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Spin-orbit interaction of a photon in an inhomogeneous medium
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As light propagates in an optically inhomogeneous medium, bending and twisting of the beam cause
the rotation of the polarization plane. This is the well-known Rytov-Vladimirsky effect or Berry phase.
Considering this effect as the result of an interaction between the spin of the photon (polarization) and

its orbital motion, one can expect the reverse effect. In fact, the additional angular shift of a trajectory of
the circularly polarized beam (CPB) was recently studied for the particular case of an optical fiber. In
this paper the spin-orbit interaction Hamiltonian is obtained both in geometrical optics and in wave op-
tics. We have calculated also the effect of the transverse shift of CPB under refraction on the boundary
of two media. The expressions for the angular shift of a trajectory of CPB in optical fibers with two

types of refractive-index profiles have been obtained. Geometrical optics expressions can be applied for
the typical waveguides only at lengths less than 0.05 cm. However, using the geometric optical picture
we can successfully describe statistical properties of speckle patterns of laser radiation as it propagates at
a considerable distance.

PACS number(s): 42.81.Gs, 42.81.Ht

I. INTRODUCTION

The general solution of the Maxwell's equations in a
homogeneous medium can be readily written in Fourier
integral form:

E(r, t)= f f fd'kE(k)e'

For us the most interesting property of that solution is
the conservation of polarization state of each plane-wave
component E(k)exp(ik r —icot) under the propagation.

In the special case of light radiated in a small angle
near the central direction ko/~ko~=e„ important solu-
tions are the totally polarized waves

ikoz —i ap(k0 )tE(r, t)=(c&e„+c2e )F(x,y, z, t)e

Such a factorization means that the polarization state has
no infiuence on the propagation process F(x,y, z, t) and
vice versa; the propagation does not change the polariza-
tion.

In an optically inhomogeneous medium with locally
isotropic dielectric constant, the polarization and the spa-
tial structure of radiation can be regarded as mutually in-
dependent only approximately. For example, if the beam
is deflected due to refraction at an angle about 1 rad, the
arbitrary polarization cannot be conserved under propa-
gation because it would contradict the transverse nature
of the wave at least. In fact, the well-known Rytov effect
of rotation of the polarization plane for the nonplanar
ray is the result of that minimal demand: let us try to
conserve the polarization vector at the infinitesimal part
of a trajectory, or at least let us change it, but only as
much as it is necessary to keep it transverse to the propa-
gation direction; see [1,2].

The angle of Rytov rotation for the coincident initial
and final beam directions is given by a very simple ex-
pression: it is equal to the solid angle subtended by the

photon trajectory at the origin of the momentum space.
That remarkable result for light was obtained by Vla-
dimir sky in 1941 [3] and for a general quantum-
mechanical problem in Berry's works [4] (Berry's phase).
It is rather surprising that Rytov-Vladimirsky-Berry ro-
tation was found experimentally only recently [5] in a
twisted optical fiber; however, the coincidence of theory
and experiment proved to be excellent; see also [6].

Principles such as "for every action there is a reaction"
are well known in physics. Quantitatively it manifests it-
self in an equation

where f&= —BV/Bx&, fz= —&&/&x, . ««x& and x2
are independent coordinates and the forces f, and f2 are
the corresponding derivatives of the Hamiltonian V.
That is a reason to look for the reverse effects of the
inhuence of polarization on the light propagation in a lo-
cally isotropic but inhomogeneous medium. Some of
those effects are the longitudinal shift of the center of
gravity of a beam (different for s and p polarizations) [7]
and the transverse shift of opposite sign for right and left
circular polarizations [8]. In Ref. [9] we proposed to look
for small effects of this type that accumulated from multi-
ple rejections of the beam while it propagated in the
fiber. The rotation (angular shift) of the speckle pattern
transmitted through the optical fiber under the change of
the circular polarization of incident light from the right-
handed to the left-handed one was predicted and calcu-
lated in [9). Such an optical "ping-pong effect, " reminis-
cent of the spinning ping-pong ball bouncing off the table
or the optical analog of Magnus effect, was found experi-
mentally in a multimode fiber of the length about 1 m in
[10], in complete coincidence with the theory from [9].
Calculations in [9] were based on the mode analysis, in
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which we have shown that polarization corrections to the
propagation constants of modes (for the graded-index
waveguide with the parabolic profile) are proportional to
the product rno. . Here o =+1 for the right circular po-
larization and o.= —1 for the left one; i.e., o. is the pro-
jection of the photon spin at the fiber axis. The integer
parameter m, which defines the angular dependence
exp(imp) of modes, is the projection of orbital momen-
tum of the photon at the same direction. Therefore, the
optical ping-pong effect can be treated as the manifesta-
tion of the spin-orbit interaction of the photon in an in-
homogeneous medium.

