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Relaxation of energy from the transverse to the longitudinal direction
of a cold-ion string in a storage ring
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Vhth the help of molecular dynamics we study the properties of a string of ions that is con6ned
by an external harmonic potential and that initially is cold in the beam direction but warm in the
transverse one. Under the influence of the mutual Coulomb repulsion, intrabeam scattering leads to
a flow of energy &om the transverse to the longitudinal direction. Depending on the density and the
initial transverse temperature T~o, three regimes can be distinguished: a fast transient increase of
the longitudinal temperature Tj~ in a fraction of a betatron period, a slow linear increase in some ten
betatron periods, and a fast exponential increase followed by complete thermal equilibration. If Tgo
is large, linear order is lost and thermal equilibrium is postponed to large times. Fourier analyses
show that the energy flows into the long-wavelength modes of the collective string excitations. A
comparison of calculated heating rates with achievable cooling rates reveals that maintaining linear
order in a storage ring is marginal.

PACS number(s): 07.77.+p, 41.75.-i, 41.85.Ja, 29.20.Dh

I. INTRODUCTION

After the recent advent of highly efficient electron cool-
ers in heavy-ion storage rings, SchifFer and Kienle [1],see
also Ref. [2], speculated on the possible existence of or-
dered structures in cold-ion beams. In analogy to the
one-component plasma, for a review see Ref. [3], which
liquifies at a value of about 3 of the plasma parameter

qz/d

T
(the ratio of Coulomb to thermal energy), where q is the
charge (4m.eo ——1), d is the interparticle distance in the
laboratory system, and T is the temperature, and which
crystallizes at a value of 178 [4], at very low temper-
ature a heavy-ion beam should also be ordered. Since
heavy ions can be charged up to q =92e, here the plasma
parameter is greatly enhanced due to the quadratic de-
pendence on q in the numerator of Eq. (1). The possible
structures of ions confined by a cylindrical harmonic field
have been studied extensively [5—8], and range, with in-
creasing density, from the string over a zigzag to helices
and intertwined helices. String order and zigzag order
of light ions have recently been verified experimentally
in a linear Paul trap [9] and string and helical orders in
an rf-quadrupole ring trap (ministorage ring) [10], both
with laser cooling.

A heavy-ion storage ring, however, is far from being
ideal in the sense that the ideal constant radial focusing
is only approximately achieved by time-dependent alter-
nate focusing and defocusing. Moreover, it has free drift
sections and bending magnets. By the fact that in a
constant magnetic field particles run on displaced circles
with the same radius, particles that once were beside each
other, after 90 of deflection tend to be located one be-
hind the other. This creates strong shearing forces in the
crystal that break it and that increase the temperature ir-

reversibly. Idealized computer simulations with alternate
bending and focusing-defocusing [11,12] are not yet de-
cisive. Essentially no stable thr=-dimensional structure
has yet been identified experimentally or in a computer
simulation with a realistic lattice of a storage ring [13].
However, it cannot be excluded that local order has al-
ready been produced in the Heidelberg test storage ring
TSR, where light ions were cooled by laser cooling to very
low longitudinal temperature [14, 15].

If all particles run on the central orbit bending forces
cannot build up. One therefore expects that a linear
string of particles can survive in a storage ring, provided
that the longitudinal and transverse temperatures can be
maintained at a low enough level in the liquid or crys-
talline regimes.

Longitudinal electron cooling is more efFective than the
transverse one by the factor [16]

where Eo' is the electron-beam energy and p is the rel-
ativistic Lorentz factor. This manifests itself also in a
lower ion temperature in the beam direction as compared
to the transverse one,

kTii = Ep(Lip/p), kTi ——2EoeQp /E,

where Eo is the ion-beam energy per particle, 6p/p is
the momentum spread, e and Q are the emittance and
betatron tune, and E is the circumference of the storage
ring. At the experimental heavy-ion storage ring (ESR)
at GSI Darmstsdt with E 100 m and Q -2 after electron
cooling (with a cooling time of about Sx10 betatron pe-
riods), one expects, for a uranium beam at 100 MeV, an
emittance of better than 0.05m mm mrad and a momen-
turn spread smaller than 5x 10 s [17]. One could form a
string of 2 x 10s particles with an interparticle distance
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of d = 50 pm, and hence an interion Coulomb energy of
qz/d —0.25 eV and ion temperatures of kT~~-5 meV and
kT~ =2.5 eV at p = 1.5. This yields plasma parameters
of the order of I'~~ = 50 and I'~ = 0.1. The estimates
above, however, are based on higher particle densities
in the three-dimensional (3D) gaseous regime and the I'
values at 1D string densities can be higher.

