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A previously published analysis [J. L. Hirshfield, Phys. Rev. A 44, 6845 (1991)] of the first-order

transfer of power into fields of a TED rectangular waveguide from a relativistic electron beam carrying

spatiotemporal modulation is extended to TEI modes. Non-axis-encircling orbits, circularly polarized

excitations, and competing modes are incorporated into the expanded analysis. Selection rules and

phase-matching conditions are found that govern the power transfer; these are shown to allow wave

power to increase quadratically with both the interaction length and the dc beam current. Examples of
fifth-harmonic conversion are presented for both TE3z and TE03 modes, the latter in a square waveguide

supporting a circularly polarized wave. Power levels of 100 kW or more at 94 GHz appear to be achiev-

able in a conceptual fifth-harmonic device using a 200-kV, 1-A beam. The circularly polarized mode ap-

pears to be relatively free of mode competition. Devices with lower beam energies are also shown to be

capable of fifth-harmonic operation at 94 GHz, albeit with lower output power than for devices with

higher beam energies.

PACS number(s): 41.60.Ap, 52.75.Ms, 41.75.Ht

I. INTRODUCTION

In a recent paper [1] (hereafter labeled I) the fiow of
power from a spatiotemporally modulated electron beam
to the fields of a TED mode in a rectangular waveguide
was determined. The beam, which was assumed to have
been prepared by cyclotron autoresonance acceleration
[2], propagated along a uniform or weakly tapered ax-
isymmetric static magnetic field 8. The electron orbits in
the beam were taken to be identical axis-encircling helical
trajectories characterized by the phase variable
Po+gz pt, wh—ere Po is the initial phase value, g is the
orbit pitch number, z is the axial coordinate, p is the tem-
poral radian frequency, and t is the time. For such a
beam equilibrium, the space and time variations are cou-
pled (thus the choice of the modifier "spatiotemporal" )
with an effective phase velocity cP, /(l —0/p), where
cP, is the beam electrons' axial velocity, c is the speed of
light, and Q=e8/my is the gyration frequency for an
electron of charge —e, mass m, and relativistic energy
factor y. When this effective phase velocity matches the
phase velocity of a waveguide mode, it was shown in I
that energy How from the beam to the wave can be cumu-
lative, increasing with the square of both the interaction
distance and the dc beam current. Since the effective
phase velocity can be adjusted to be either fast or slow,
with respect to the speed of light, and either positive or
negative, it is apparent that beam coupling to co- or
counter-propagating waveguide modes is possible.

The results of I confirmed earlier research [3,4] in
which it was shown that strong temporal modulation on
a beam can allow e%cient production of power at a har-
rnonic of the modulation frequency when the beam in-
teracts with a resonant cavity. But prior to I, it did not
seem to have been recognized that the traveling-wave

character of the spatioternporally modulated beam al-
lowed direct coupling to traveling guided electromagnetic
waves as well. Of course, in the multicavity klystron [5]
and the more recent gyroklystron [6] spatiotemporal
modulation on the beam is imparted at the first cavity,
enhanced in the intermediate cavities, and converted to
radiation at the output cavity. And indeed the location
of the gaps in these cavities is critical to the operation of
the device. Perhaps the interaction described in Ref. [7]
is that which most closely resembles what was described
in I, although there the modulation and demodulation of
the beam are weaker than what occurs in the interaction
described in I.

The conversion of beam power to radiation in the
traveling-wave interaction described in I is not due to a
convective instability, which in an interaction calculated
to second-order in the wave electric field would give rise
to growth exponential in the interaction distance. Rath-
er, the power transfer to the wave comes from the erst
order generation of an electric field that is synchronous
with the spatiotemporally modulated beam current driv-
ing the characteristic impedance of the waveguide.
Power transfer remains cumulative as long as the
effective wave on the beam and the electromagnetic wave
remain in phase. In the nonlinear regime, this requires
that the static magnetic field be tapered down, so as to
maintain constant the aforementioned effective phase ve-
locity as P, and y decrease. Since the particles can be
kept in phase with one another along the downward-
taper, it was speculated in I that the interaction could in
principal convert 100% of the transverse energy on the
beam into coherent radiation. This speculation has been
confirmed in a preliminary way by numerical interaction
of the governing equations [8], and is currently the sub-
ject of a particle simulation study [9].
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The present paper extends I to include TE& modes of
a rectangular waveguide. The method of solution mimics
I in principal, but a number of complications not encoun-
tered in I arise due mainly to the inclusion of non-axis-
encircling orbits and to the coupling with two transverse
spatial dimensions in the dynamics. The restricted
analysis in I is not competent to treat circularly polarized
modes in square waveguides or interactions involving
competing TE modes; both topics are explored in this pa-
per. Under conditions of perfect phase matching between
the beam and the traveling wave, the form of the power
transfer found in the present paper, and that found in I,
are nearly identical, subject to a set of selection rules de-
rived for systems with some degree of symmetry that
govern the magnitude of the coupling.

This paper undertakes to illustrate mode competition
using two examples, where for illustration fifth-harmonic
conversion to 94-GHz radiation is considered. One ex-
ample employs a TE32-mode rectangular waveguide, the
second employs a TEQ3 mode square waveguide, the latter
supporting a circularly polarized wave. Both examples
employ a 200-kV, 1-A beam, with a transverse-to-axial
momentum ratio of 4. It is shown that mode competi-
tion, particularly for modes excited at the fourth and
sixth temporal harmonics, is serious for the TE32 case,
but is probably not an issue for the TE03 case. This is be-
cause the TE-mode spectrum is only half as dense for a
square waveguide as for a rectangular waveguide, and be-
cause any potentially competing mode can be excited far
from its cutoff frequency. As a result, it appears that an
efficient 100-kW fifth-harmonic converter at 94 GHz
could be designed based on the results of this paper. In
addition, operation at beam energies down to 50 kV is ex-
amined, to show how the coupling parameters scale as
the beam parameters change, and to suggest that some
applications may be served by a low-voltage fifth-
harmonic converter.