In this paper we are going to show that both effects-
the influence of the trajectory on the polarization as a
Rytov-Vladimirskij-Berry-Chiao rotation [1,3—5] and the
influence of polarization on the trajectory as a rotation of
the speckle pattern [9—11]—can be described by the
same spin-orbit interaction Hamiltonian. Expressions of
such a Hamiltonian are obtained both in geometrical op-
tics of rays and in wave optics in the first post-paraxial
approximation. In addition, we have calculated the effect
of the transverse shift of the center of gravity of a circu-
larly polarized beam under refraction on the boundary of
two media with almost equal refractive indices. Most of
the presented results are of geometrical nature and can be
applied, e.g. , to transversal acoustic waves as well.

II. TRANSVERSE SHIFT
OF THE CIRCULARLY POLARIZED BEAM

DUE TO REFRACTION

a=e) =mXs/sin6,

b=ell —s Xa,

(2a)

(2b)

where m-s=cos8. If the propagation direction s were

Let us consider refraction of a light wave on the plane
boundary of two homogeneous isotropic media with re-
fractive indices n, and n2, respectively. Snell's law

means the conservation of the tangential component of
the wave vector k (co/=c)ns:

n, [s,—m(s, m)]=nz[s~ —m(s2 m)] .

Here m—:e, is the unit vector normal to the boundary
surface and for definiteness we assume that m. s, &0,
m s, )0; see Fig. l.

Let us denote also the unit polarization vectors a and b
for given s (in both media) in a usual way:

along the +z axes, our polarization vectors would be
a =e, b =e~, so that s, a, and b, would be right-handedly
oriented system.

Let us consider now the beam that is limited in the
transverse direction, i.e., the packet of waves with vari-
ous wave vectors k. &e will reserve the notations s, a,
and b for the central direction in the packet, so that

k(v)= —n(s+v),
c

(3)

where v is the small deviation from the central direction.
Then, omitting corrections of the order of v, one can
take v s=0 and

v=v a+vbb . (4)

Unit vectors of polarization will be (with the same accu-
racy)

e](v) =a —v, s+ v, (cot8)b,

e~(( v) =b —
vb s —v, (cot8 )a .

(sa)

(5b)

Refraction law gives the relation between v, and v2 in
two neighboring media:

n)&)g =np&2g s

n ] (COSs)] )V]b = n 2(COS82)V2b .

(6a)

(6b)

E2 (v)=t](v]b)E] (v),

E2 (v) t (((v] b)E] (v)

(8a)

(8b)

Here we would like to emphasize that, due to the symme-
try, the transmitting coeScients t~ and t~~ depend on the
angle of incidence (8]+v]b) and do not depend on the
azimuth v, .

Suppose that E(v) are smooth functions of v. In that
case it is possible to define a single polarization vector for
the whole beam as

e]= ~N~[aE&(V=O)+bE(((V=O)],

where the value ~N~ is used for normalization (so that

~e] ~

= 1). Then, projecting vector amplitudes E(v) on the
common polarization vector e].E(v)=F(v) we can
reduce our problem to the scalar one with the effective
field F. Applying the method of a stationary phase to our
wave packet

F(r) jF(v)e((ro/c)n(s+v) rd2v (10)

one can calculate the coordinates of the center of gravity
of the beam as

Individual plane-wave component exp[i(co/c)n (s
+v) r] has the vector amplitude

E(v) =e)(v)EJ (v)+e()(v)E(((v) .

These amplitudes in our two media are related by Fresnel
formulas

FIG. 1. Diagram for the calculation of the transverse shift
under refraction.

c
con dv

4(F(v)) .
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Here 4 is the argument of a complex number:
F= lFlexp(i@). Expression (11) can be obtained from
the same principles as one uses regarding the propagation
of a wave packet in a medium with dispersion in the
group-velocity approximation; see, e.g., [12]. Obviously
(11}gives only those components of r, that are perpendic-
ular to the propagation direction in the corresponding
medium.

Now w0 can explain why all of those complicated nota-
tions were introduced. Our intention was to calculate the
coordinates r, of the incident and the refracted beams us-

ing Eq. (11}and find the transverse shift of the beam as
the difference (r,z

—r, &). It is important that the men-

tioned shift depends on the properties of the boundary
but not on the properties of the beam itself [because,
thanks to relations (8), the main parts of phase depen-
dences for both F, (v) and Fz(v) are the same].