The purpose of this paper therefore is to investigate the
question of the flow of energy from the warm transverse
(horizontal and vertical) degrees of freedom into the cold
beam direction. With the help of molecular-dynamics
(MD) calculations we study the increase of temperature
in the beam direction by Coulomb scattering of parti-
cles in a box with periodic boundary conditions and ex-
tract the time rates of change as functions of the initial
transverse temperature and density. Simple formulas for
the heat energies and the heating rates are extracted ei-
ther from analytical models or from fits to the MD data.
In Sec. II the MD dynamics method is outlined and in
Sec. III general results are stated. Subsequently, Secs.
IV—VII deal with transient heating, heating rates, ther-
mal equilibrium, and collective vibrations, respectively.
In Sec. VIII the calculations and results are summarized
and implications on the possible experimental verifica-
tion are discussed. Mathematical details can be found in
Appendixes A—C.

Similar studies have been performed by Schiffer and
Hangst [18]; however, with the main emphasis on the
influence of different focusing constants in the two trans-
verse degrees of freedom; and by Armbriister et al. [19]
for homogeneous systems at higher temperatures. In this
context the collective excitations of a warm string in a
storage ring were investigated by Avilov and Hofmann
[20].

2m/~p is the Coulomb period, the time scale for longi-
tudinal motion, and we define the dimensionless linear
density

as the particle density o/q times the Wigner-Seitz radius,

yaws = (-,q /m~p )
2 ~/3

Here A„;& ——0.709 is the maximum linear string density
where the string loses its stability with respect to the
zigzag configuration, see Appendix A. In the following
we will be mainly concerned with intermediate densities
of 4 =0.45. Note, however, that the linear particle den-
sity remains constant for given distance d, so that in
the string region A instead is a measure for the focus-
ing strength or for the betatron frequency,

2x3 2 -2
3A =~O ~P (4)

2i8~~cp = zm(z ), 8~op = zim(p ), (5)

The initial conditions are specified as random initial
velocities and displaeements in the transverse degrees of
freedom within a Boltzmann distribution, thereby disre-
garding the Coulomb potential, but only as random or
vanishing initial displacements from the ultracold string
in the beam direction. Hereby, the longitudinal and
transverse dimensionless temperatures 8~~, 8' are de-
fined as the respective kinetic energies per degree of free-
dom in units of ep

——q /lsd=—m~p2d2, viz. ,

II. MOLECULAR DYNAMICS

In the MD calculations we simulate the infinitely long
string of ions by N particles with the average distance d
along the beam direction in a box with periodic bound-
ary conditions. Denoting by x, y, z, p=x+y and r
the horizontal, vertical, longitudinal (beam), transverse
directions, and the coordinate, respectively, the focusing
and Coulomb forces act on the particle i,

i = — 2 . 2
Fg~, ———mu)p x; —mu)p y, ,

(2)

FCoui= q ~')
j&i

The latter is replaced by standard Ewald summation,
details of which can be found in Ref. [7]. Since mostly
u)p~ =~p„we de6ne by 2'& ——~& +~&„ the average be-
tatron frequency, and Tp =2+/~p, the average betatron
period, is the time scale for transverse motion. With the
help of the frequency unit

~p = gq'/mp'ds,

where p is the Lorentz factor, see Appendix A, To ——

so that thermal equilibrium implies 8~~ =8. =8,

z8ep ——2m(r ).

