionally, there is a very narrow "three-bounce"
resonance window at V; = 0.305, for which the kink is trans-
mitted (with final velocity being positive) after the third col-
lision.

the kink will pass the impurity inelastically and escape
to infinity. Below the critical velocity, eight two-bounce
resonance windows are observed (see Fig. 6). In par-
ticular, we also observed high-order resonance windows
which are very close to the critical velocity. In Fig. 7 we
can see that between the first and the second interaction
there are a lot of small bumps that show the impurity
oscillations modulated by the kink internal-mode oscills
tions. We also observe that there are two intermediate-
resonance windows replaced by quasiresonance efFects (as
in the case of e = 0.5). Most strikingly, here we observe
a "three-bounce" resonance window (see Figs. 6 and 8),
in which the kink is transmitted after colliding with the
impurity for three times. Note that such a higher bounce
resonance phenomenon has not been observed in the SG
model [7, 8].

IV. COLLECTIVE-COORDINATE APPROACH

We would like to mention that the inelastic interaction
of a kink with an attractive impurity in the P4 model
was discussed by Belova and Kudryavtsev [21]. They
observed only one resonance window and they tried to
explain the phenomenon with the help of a collective-
coordinate approach, taking into account the kink trans-
lational mode and its internal mode. However, as we have
shown above, the resonances are found to be a joint efFect
of the kink internal mode and the impurity mode. There-
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FIG. 5. The time between the second and the third in-
teraction of the kink with the impurity, T23(V;), vs the kink
initial velocity. The quasiresonance phenomena are shown by
the two peaks in the curve.

FIG. 7. The impurity displacement u(0, t) vs time, show-
ing a higher-order resonance at V; = 0.3111and ~ = 0.7.
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FIG. 8. The impurity displacement u(0, t) vs time, show-
ing a three-bounce resonance at V, = 0.305 (e = 0.7). The
kink is transmitted after the third collision.

fore the resonance structures must be explained with a
generalized collective-coordinate approach.

The fundamental approximation involved in this ap-
proach is the replacement of the (infinitely) many de-
grees of freedom of a kink in a continuum field equation
by a (finite) number of collective coordinates. Such a
reduction is usually helpful for one to extract the main
physical mechanism underlying the observed nonlinear
phenomena.

There are difFerent ways to obtain the equations of mo-
tion for the collective coordinates (see, e.g. , [6]). How-
ever, it has been recognized that the Lagrangian ap-
proach is very useful for studying the kink dynamics [7,
8, 21]. The first step in this approach is to derive an
effective Lagrangian by inserting a certain ansatz into
the system Lagrangian. Then the equation of motion for
the collective coordinates may be derived in a standard
variational way. In our case, Eq. (1) is defined by the
Lagrangian

1 (Oui' 1 (Bui'
2 I ~ty 2 (&z

——[1 —eb(z)] (u —1)
1 2 2 (9)

L,fr = X —U(X) + A ——A —AF-(X)
2 2 2

/1. , 0',&
+(1/s) ~

—a — a
~

—aG(X) —aAD(X),
I 2 2 )

Since the impurity mode and the internal mode are
excited in the scattering and they can be considered as
small-amplitude oscillating states, we propose the follow-
ing more general ansatz:

u(z, t) = tanh
~ ~

+ A(t)rl(z) + a(t)e ' *,/'z —X(t) i —~fr}

)
(10)

where ri(z) is the kink internal (shape) mode given by
Eq. (3), A(t) being its amplitude, and a(t)e '~*~ repre-
sents the impurity mode (4). Substituting Eq. (10) into
the system Lagrangian (9), in the lowest-order approx-
imation we obtain the following (reduced) effective La-
grangian:

where urq = /3/2 and 0 = g2 —e2 are the frequencies
of the kink internal and the impurity modes, respectively,
and Mg = 2y 2/3 is the kink mass. The functions are

U(X) =-
4 cosh (X/~2)

F(X) (9/8) y/4 E tanh (X/V 2)
cosh (X/y 2)

e tanh(X/V 2)
cosh (X/v 2)

(X) (9/ 8)
~ / 4 2e tan h (X/ ~22 )

cosh(X/v 2)

(12)

(13)

(14)

The equations of motion derived from the Lagrangian
(11) are

MqX + U'(X) + AF'(X) + aG'(X) + aAD'(X) = 0,

A + ~~ A. + F(X) + aD(X) = 0, (16)

(1/c) [a + Qza] + G(X) + AD(X) = 0.

The system (16) describes a particle coupled with turo
oscillators, which correspond to the kink internal mode
and the impurity mode, respectively. The two oscillators
are also coupled through the term aAD(X) The s.ys-
tem (16) may be useful, e.g. , to estimate analytically the
amplitudes of the impurity mode and the kink internal
mode excited due to the kink scattering in the way ear-
lier used for the SG model [22] (see also the recent paper
[23] where the similar calculations for the P4 model have
been done with the help of the perturbation theory).

We have found that the system (16) can describe most
of the features of the kink-impurity interactions observed
in direct numerical simulations. To see this, we have
simulated the system (16) under the suitable initial con-
ditions corresponding to the problem of kink-impurity
interactions. At e = 0.5, we find that there is a criti-
cal velocity V, = 0.26586, above which the particle will

pass the potential well inelastically, because it loses en-
ergy to excite the two oscillators. The final velocity of
the particle satisfies the relation Vfz = o.(Vz —V~), with
a = 0.726.