Now, to solve the problem, one should substitute the
equations in succession (1)—(11). We will present here the
expression for the transverse shift hx, =a (r,2

—r, &
):

2c t)l E) t~E)
b,x, = . Im cost&

ton, sin8, lt, E, l +lt, E, l
II

(12)

Further, we will be interested in the case n z
=n

&
+En,

with lan l «n. Then, dropping the corrections of the or-
der of (b,n ), we have t =1t~ =1 and
cos8z =cost&+ (b n In )sin 8& Icos8&. Therefore (12)
yields

c hn 2E E
b,x, = (tan8, )Im

ton n Ez+ E&z

e hn~g tan8) .
con n

Here tr =I [m2E;E&/(lE, l
+ lEb l )] is equal to (+1) for

the right circular polarization of light
(e„+ie~ )exp(ikz i tvt) and —( —1) for the left one
(e„ie„)exp—(ikz itot). In the —intermediate case o. can
be taken for the degree of circularity of the polarization
of the incident wave (and the refracted one if

l b, n l
« n }

III. DIFFERENTIAL EQUATIONS
FOR A TRAJECTORY AND POLARIZATION

OF THE RAY: HAMILTONIAN FORM
OF THE EQUATIONS

Let us rewrite the obtained above result for the trans-
verse shift in the form

path within one layer is D/cos8 . Hence we have the
phenomenological equation

—(b,ri) = —o (s XV inn )
d c
dl con

(15)

for the transverse shift of the ray's trajectory caused by
the circularity of polarization. Here l is the length along
the trajectory.

It is important to emphasize that the result (15) is
based only on the geometrical properties of a polarization
(its transverse nature} and on the absence of refiection

(t~~ =t~=1) for l«l «n. Therefore, it will be correct
for transverse waves of any physical nature propagating
in locally isotropic media.

Let us consider now the ray's trajectory r(l), in an in-
homogeneous medium. The well-known equations of
geometrical optics for r(l} and the unit vector normal to
the wave front s(l) are independent of the polarization
and have the form (see, e.g., [2,12,13])

ds
dl

' dl
=s, =V inn —s(s V inn ) . (16)

p=fi(co/c)n(r), e p=O, u p=O,
u=ike*, e e'=1, u u'=A

(18)

these conditions will be satisfied along the whole trajecto-
ry as a consequence of the equations of motion. Thus the
existence of just two complex polarization degrees of free-
dom and the transuerse character of the polarization will
be provided.

We have taken the Hamiltonian in the form

%(p, u, r, e) = p — p. [(eXu) X V inn(r)],C C

n(r) n(r)p

(19)

The above-mentioned effect manifests itself in the shift of
the center of gravity of a beam but not in the change of
the propagation direction. Therefore, to take the effect
into consideration, we have to modify just the first equa-
tion in (16):

dr c ds=s—o (sXVlnn), =Vlnn —s(s Vlnn) .
dl con dl

(17}

After rather strenuous efforts, we were able to rewrite
the equations (17) as canonical equations with some
Hamiltonian &. As coordinates in & we chose the in-

stant coordinates of a trajectory r and the complex
three-dimensional (3D) vector e related to the polariza-
tion. As momenta in & we take the momentum vector of
the photon p and one more complex 3D vector u. It will

be seen from the following consideration that if at the ini-
tial moment of time

b r j = o( b n /n ) (s X m—) Icos8 .c
(14) where p =—(p.p)' . Canonical Hamilton equations

We are going to apply it to the stratified medium consist-
ing of the pile of layers. If the adjacent layers are at a
distance D away from each other we have for one layer
(bn!n)m=DV inn; ln stands for logarithm. The ray

dr BA
dr Bp

de BJV

dt Bu
'

dp
dt

du
dt

Byf
Br

any

Be

(20)



V. S. LIBERMAN AND B. YA. ZEL'DOVICH

for & from (19) are

dr c D c [(eXu) X V Inn ]dt n p np

+ p[p [(eXu) X V inn ]],
np

(21}

where 8 is the angle between s and Vn. However, in all
of our calculations we took into account only terms of
the first order with respect to the small parameter
A, ~V inn~. That is why we can neglect the difference be-
tween the velocity ~dr/dt

~
and c/n (r). Then we trans-

form Eqs. (26)—(28) into the equation for the time delay
t ( I) along the trajectory

+ [(eXu) Xp]kdt, ~ 8- p
' dt n (r( 1 ) }

dl c
(30)

3 inn

Bx;Bxk

Blnn Blnn

Bx; Bxk

de e C
(e Vlnn)+ (p e)VInn,

dt Ii p np

du C C
(u V Inn )+ (p u)V 1nn .

dt np np

(22)

(23}

(24)

de
dl

= —s(e Vlnn }, (31)

or, taking into account (17) and (18),

and equations for the trajectory and polarization. Equa-
tions for the trajectory just take the form (17). The equa-
tion for the unit vector of the polarization e is

Now one can see immediately that the conditions (18) be-
ing satisfied at the initial moment of time (in the begin-
ning of a ray's trajectory) will be observed due to
(21)—(24) at any t.