Furthermore, denoting by 8~~p and 8'p the respective
temperatures at time zerowith 8J p)) 8[~p and disregard-
ing changes of the potential energy, the final temperature
will be 8= sz8~p. We shall use the terms temperature
and kinetic energy (per particle) synonymously. In this
notation, the plasma parameter (1) is the reeiproeal of
the dimensionless temperature. Note however, that the
definition of I' in the literature is not unique. If dealing
with a 3D one-component plasma it is more convenient to
employ the Wigner-Seitz radius (3) in the definition (1).
Also, the Lorentz factor can be incorporated by replac-
iug d by p d. This gives an uncertainty in the numerical
value of I' of the order of a factor of 5. Here we consider
initial transverse plasma parameters of the order of 0.1—

30 in the gaseous and liquid regimes. In this notation,
the average square transverse amplitude (p=]p[) and the
average square distance between two particles are

2) 4gs8 d2

(6)

(")=(1+s's8. ) d'.
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III. GENERAL RESULTS

In most of the calculations N = 64 particles in the
box sufficed because comparisons with results with larger
particle numbers (N =512) essentially did not change. If
not otherwise noted, in the following we will use N =
64. However, for small numbers of iona the statistical
fluctuation of the energy is larger, oc N i~z. For N =
64, for instance, the width of the energy distribution for
given initial temperature is about +20%, in contrast to
+8%%uo for N =512. This manifests itself also in a relatively
large spread of the final temperature.

A typical example of a MD calculation with 64 ions
is shown in Fig. 1. Starting with B~~p

——0 and B~p =
4.2 and various seeds for the random number generator
the transverse kinetic energies oscillate about their mean
values and the longitudinal one increases in time. The
final spread of 8~~ is of the order of +20%, in accordance
with the same initial spread. Since in the following only
one particular initial condition will be used, all results
hence are only accurate within this error.

In the schematic calculations of Ref. [18] emphasis was
put on the fact that the motion of particles in a two-
dimensional potential with a rational ratio of frequencies
is periodic but otherwise chaotic. Results showed that
more energy is transferred faster from the transverse to
the longitudinal direction if the ratio of betatron frequen-
cies is 19:21 rather than 9: 10, with the least energy
being transferred for a ratio of 1:1. This was explained
with the reasoning that the chance for a close collision
is smaller if the motion is periodic. Figure 2 shows our
results for an intermediate density of A = 0.45 and in-
termediate initial transverse temperature of B~p = 2.1
and B~~p

——0, but with various ratios Idp . ~p„. As a
result, also the least energy is dissipated for a ratio of
1:1 but the increase in heat energy is monotonic with
increasing ratio up~ . up„(or up„. up~), regardless of
the rationality or nonrationality of the ratio (19:20 is
close to 3:Ir). An analysis of these results revealed that
the phase relations between the horizontal and vertical
motion are lost after a few betatron oscillations. The re-
maining efFect of increased heating for ratios not close to
unity then is attributed to the increased scattering rate

5.0

4.0

3.0

0.1

1&.45
eg&2.1

0.01

20 25

FIG. 2. Increase of longitudinal temperature vs time for
various ratios up~ .up„and the same initial temperatures in
the two transverse degrees of freedom. For clarity, the curves
have been smoothed by polynomial fits.

IV. TRANSIENTS

between particles in the compressed degree of freedom
with the larger betatron frequency and smaller average
amplitude. In order to simulate the influence of difFerent
focusing and defocusing in the following we shall use the
ratio urps ups„——.19:21 throughout.

Figure 3 shows the change of transverse to longitudinal
kinetic energy for a density of 1=0.45 followed in time for
50 betatron oscillations. The initial longitudinal energy
is always zero and the initial transverse energy varies
from 1.2 to 27.4. According to Eq. (6) for this density
the average transverse amplitude becomes larger than the
cold interparticle distance d at B~p )8.2. The beat in
Bg stems from the difFerent betatron frequencies in the
two transverse directions as stated above. In general,
the longitudinal heat is increasing monotonically apart
from the statistical fluctuations. However, there are also
strong fluctuations, e.g., in the case Bgp = 4.2, which
come from single close encounters of two particles.

One observes different regimes of heating on different
time scales: (i) For all initial transverse temperatures
there is a fast transient heating of the longitudinal de-
gree of freedom to a plateau value in a time of up to one
betatron period; (ii) for relatively small B~p there follows
a region of several to some ten Tp with an approximately
linear heating rate; (iii) this is followed by a very fast
(approximately exponential) heating up to thermal equi-
librium about on the same time scale; (iv) if the initial
B~p is relatively large the linear and exponential heating
regimes are missing and the thermal equilibrium is post-
poned to very large times or might even not be attained
asymptotically. These difFerent regimes will be discussed
separately in the next sections.