If the initial velocity of the particle is smaller than
the critical value V„ the particle cannot escape to in-

finity after the first interaction, instead it will stop and
then return to interact with the oscillators again. Usu-
ally the particle will lose its energy again, and it remains
trapped in the potential well during the simulation time
0 & T ( 300. This corresponds to the kink capture
by the impurity. However, if the initial velocity of the
particle is taken from some well-defined "windows, " the
particle will escape to —oo after the second interaction
(see Fig. 9), this efFect corresponds to the reflection of
the kink by the impurity.

Just as in the previous section, here we notice that
the time between the first and second interactions can be
estimated by Tqz(V;) = 2.801/gV, —V2 —1.0. However,
in this case the resonance windows cannot be predicted
by a standard formula because the resonance condition
(8) no longer holds. Nevertheless, by careful numerical
simulations, we have detected 13 two-bounce resonance
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FIG. 9. Resonant re8ection of the particle described by
Eqs. (16). (a) The particle coordinate X(t) vs time at initial
velocities V; = 0.252 (solid line), 0.2634 (dashed), 0.26475
(dotted). (b),(c) Excitation and deexcitation of the two oscil-
lators in the case of resonance, V; = 0.2634, showing a typical
resonant energy exchange process.

It is not difficult to understand why some two-bounce
windows may disappear in the system (16). Since the
mechanism underlying the resonance is an energy ex-
change between the particle and the two oscillators, the
resonance process can be divided into two steps: First,
an incident particle loses its kinetic energy to excite the
oscillators and get trapped by the potential well. Sec-
ond, the particle comes back to the interaction region
and has energy exchange again with the excited oscilla-
tors. Whether the particle can escape or not after the
second interaction will depend on how much net energy
the particle may obtain from the two oscillators. Be-
cause the frequencies of the oscillators are generally not
commensurable, it may happen that even if the particle
can restore energy from one, it may transfer energy to
another. As a result, the particle cannot obtain enough
kinetic energy to escape from the potential well. There-
fore, instead of true resonances, only quasiresonance ef-
fects are observed at certain initial velocities.

Since the system (16) is Hamiltonian, it easily allows
higher bounce (e.g. , three-bounce) resonances, which
means that a kink can be transmitted or reflected after
colliding with the impurity for a number of times. How-
ever in real interactions these resonances are strongly in-
fluenced by radiation, so that they were not found in the
sine-Gordon model [7, 8]. Nevertheless, due to the inter-
play between several oscillating modes such resonances
are possible in the nonlinear systems supporting kinks
with internal degrees of freedom, and in the present pa-
per, we indeed observe a three-bounce resonance for the
P4 model (see Fig. 8).

0.04—

—0.06—)
—0.16—

—0.26
0.25 0.27

FIG. 10. Structure of two-bounce resonances in the
collective-coordinate system (16) [cf. Figs. 4 and 6]. The four
stars indicate the missing two-bounce resonance windows.

windows (see Fig. 10). Most surprisingly, we observe the
qualitatively similar structure of the resonance windows;
e.g. , some (intermediate) two-bounce resonance windows
are missing. More precisely, at the initial velocities near
V; = 0.2609, 0.2620, 0.26433, and 0.26454, we expected
to observe reflection, but actually only quasiresonance
effects are observed. Furthermore, from Fig. 10 we can
see that the missing windows have a certain influence
on their neighboring windows, i.e. , in the neighboring
windows the corresponding final velocities of the particle
are smaller. In this respect, it is clear that Fig. 10 is
qualitatively like Figs. 4 and 6.

V. CONCLUSIONS

In conclusion, we have studied the kink scattering by
an attractive impurity in the P4 model and demonstrated
that below a certain threshold velocity the kink is not
necessarily to be captured by the attractive impurity
due to radiative losses; instead, the kink may still es-
cape to infinity if its initial velocity is located in some
resonance windows. We have shown that this effect is a
result of the resonant energy exchange between the kink
translational mode, its internal mode, and the impurity
mode, and we have determined numerically the struc-
ture of two-bounce windows. In comparison with the
SG model [7, 8], we have found different features in the
kink-impurity interactions for the present model; e.g. , the
missing of some intermediate windows that are replaced
by quasi-resonance eEects, "three-bounce" resonances in
which the kink can be transmitted after colliding with the
impurity for three times. We have demonstrated that
the collective-coordinate approach, taking into account
three dynamical variables (namely, the kink coordinate,
the amplitude of the kink internal-mode oscillations, and
the amplitude of the impurity-mode oscillations), is suit-
able to describe properly the resonance structures in the
kink-impurity interactions observed in the P4 model.

Finally, we would like to point out again that the reso-
nant e8ects observed in the kink-impurity interactions in
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the $4 model, as well as in the SG model [7, 8], are anal-
ogous to the resonance phenomena in the kink-antikink
collisions in some nonlinear Klein-Gordon equations. The
main physical mechanism of the resonances is an energy
exchange between the kink translational motion and one,
or several localized oscillating modes. Such a mechanism
has been clearly shown in the direct numerical simula-
tions and the collective-coordinate approach developed
in the present paper.
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