The value of &(p, u, r, e) along the path
p(t), u(t), r(t), e(t) is conserved and equal to fico. Even
more interesting is that the value of spin-orbit correction
in the Hamiltonian (19} turned out to be zero along the
whole trajectory. This was the main problem in finding
the relevant interaction Harniltonian, and it forced us to
use a rather complicated construction of e and u vectors,
which have formally 12 independent components:
Re(e)„,Im(e)„, . . . , Im(u), . Moreover, the spin-orbit
term in the Hamiltonian as a function of its arguments
has real and imaginary parts. Fortunately, the final equa-
tions proved to be simple and describe both the optical
Magnus effect and the Rytov rotation.

Another interesting consequence of Eqs. (23) and (24) is
the conservation of the degree of circularity o., which in
new notation is

de
o =(eXu) p/pA', =0 .

dt
(25)

To summarize the above-mentioned results, we will
rewrite Eqs. (21)—(24) in the form

dr c c
s —o (sXVlnn)

n Q)n
(26)

ds c=—[V inn —s(s.V inn)],
dt n

dc c= ——s(e.V inn ),
dt n

(27)

(28)

dr c C1+o. (V inn) sin 0
dt n(r)

(29)

where s =p/p, o =i (e X e*) p/p.
To transform our equations into the equations of tra-

jectory (17) it is necessary to eliminate time from
(26)—(28). Out of the well-known properties of light, it
would be natural to have velocity ~dr/dt~ equal to
c/n(r). To some disappointment, Eq. (26) gives

de ds
dl dl

(32)

The last equation expresses the original Rytov idea: in
that approximation, the polarization alters at the dl path
just as much as it is imposed by its transverse nature
(e s)=0.

In our approach, that result comes out as a conse-
quence of the spin-orbit interaction. This means that, in
agreement with the conclusions of Sec. II, the spin-orbit
interaction has purely kinematical nature if taken into ac-
count in the first order with respect to the small parame-
ter X~V inn ~. Therefore, it does not depend on the origin
of inhomogeneity of the refractive index
n(r)=[a(r)p(r)]'~, whether it is the spatial dependence
of scalar dielectric constant F(r) or magnetic constant
p(r) or both simultaneously. Moreover, the same Hamil-
tonian (19) can be applied to the problem of propagation
of the transverse acoustic waves in locally isotropic but

smoothly inhomogeneous media.
It is not quite clear to us whether the same theory is

applicable to waves or particles of various physical nature
undergoing refraction due to the strong gravitation field.
The problem is that the gravitation field is not scalar and
therefore the assumption of local isotropy would be
wrong. However, in the first post-Newton approxima-
tion, the deflection of light by the gravitation field of the
sun does not depend on the polarization: that is a sign of
local isotropy.

It is important to note also some specific "nonlineari-
ty" emerging while we reduce Maxwell equations (ME's)
into the equations of the geometrical optics (17},and (32).
ME's are linear. Therefore we can decompose an in-
cident circularly polarized wave with o.=1 into the su-
perposition of the two waves with linear polarizations
(having the mutual phase shift 90') with cr =0 for each of
them. But from Eqs. (17) and (32) one can see that in
geometrical optics (with spin-orbit interaction) trajec-
tories for o.=1 and 0 will be somewhat different. In the
same way, the wave with linear polarization (o =0) in

agreement with ME's can be regarded as the superposi-
tion of the two circularly polarized ones (with cr=+1
and —1). Deviation of the trajectories of the two rays
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with o.=+1 at the distance more than the transverse size
of one speckle means that initially linearly polarized radi-
ation become depolarized; cf. Refs. [13,14].

Apparently, the most interesting field of applications
for our results is the optics of multimode optical fibers.
In that case the dependence n(r} usually is axially
symmetrical: n (r) =n (ri ), where ri = (x +y )'~ . Then
the additional term in the Hamiltonian of geometrical op-
tics can be presented in the form

2c 1 dn

ficon rj dr~
(33)

Here we have used new notations for the spin of a photon
X=e X u and the angular momentum of its orbital
motion M=rXp; in fact, only the projection M, at the
axis of a 6ber is important.

The fact that 5&=0 along the real trajectories makes
our discussion somewhat ephemeral. Nevertheless, we
think that (33) allows us to call 59 the spin-orbit interac-
tion Hamiltonian.