1.0- II20

0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1. Transverse (e~) and longitudinal (e~~) tempera
turea vs time (in units of the betatron period) for various ran-
dom initial conditions with the same initial 6~0 and e()p ——0
(N =64 particles in the box).

Since the 1D longitudinal system and the 2D trans-
verse system mere prepared at time zero separately the
joint system first relaxes very fast to a common 3D sys-
tem. Depending on the density this transient heating to
a plateau value happens on a very short time scale of the
order of a fraction of the betatron period [21]. Indepen-
dent of the density the theoretical value, see Appendix B,
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FIG. 3. Increase of longitudinal (Oll) and decrease of transverse (Oll) temperatures in time for various initial transverse
temperatures (O~p) and Olla

——0 for a system with linear density A=0.45. Note the logarithmic scale.

Otrans 3 P6O2
tl

(9)

The plateau energies for transient heating are shown in

is constant since the time scale for longitudinal motion is
Tp rather than Tp. This value is well attained in the MD
simulations, see Fig. 4.

In Appendix B is derived the approximate formula

ell(t) =ello+(tlat ) (3~ el P 2ello)

for the longitudinal transient heating, which is valid for
not too large densities. Transient heating thus vanishes
or becomes negative if 3Aees&p —Blip (0. This is con-
firmed in the MD results of Fig. 5, where the limiting
value is Ollp ——2x10 for this particular case. The
plateau value of the transient energy thus becomes

Fig. 6 and are compared with Eq. (9). The strong density
dependence with the sixth power of A is well reproduced
over many decades, but for larger O~p nonlinear effects
come in at the higher densities.

The maximum transient longitudinal heating calcu-
lated is about 0.01, which, for the example of Sec. I,
corresponds to a beam temperature of 2.5 meV, i.e. , it is
of the same order of magnitude as the minimum temper-
ature expected after electron cooling.

V. HEATING RATES

After the system has settled in its 3D state in the short
transient time, a slow, approximately linear, heating of
the longitudinal motion takes over. An example is shown

10'
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FIG. 4. Longitudinal transient heating for various densi-
ties and e&p = 2 and e(~p = 0. The dotted line marks the
theoretical value.

FIG. 5. Longitudinal transient heating for various initial
longitudinal temperatures and A = 0.2 and e~p = 1. For
clarity, the curves are polynomial smoothed.
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FIG. 6. Longitudinal transient plateau energies for vari-
ous initial longitudinal temperatures and densities and e~)p

——

0. The dotted lines are theoretical results from Eq. (9).
FIG. 8. Longitudinal heating rates in the linear and ex-

ponential heating regimes in units of Tp . The dotted line
is the best fit of the linear heating rate.

in Fig. 7. Here, for about 200 betatron periods, the heat-
ing rate is almost linear apart from the fact that after
about 100 Tp a close encounter of two particles increased
slightly the energy irreversibly. This efFect has also been
observed in Ref. [18]. In the MD calculations the linear
heating regime was only found for densities A & 0.3. For
smaller densities no increase in longitudinal energy could
be measured within a few hundred Tp.

The systematics with the initial transverse energy of
the linear heating rate is shown in Fig. 8 for two densities.
Here the dotted lines give the best fit to the data,

BiiTp = 0.05K 8
A theory for the linear heating rate will be the subject
of a separate work.

VI. THERMALIZATION

As can be seen from the example of Fig. 7, the lin-
ear heating regime ends abruptly (at a time t~""' and at
the threshold temperature BI~""') and the heating rate
becomes exponential, leading to a rapid and complete
thermal equilibrium when the longitudinal and the trans-
verse temperatures become equal. The exponential heat-
ing rates have been extracted from the A =0.45 MD data

are also shown in Fig. 8 and are of the same order of
magnitude as the linear ones.