IV. OPTICAL MAGNUS EFFECT
IN A GRADED-INDEX WAUKGUIDK

In [9] we have predicted and calculated the additional
angular shift of the ray's trajectory in the graded-index
optical waveguide with the axial symmetry. That shift
changed its sign if the circular polarization of the in-
cident light was switched from the right-handed to the
left-handed one (the optical Magnus effect or the optical
ping-pong efFect). However, all consideration in [9] was
based on wave equations. In the present section we are
going to discuss that effect using modified equations of
geometrical optics (17}.

Let us denote by ri=(x, y) the transverse and by z the
longitudinal coordinates in an optical fiber with the axial-
ly symmetrical parabolic profile of the refractive index

A, hn=2Q,z= z .
m.n p

%e would like to mention that at first the expression
(37}with exactly the same coefficient was obtained by us

just from the wave theory; see also Sec. VIII of this pa-
per. Then we found the proper geometric optical equa-
tion (36) and only then Eqs. (17) and the way to deduce
them from the first principles expanded in Secs. II and
III.

(37)

V. OPTICAL PING-PONG EFFECT
IN A STEPLIKE INDEX WAVEGUIDE

In an optical fiber with the steplike profile of the re-
fractive index, the ray's trajectory is a broken line with
vertices on the boundary between the core and cladding.
In those vertices the total reffection (TR) takes place.
The transverse shift for a ray undergoing TR was dis-
cussed in many papers; see, e.g., Ref. [8]. For the special
case of our interest, when An ln ((1,which corresponds
to rays almost tangent to the boundary, the result can
also be obtained from our equations.

Let us consider the linear dependence of n (x) in some
interval h instead of the sharp step hn; see Fig. 2. The

A, is the wavelength in the air.
In that form (36) can be interpreted as the equation of

motion of the 2D mechanical oscillator with the mass
m =1 (after the substitution t~z) in the coordinate sys-
tem rotating with the angular velocity Q. Then the last
term in (36) is a Coriolis force and we have omitted the
"centrifugal force" as an effect of the order of Q .

Therefore, in the first order of perturbation theory, Q
is the angular velocity of the additional rotation (angular
shift) of the trajectory. If we switch the circular polariza-
tion of the light from cr = —1 (left) to o =+1 (right), the
variation of the ray's azimuth at the length z will be

n(ri) =no(1 —Ar i ), (34)

where ri =(xz+y )'~ . In real fibers, the smooth depen-
dence (34) stretches only up to some ri =p, called the ra-
dius of the core. Then A =En l(np ), where hn is the
difference of refractive indices of the core (in the center of
the fiber) and of the cladding. Then Eqs. (17) in the par-
axial approximation take the form

dx c dy c=s 2cT Ay, =s +20' Ax
dz ceno

'
dz cono

dsx de= —2Ax, = —2Ay .
dz dz

(35)

They can be transformed into the second-order
differential equation for ri(z):

d rj dr~= —2Ar~ —2 XQ
dz dz

(36)

where

Q(rad/cm) =e,cr
C

cono

A,hnA=o e, ,
277n p

n+h, n

FIG. 2. Diagram for the calculation of the transverse shift
under total reBection.
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hi =h(a/a, ) =ha nl(2d, n), (38)

where a, = (2b n /n )
' is the critical angle of TR for a

given hn/n. Using the well-known geometrical proper-
ties of a parabola, one can easily find that the length of
the parabolic part of the ray's path L, is

L, =4h, /t an a= ah(2 n/hn ) .

The effect of spin-orbit interaction at that part of trajec-
tory is the transverse shift of the ray

hy= L. , =o(2ca/con ) .dp

, spin-orbit

(40)

As was expected, that result does not depend on the for-
mally introduced thickness of the layer h.

In the vector form, the shift (40) can be written as

2Cbri=cr (sXm)(s m),
con

(4l)

where s is the unit vector of the propagation direction of
the incident ray, and I is the unit normal to the bound-
ary.

For the propagation of light in the steplike index
waveguide, it is convenient to take s in the form

s=e, +

ray's trajectory within the layer with the constant gra-
dient of the refractive index is the part of the parabola.
The height of that parabola h, depends on the angle a
between the ray and the boundary surface in the plane of
incidence:

X =X„+X»&2b,n/n . (47)

The averaging of y over the uniform distribution in the
circle ~X~ &(2bn/n)' yields (X ) =An/n and

con p
(48)

which is equal to 5$ in the graded-index fiber with para-
bolic profile for the same p and hn.

The calculation of the angular shift 5$ for an arbitrary
profile of the refractive index different from steplike and
parabolic indices is a more complicated problem, and we
will not deal with it. It is quite clear, however, that for
given p and hn the order of magnitude of the effect
remains the same.

VI. PARAXIAL APPROXIMATION
FOR MAXWELL EQUATIONS

in one TR undergo a decrease proportional to ~X~.
Unfortunately, the wave theory in the WKB approxi-

mation gives the expression for angular shift smaller by
factor of 2 than Eq. (46). We do not yet understand the
reason for that discrepancy. However, the functional
dependence of 5P on the parameters turns out to be the
same for ~ro~ —+p in WKB wave theory and in the ray
theory of the present section. Therefore, in the rest of
this section we shall derive all the consequences of Eq.
(46) with the coefficient as written in (46).

If the fiber length of our interest z is long enough to re-
move evanescent modes from our consideration, the con-
dition of the ray's confinement has a very simple form:

where x=(x„,x ) is the deviation of s from the fiber's
axis. If we denote the initial transverse coordinates of the
ray ra=(xo, yo), the trajectory (up to the first reflection)
will be

Maxwell equations for the electric field Ee ™are

N—rotrotE+ n (r)E=O
C

(49a)

ri(z)=ro+Xz . (43)

The transverse shift at one collision with the boundary
transformed into the angular shift of the trajectory is

NbE+ n (r)E= —V[E Vlnn (r)],
C

(49b)

, [x'(p' —ro)+(ro x)']'",
con p

(44)

where p is the radius of fiber's core. The number of col-
lisions at the length z is

[x2(p2r2)+(rx)2]1 /2 (45)

and hence the spin-orbit correction to the angle of the
ray's rotation is

c 2

5$(cr,X)=cr z .
con p

(46)

Thus we have come to an interesting conclusion: for the
optical ping-pong effect in the steplike index fiber, the an-
gular shift is proportional to the second power of the an-
gle g between the ray and the fiber's axis. The nature of
such a dependence is quite clear: if y~O, both the num-
ber of reflections per unit length and the transverse shift

where n (r)=e(r) is the dielectric permittivity (e=l in
vacuum) and we assume that the magnetic permeability p
is identically equal to 1.

Assuming that n(r) is independent of the longitudinal
coordinate z, one can rewrite (49b) as the equation for the
transverse components of the Geld E, and E only. Actu-
ally, the equation for E, contains E~ and E~, but, to the
contrary, equations for E„and E are independent of E, .
Such an approach seems to be natural because in the op-
tical waveguide the field is mainly transverse and has just
two (not three) polarization degrees of freedom.

We will look for the solution of the form

. COE(x,y, z) =exp i n„z Ei(x,y, z—)+e,E,(x,y, z) .
c

(50)

Here n„ is the refractive index of the fiber's core at the
axis and we have extracted the fast phase dependence
exp(icon„z/c) so that Ei(r) is the slow function of its
coordinates. Then for the Ei(r) we have the equation of
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a parabohc type

co Ei co 2 2»—n„=—E~Ej — [n (rj) —n «]Ei
c

$2E
2

—V~[E~.V~lnn (ri)],
az2

(51)

spond to the "unperturbed Hamiltonian. " The third
through sixth terms are the perturbations that still do not
inhuence the polarization. The seventh term connects
the polarization with the spatial structure of radiation
and corresponds to the spin-orbit interaction.

The scalar operator

Eq
l

az
c N

b,iEi+ [n—„n(ri—)]Ej .
2Nn

(52)

Apart from the polarization, this equation coincides with
the Schrodinger equation (after the substitution z~t) for
the particle in the 2D potential proportional to
n„n(r—~)

For us, the most important property of Eq. (52) is that
it does not lead to any interaction between Descartes
components E„and E~ even for the arbitrary n(x, y).
Thus (52) has factorized solutions, i.e., uniformly polar-
ized waves:

where we use the notations r = (ri, z) and ri =(x,y }.
If the light propagates in a direction that makes a

small angle with the fiber's axis, and variations of the re-
fractive index are small enough, the last two terms in (51)
can be neglected, and the difFerence [n (rj ) —n«] can be
approximately changed by 2n«[n(ri) —n«]. Then the
wave equation takes the form

2con
hi+ —[n„n—(ri ) ] (55)

in the space of 2D vector functions of two variables
{Ei„(x,y},Ej~(x,y)) is Hermitian with respect to the sca-
lar product

{Ei,Ez )=f fEi (x,y) Ez (x,y)dx dy . (56)

Its eigenvalues ( —b,P ) yield propagation constants of
fiber modes P =(con„)/c+bP .

Unfortunately, the most interesting part for us of the
perturbation in (54) that corresponds to the polarization
corrections is not Hermitian in the sense of the scalar
product (56). It is possible, however, to modify the field
Ei(ri, z) in the first order of perturbation theory so that
with respect to the new amplitude Ei(rj,z) the perturba-
tion operator will be Hermitian with respect to the scalar
product

E,(x,y, z) =(c,e„+ cze~ )f(x,y, z), (53) f fE, (rj,z).Ez (ri, z)d rj .

where c& and c2 are the arbitrary complex constants. If
we take into account the dropped term proportional to
Vi[Ei Vilnn (ri}], this important property of solutions
will be lost. It just corresponds to the spin-orbit interac-
tion.