The threshold times and energies are shown in Fig. 9
for A = 0.45. After about 1.5/0 of the initial transverse
temperature is transferred into the beam direction the ex-
ponential heating takes over. With increasing B~o this
threshold time decreases rapidly down to about ten be-
tatron periods. Accordingly, the total time for reaching
thermal equilibrium of Fig. 10 drops to a few tens of be-
tatron periods but increases again for larger initial B~o.
For Bge & 7 no thermal equilibrium has been reached
even after a few hundred Tp. This effect is explained in
Appendix C by the fact that when the average rms trans-
verse amplitude of Eq. (6) approaches the value d/2 the
potential energy of the system favors large longitudinal
displacements. This happens for all temperatures larger
than

B~e ssA
TE g -3

For 4 =0.45 this yields the value BTP& -3, i.e. , about at
the minimum of Fig. 10.

The increase in the time for thermal equilibrium be-
yond Bge =4 of Fig. 10 may be due to the fact that the
longitudinal motion becomes overdamped according to
Eq. (C3). In addition, relaxation times in the gaseous

1.5 ~ i ~ $
I i I i ~

1=0.45
eg0 12 400 .08

1.0 300- — .06

0.5
200-

100—

CD
- .04

5.

— .02

0..0 I 1 ~ I a I )

0 50 100 150 200 250 300 350 400

t/TH

0
0 3

eio
4 5 6

0

FIG. 7. Transverse (e~) and longitudinal (e~~) tempera-
tures vs time (in units of the betatron period) for 1=0.45 and
e&0 ——1.2. For clarity, the results are smoothed over +2 Tp.

FIG. 9. Threshold times in units of the betatron period
(left scale) and transverse threshold temperatures (right scale)
vrhere the exponential heating regime starts (A =0.45).
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FIG. 10. Times in units of the betatron period for reach-
ing complete thermal equilibrium in the longitudinal and
transverse degrees of freedom (A =0.45).

spectively. For complete thermal equilibrium of a har-
monic system of particles they obey the relations

(la (q)l) = kT/2mB (q) (la I) = kT/2m, (12)

where T is the temperature; see Avilov and Hofmann
[20]. The long-wavelength limit of the longitudinal string
frequency is given by Eq. (A6). For a finite number
of particles N, however, the wave number is limited to
q;„=2m/Nd. The Fourier coefficients of the transverse
displacements and velocities are shown in Fig. 11 and it
can be seen that already after 5 Tp the la~~(q)l distribu-
tion tends towards q ~0, whereas the distribution lo~~ (q) l

remains flat, in accordance with Eq. (12). The Fourier
coefficients of the transverse displacements and velocities
not shown here, on the other hand, remain random for
all times due to the fact that the dispersion relation is
rather independent of frequency for the densities under
consideration, i.e. , not too close to the critical density.

VIII. SUMMARY AND DISCUSSION

VII. COLLECTIVE MOTION

As discussed above, during the evolution of the system
towards thermal equilibrium the uncorrelated longitudi-
nal amplitudes can become arbitrarily large. This means
that particles can change their places in the string (in
our MD calculations this was observed for O~o ) 1.2
at a density of A = 0.45) not only singly but also col-
lectively. On the other hand, the saddle point for the
shortest-wavelength 2+ collective mode, where particles
can change their places without loss of energy lies even
lower at an energy of 0.8eo, even for p = +0.25; see Ap-
pendix A. As a result, strong collective correlations are
energetically favored and, accordingly, the system moves
towards smaller wave numbers (larger wavelengths) in
the dispersion diagram of Fig. 13 of Appendix A.

A quantitative measure for this effect are the Fourier
coefficients (or phonon amplitudes) a~~(q) and a~~(q), re-

1&.45 8~~3 ~12

0
5

a 0
e 5

TTI
Lllkljia J~,g) JlksJLs a i~~

APT~~ ~~ s ~~II~ 0I I

2TI .
A.===

I I
5T 5

0
'STs

D
20TI

0
5

0.0 0.5

qI (x/d)

0
50'

0.0 0.5 1.0

ql (z/d)

FIG. 11. Longitudinal displacement and velocity Fourier
components or phonon amplitudes (in arbitrary units) vs the
wave number in units of m/d (1=0.45 and 8~0 ——3).

30
heat ~ 3~ Tp'

A Uzo
(13)

For 0~0 = 5 and A = (0.3, 0.2, 0.1) this is of the order
of (200, 750, 6000) Tp This heating . rate has to be neu-
tralized by the electron cooler in the storage ring. We
therefore have simulated the effect of the electron cooler
in the MD calculations by adding a cooling force in the
beam direction which has the effect of reducing the lon-

gitudinal temperature by certain cooling rates. Indeed,

Q~~ remains stationary at the level of Q~~'a"' if the cooling

rate is about equal to the heating rate.
The electron cooler in the ESR at GSI Darmstadt is

expected to achieve typical cooling times of 20000 T3
(cooling times are of the order of a few milliseconds).
Hence A must be as small as possible, which, according

The MD simulations of the exchange of energy of a
transversely warm string into the initially cold beam
direction revealed that this happens on different time
scales, depending on the density and the initial trans-
verse temperature. After a fraction of a betatron period
the initially separated 1D longitudinal and the 2D trans-
verse systems join in a 3D common one with transient
energies that go with the sixth power of the linear den-
sity. Then the beam direction heats up with a heating
rate that goes with the ninth power of the linear density
until thermal equilibrium is reached. Thereby linear or-
der is reasonably maintained, unless the initial transverse
temperature is too large so that the average transverse
amplitude is of the order of the interparticle spacing. In
this case heating times become as small as a few betatron
periods.

In the other extreme of low density and low tempera-
ture, heating times can reach a few thousand Tp. From
the transient energy (9) and the fit to the linear heating
rate (10) (which is about equal to the one with the expo-
nential heating rate) one derives an approximate formula

for the e-folding time rh, t ——O~~'""'/O~~ for longitudinal

heating,
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to Eq. (4), can only be achieved by strong focusing. This
in turn means that the betatron tune Q, the ratio of be-
tatron frequency to revolution frequency u„„,must be as
large as possible. As an example, for a 2MUs2+ beam at
500 MeV per particle the Lorentz factor is p= 1.5. With
an interparticle distance of 50 pm one has ap ——3 MHz
and u„„=13 MHz. In order to achieve A =0.1 (0.2), Q
must be of the order of 10 (3). By virtue of the geomet-
ric structure of a storage ring imposed by the number
of focusing and defocusing magnets and by the increas-
ing number of resonances the betatron tune is limited
to values around Q (4. In conclusion, it is marginal to
achieve such low linear densities of A-0.1 where the elec-
tron cooling rate can neutralize the expected longitudinal
heating rate.

There are, however, other mechanisms that also con-
tribute to heating the beam longitudinally, e.g. , the in-
fluence of nonideal beam optics, of scattering with the
rest gas, and of electron recombination in the cooler.
Ideal radial harmonic focusing, as assumed above, can-
not be realized by focusing and defocusing quadrupole
magnets; and, even more serious, the bending dipole
magnets act to destroy longitudinal order by virtue of
the shearing stress created at higher transverse temper-
atures. As a first step towards more realistic simulations
we replaced the constant radial focusing force by cyclic
FODO. However, apart from the fact that these external
time-dependent forces no longer conserve the total en-

ergy and hence the final Bid no longer equals seep, no
drastic difFerences were found in the heating rates. Such
studies with a realistic lattice of a storage ring including
the bending magnets are underway.

Scattering with the rest gas, on the other hand, results
mainly in a deceleration of the beam, see [16]. Without
relativistic factors this is approximately

E = 10EpZ [pH, (Torr)] sec (14)
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APPENDIX A: STRING VIBRATIONS

Denoting the longitudinal amplitude of particle n by
u„(t), viz. , z„(t)=nd+u„(t), under the approximations
iu, —u~i, ip, —p~i (( d the accelerations in longitudinal
and transverse directions in the laboratory system can
be expanded as

where pH, 10 OTorr is the hydrogen equivalent rest-gas
pressure. This theoretical formula has been derived from
Rutherford scattering and yields a value of the order of
2 meV/Tp. It compares with the experimental value of
=50 peV/Tp derived from the fact that the lifetime of a
heavy-ion beam in the ESR is of the order of 1 h before it
loses about 1% of its energy per particle Ep. This energy
loss is compensated for by the electron cooler. The ther-
mal heating of the beam due to scattering with the rest
gas, on the other hand, is a second moment efFect and
as such is expected to be at least an order of magnitude
smaller with heating times of at least 10s Tp.