VII. SPIN-ORBIT CORRECTIONS
TO THE PARAXIAL APPROXIMATION:

HERMITIAN INTERACTION HAMILTONIAN

Developing the analogy with quantum mechanics, it
would be attractive to present the dropped terms [the last
two terms in Eq. (51)] as a result of an operation of some
perturbation Hamiltonian Sgf on the vector wave func-
tion Ej(ri,z). An obstacle in this way is that one of the
dropped terms contains the second derivative 82/Bzz.
However, iterating the equation (51) and omitting the
small corrections of the second order, we can obtain in-
stead of (51)

fEi(ri, z} Ej(rj,z)d ri=constX fS,(ri)d ri .

For the time-averaged Pointing vector

S=(EXH')/16m+(E'XH)/16m. ,

(57)

(58)

its z component should be expressed by the transverse
components of the field EJz Ejy only.

Dropping the intermediate calculations, we would like
to show that we have (in the first order of perturbation
theory)

That situation resembles the transformation of Dirac's
equation for the bispinor into the Schrodinger-like equa-
tion for the two-component spinor with relativistic
corrections; see, e.g., [15],Sec. 33.

Using that analogy, we will define the new field Ei(r)
so that the scalar product (Ei,Ei) will be equal to the in-
tegrated z component of the Pointing vector:

c CO
b, jEi+ [n„n(rj—)]Ei-

2con co c

c C+
3 E~hiEj+ E~bjn(rj )

86k n~o 4un „
c C+ (Vin. Vj )Ei+ [n(ri) n]«b Eij-

2cOn 2con co

V~(Ei Vilnn ) .
267n

fS,(r )di'=(cn„/8~) fE~(ri, z) Ei(ri, z)d ri.

if we take

2
Ei= 1+[n(rj) n„]/2n„—+

z b~ Ei
4Q) n

c2
2 2 Vj(diviEi) .

2~no

(59)

(60)

In the right-hand side of (54) the first two terms corre-
The Eq. (54) can be modified (with the same accuracy)
into the equation for the new field E~:
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aE.
l

Bz
hi+ —[n„—n(ri)] F.2mn„c

3 bibi+ [n(ri) —n„]bi+ [bilnn(ri)]+ (Vilnn)& E

c 8 inn Blnn
2cOn Bx Bxp Bxp Bx

8 inn

Bx Bxp
Ep. (61)

Thus we have obtained the modified perturbation
operator that is Hermitian in the sense of our scalar
product. The third through sixth terms on the right-
hand side of Eq. (61) do not involve the polarization. The
last three terms in (61) that connect the polarization with
the spatial structure of the field through the inhomo-
geneity of the refractive index n(x, y) constitute the
operator of the spin-orbit interaction of a photon in the
inhomogeneous medium.

In Ref. [16] the perturbation responsible (in our terms)
for the spin-orbit interaction is given just in the non-
Hermitian form (54); see Eqs. (32.22) and (32.24) from
that reference. Hence, using the arbitrary vector func-
tions for the calculation of the bound modes, one can ob-
tain not just the wrong values for the corrections 5P, but
even the complex ones, in contradiction with the absence
of the damping. Nevertheless, in all specific cases where
the proper unperturbed modes of the axially symmetrical
waveguide are chosen, the expressions from [16]yield the
correct result.

VIII. THE WAVE DESCRIPTION
OF THE OPTICAL MAGNUS EFFECT

Let us consider following [9] an optical fiber with a
parabolic profile of the refractive index (34). Proper un-

perturbed modes of such a waveguide are

E' '„=2 ' (e„+i(re~)exp(img)F~~~ „(ri) .

Here x = ricosP and y = rising;

Fl I, (ri)=(r /p)l lexp( —Vri/2p )

XL (rn~( V„z/ 2)

(62)

(63)

L„~ ~ are generalized Laguerre polynomials;
V =(con„/c )p(2hn /n)'~ is a dimensionless parameter
( V)) 1 for a multimode fiber); cr =+1 is the polarization
index (spin); m =0,+1,+2, . . . is the azimuthal index (or-
bital angular momentum); n =0, 1,. . . is the radial quan-
tum number; and we shall avoid cases of zeroth full angu-
lar momentum (cr =+1, m = —1 and o = —1, m =+1).
In the zeroth order of the perturbation theory the propa-
gation constants of those modes are

P „=(con„/c) (2hn/n)'~ p—'(1+Q), (64)

where Q is the principal quantum number of our oscilla-
tor.

One can calculate corrections to the propagation con-
stant P „ in the first order of the perturbation theory by
averaging the perturbation operator from (61) over the

I

modes (62). We are interested only in terms which de-
pend on the polarization of the mode. That contribution
to hP have opposite sign for the right (cr =+1) and left
(0' = —1) circular polarizations:

P' „—P „=2mo =2Bma .
cbn

cOn p
(65)

This means that, illuminating the entrance of the fiber by
the field

E~(ri, g, z =0)=2 ' (e„+iae~)cos(mg)F~~~ „(ri),
(66)

we will have in the z cross section

Ei(ri, g, z) =2 ' (e„+io er )cos[m(P crBz) ]F~
—

~

„(ri),

i.e., the speckle pattern undergoes a rotation at an angle
o.B. Switching the circular polarization of the incident
light from the left-handed to the right-handed one, we
have the mutual angular shift of the speckle patterns

chn
p+ —p =2Bz =2

2 2z .
n cop

(68)

It is remarkable that, for the optical fiber with the para-
bolic profile, the angle (68) is the same for all modes.
That fact explains the complete coincidence of our results
in the wave theory and in the geometrical optics; see Sec.
IV.

However, we must recall the discrepancy by a factor of
2 in the relation between ray and %KB wave theory of
the ping-pong e8'ect. It is especially surprising that there
is no discrepancy between ray and WKB wave theory for
the Rytov rotation, neither in a gradient fiber nor in a
steplike one; see below.

The wave description of the optical Magnus effect (or
the optical ping-pong effect) for the multimode fiber with
the steplike index profile was given in [11]. Referring to
that paper for the details, we would like to note that the
averaged value of the rotation angle for that case proved
to be (as a result of numerical calculations) two times less
than that for the parabolic profile with the same b n and
p. The numeritcal calculations from [11]proved to be in a
good agreement with the results of the experiment on the
step-index fiber of the length of L =96 cm, with
p=100 pm, hn 6X 10,and n =1.5 at the wavelength
of He-Ne laser X=0.63 pm.

The Rytov rotation of the polarization plane for the
sagittal ray can be calculated in the same wave picture.
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If we regard the mode with the maximal angular momen-
tum I for given radial index n, the rotation of the plane
of a linear polarization will be

becomes considerable just at the same length n imB at
which the optical Magnus effect for the circularly polar-
ized waves manifests itself.

y=z(P'+„' —P' „')/2=m z .
CO7l coP

(69) IX. CONCLUSION

The solid angle subtended by the ray's trajectory at the
origin of the momentum space is

b,Q=n.J( =2m.(b,nln)r Ip (70)

dy bO, cdn=m z 7
dz Lo con p

(71)

in complete agreement with the results of Rytov, Vla-
dimirsky, and Berry.

To observe the optical Magnus effect, one should have
the rotation angle bP being a considerable part of the az-
imuthal size of the speckle pattern. This yields the condi-
tion for the necessary fiber's length

z&~/m8 . (72)

where r is the radius of the trajectory. The ray that cor-
responds to our ultimate mode has m =(conic) ~Jf~r, and
taking into account that the photon's direction turns
through a close circuit at the length Lo=2mrl~Jf.

~
we

have

In this paper we have derived the equations of geome-
trical optics for a trajectory and a polarization of a ray,
taking into account their interaction up to the first order
of A, ~V inn ~. The corresponding Hamiltonian can be re-
garded as the Hamiltonian of the spin-orbit interaction of
a photon in an inhomogeneous (but locally isotropic)
medium. We explained both the well-known rotation of
the polarization plane for a twisted trajectory (according
to Rytov, Vladimirsky, Berry, and Chiao) and the optical
Magnus effect (or the optical ping-pong effect), which was
predicted in [9] and found experimentally in [10]. The
wave theory of the spin-orbit interaction of the photon in
an inhomogeneous medium is elaborated on as well. We
still have a factor-of-2 discrepancy between ray and
WKB wave descriptions of the ping-pong effect in a step-
like index fiber, which we hope to understand in the fu-
ture.

The optical effects considered in this paper are of the
geometrical nature and should exist for any types of
transverse waves in inhomogeneous locally isotropic
media.

The circular polarization is conserved under the propaga-
tion in the axially symmetrical optical fiber (if we neglect
the contribution of the modes with the zeroth value of
the full angular momentum tr+m, see [11], i.e., if we
neglect the pure meridional rays). In contrast to what
was shown in [14], the degree of linear polarization de-
creases because of the different sign and value of the
Rytov rotation for various sagittal rays. Such a decrease
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