~ ( 1 3 2 2
O u~ = &p) . ——,[2u~ —u~-a —u~+A, l

—2, (u~ —u~-A, ) —(u~ —u~+i, )
A&p (

3 s 2
+4d J 4 .(PA PA —k) (Pn Ptl+k)

2 s 3 z

2&, .(u -u -~) + (u -u +A:)

3 2 2 2 2
+d2$, u ((P P-A, ) +(P-;P.+k) ) u k(P;P.—k) -u+i(p;—P.+k) +- (A1)

= —2 2 4 1
pp" + ~p

2A:s
2p„—p„g—p„+A, —

~4 (p„—p„z)(u„—u„p) —(p„—p„+A, )(u„—u„+i )2d

3 -
2 2

+d2$5.(p P —k)(u u —A:) + (P P +A:)(u u +A)

4d,„,(P;P. a-) + (P..-p.+~)-. +- (A2)

The respective first terms are the harmonic contributions
which, for uncorrelated (i.e., random) motion give the
frequencies

I

number q = 2m /Md and the parity II according to cosine-
like or sinelike vibrations in longitudinal or transverse
directions,

'YfIII = +2gs(up, OJ = Mp —3QJO. (A3) z„=zzd+ u('„. )(nqd)

Here g„=Q& i k " is the Riemann zeta function. For
collective motion, on the other hand, the modes of vi-
bration can be classified by a mode number M or wave p = p Agd

for II = + (A4)
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1.0 I I

1-3.s 5 M-k.
4

0.5 — 2

I s I &A I (q ~0)/ap = qd /2 ln(1/qd). (A6)

The transverse frequencies, on the other hand, depend
on the density A, and 0~(~) vanishes at A„;t where the
string ceases to be the energetically lowest configuration
(the transition to the stable zigzag structure). They fol-
low from the dispersion relation

-0.5—

-1.0 I s I s I s I i I

-1.0 -0.5 0.0 0.5 1.0

U (d)

FIG. 12. Contour plot of the potential energy per parti-
cle for collective M = 2+ oscillations of the longitudinal and
transverse displacements u and p. Circles are ground states
at zero energy and crosses are saddle points. Contour lines
are spaced by 0.5q /d.

A

APPENDIX B:TRANSIENT HEATING MODEL

0~~(q) + 20J (q) = 2~p ( 7)

so that 0&(0) = urp. The maximum density a Coulomb
string can tolerate before it turns into a stable zigzag is
reached if 0& = G. With the help of Eq. (4) this yields
the value A«, &

——[3/7(s] ~ =0.709. Equation (A7) is also
valid for uncorrelated motion. These dispersion relations
are shown in Fig. 13.

&0~~(q) = ~p 8) n sin znq-d
=1

and the maximum longitudinal frequency is attained for
the zigzag 2+mode, i.e. , at qd =&,

pAg (x)/u)p = /7(s = 2.9;

and in the long-wavelength limit,

(A5)

I I I

transv. %=0.3

0.4

Here M = 2+ is the lowest interesting mode, the zigzag
mode. According to the symmetry of q in Eq. (A4), the
intervals 0&qd &Ir or 2&M &oo suffice. The potential
energy for M = 2+ vibrations is shown in Fig. 12. The
saddle point here is reached for p = +0.25d and has an
energy of 0.8eo.

In the small-amplitude (harmonic) limit the eigenfre-
quencies are degenerate in parity. The longitudinal fre-
quencies read

For uncorrelated (statistical) longitudinal an trans-
verse initial conditions (in contrast to collective motion)
every particle oscillates harmonically with the longitudi-
nal frequency 0~~ and the transverse one 0~ (approxi-
mately the betatron frequency), cf. Eqs. (AS). Initially,
the force in the third line of Eq. (Al) is harmonic with
twice the transverse frequency 0& and can be written
as A„+B„cos20~t+C„sin 2A~t. Its statistical average

erage For short times, however, it kicks each particle at
~ ~ ~ ~

random in the longitudinal direction and, since

(A2) = (8„)= (C„) = 3(4A urod eip,

((~~ —-'&~-1 ——,'&~+1)') = 4'(4&'~od'eio

it gives the transient contribution to the longitudinal
heating. The equation of motion for u„becomes t e one
of a driven harmonic oscillator,

&n II&n = n n-„+0 u = A +8 cos20~t+C„sin20~t

1 2+ 0~~ (un-1+un+1) ~

2

and can be integrated (the I orentz factor here is omit-
ted). The leading contributions in lowest order in powers
of (uo/u ) [equal to -A according to Eq. (4)] and with
only the nearest-neighbor interactions (A;=1), reads

sin AIIC
u = u pcosA~~t+(A„—&A„1—2A„+1)n — n

II

0
0.0 0.2

longit.
uncorrel.

I I

0.4

0.709
I

0.6 0.8 1.0

q (Ir/d)

FIG. 13. Dispersion relation Eq. (A6) for correlated lon-
gitudinal (full line) and transverse (dotted line for various
densities A) motion and for uncorrelated longitudinal motion
(bar).

+ 2 i
C co AIt+8 s1112(dpt

4(up' —0((' (
—C„cos2upt i,

wnere u„0 are ethe random initial velocities (the initial
in thatdisplacements are vanishing). Remembering that (u„) =

uod2e~~, the kinetic energy becomes

2

e~t(t) = etio cos'0~~~+ —", —'Ase~io sin'0
3
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I ' I ' I ' I ' I ~ I ' I

1 p x-o.&5
7

0.8—

p 6

p. , the argument of Eq. (Cl) simplifies to

k,,K(k,~)
r~ —r;~

~qp;p,
(C2)

2

io 04 —,

0.2—.5

0.0 -o
I s I ) I I I I I s I s I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 (d)

FIG. 14. Contour plot of the potential energy per particle
vs the mean longitudinal and transverse displacements u and

p. Contour lines are spaced by 0.5q /d.

For short times, A~it (( 1, this becomes

2

8g(t) =8Io+(A~~t) f s A 8gp 8go I (B2)

Averaging over long-time intervals 2s/A~~, on the other
hand, gives the average value

8trsns 18 + 2s P682 (BS)
Transient times are of the order of the ratio of average
interparticle distance to average longitudinal interpar-
ticle velocity, cf. [22], viz. , Q~~t" "' - l. In the MD
simulations, see Fig. 4, the asymptotic value (BS) is al-
ready reached for A~~t" "'-2 ~, i.e. , after one-eighth
Coulomb period. With 25(42/16(s = 1.52 this yields
Eq. (8).

where K(k2) is the complete elliptic integral of the mod-
ulus

4' Pj
V'([I'-tld-u'+u )'+(p -p )'+4p p

The potential energy of an uncorrelated system, i.e., the
Coulomb energy [(Cl) and (C2)] plus the focusing energy,

2
Px

focU8 g~ g Pj )

are computed for 1024 particles with Gaussian dis-

tributed longitudinal and transverse dis lacements with
their respective mean values u = (u2)~ s, and p and is
shown in Fig. 14. Approximately for 2p) tt the Coulomb

energy vanishes or becomes negative, and thus for all

p ) d/2 the potential energy consists mainly of the fo-

cusing energy, which is independent of u, thus indicating
that the system can sustain large longitudinal displace-
ments. This, in turn, means that the system has va-

porized and thermal equilibrium has been reached. Ac-
cording to Eq. (6) and taking account of the fact that at
thermal equilibrium 8~& ——s8~p, we derive Eq. (11).

In the small-amplitude limit the unharmonic terms in

Eq. (Al) give rise to a modification of the longitudinal

(and transverse, as well) frequency which can be written

(&I') =~p
I 2(s+16(s, —12(s

(u') (p') &

APPENDIX C: THERMAL EQUILIBRIUM

The Coulomb energy per particle relative to the one of
the string at rest reads

This can become negative if

(CS)

2

coul — rj ri 4 ~ (Cl)

Averaged over the equally probable angle between p, and

and hence the longitudinal motion can become over-
damped. Furthermore, in the high-temperature limit re-
laxation times increase with the square of the tempera-
ture, cf. [22].
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