This paper is organized as follows. Section II contains
the derivation for the power transfer from the beam to
the guided wave. In Sec. III the results are evaluated for
axis-encircling beams exciting TED modes in rectangu-
lar waveguides (III A), TE modes in square
waveguides (III B), TE& modes in rectangular
waveguides (III C) and TED circularly polarized modes
in square waveguides (III D). For non-axis-encircling
beams, TE modes in square waveguide are discussed
(IIIE). Section IV contains a discussion of imperfect
phase matching, which is especially important when con-
sidering competing modes. The examples are given in
Sec. V. A summarizing discussion and conclusions are
given in Sec. VI. The Appendix gives the power transfer
calculation for circularly polarized modes, to show the
origin of several peculiarities in the results.

II. POWER TRANSFER
INTO TEI WAVEGUIDE MODES

The ca1culation presented in this section follows the
method developed in I, where power How into TED
modes in a rectangular waveguide was derived. In this
paper, the calculation is extended to 1inearly polarized

TE& modes and to circularly polarized modes. This in-

troduces some additional mathematical complexity, but
allows additional physical features to emerge. We con-
sider axis-encircling beams, which have electron orbit
centers of gyration on the waveguide center line, as well
as non-axis-encircling beams. Selection rules are
developed to identify the conditions under which power
transfer from the beam to the wave is absent at either
even or odd temporal harmonics of the fundamental
modulation frequency on the beam. The formalism also
provides prescriptions for selecting waveguide dimen-
sions and for positioning the beam axis with respect to
the waveguide axis to minimize coupling to one or more
competing modes. It is found that power transfer rates as
great as twice those for TED modes can exist for TE&

modes, since two polarizations of the field are able to cou-
ple to the beam, rather than one. When circularly polar-
ized TEO modes are considered, power transfer rates
twice those for linear polarization are also shown to be
possible.

Following I, we consider a cold-electron beam with im-

posed spatiotemporal modulation passing along a uni-

form z-directed static magnetic field B. The transverse
current density carried by the beam has components

Jo„(x,y, z, t)
Jo (x,y, z, t)

Noes''A

5(x —xo —R cosP)
y

—sing
X5(y —

yo
—R sing)X ' (2)

where Noe is the charge concentration; A is the beam
cross-sectional area; 8' and U are components of the
beam electrons' momentum per unit rest mass across and
along B; y is the Lorentz energy factor, related to 8'and
U by y c =c + W + U; P is the gyration phase of the
helical orbits given by P(z, t) =$0+ gz pt, with p—the fun-

damental modulation frequency and g=y(p —fl)/U the
fundamental orbit pitch number, both imposed on the
beam during its formation such as in a cyclotron autores-
onance accelerator [2], and with $0 the relative phase at
gz=pt; Q=eB/my is the relativistic electron gyrofre-
quency; R = W/yQ is the electron gyration radius; and

xo and yo are the coordinates of the center of gyration.
We seek an expression for the power transfer from

such a beam to the fields of a TE& rectangular
waveguide, namely

E„(x,y, z, t) =ED(z)sina cos(k, x )sin(k y )sin8(z, t)

and

(3)

E~(x,y, z, t ) = —Eo(z)cosa sin(k, x )

Xcos(k y)sinO(z, t),
where tana=k /k„, 0(z, t)=k~~z cot, ki =k„+k, a—nd

(ki+k~~ )c =co . The line (x =O,y=0, z) is along the

1ower left-hand corner of the waveguide; k =le/a and

k =m ~/b, where a and b are the width and height of the
waveguide. The field amplitude Eo(z) is assumed to be
slowly varying with z, such that k~~ 'd[lnEO(z)]/dz && l.
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The wave guide transverse magnetic-field components
are given by H„(x,y, z, t) = E—r(x,y, z, t) IZrE, and
H (x,y, z, t)=E„(x,y, z, t)IZrE, where ZrE=rt(1 k—~c /
co )

' is the wave impedance with rt=(po/eo)' =120m.
Q. The instantaneous power flow is

P(z, t)= f dx f dy(E„H E~—H„)
0 0

=ZrE' f dx f dy(E„+Er)

=abEO(z)sin 8/2el ~ZrE, (5)

dP(zt) 0 . 2=abEO(z)[
d

]sin 8/eI ~ZrE .
dz Gz

(6)

The beam currents give rise to growth in power flow

along the waveguide according to the equation

where eI is the Neumann symbol, equal to 1 for either
l=0 or m =0, and otherwise equal to 2. The time-
averaged power fiow is P(z) =abEp(z) /4el ZrE. From
Eq. (5}, keeping only terms with a nonzero time average,
we find

= —f dx f dy(JO„E„+Jo E )

Noe W'A
Eo(z)sin8 —singcos(k„xo+k„R cosP)sin(k yo+k R sing)sina

y

—cosg sin(k„xo+k„R cosP}cos(k~yo+k~R sing)cosa ' .

After manipulating Eq. (7) somewhat and after averaging over the time of interaction, we will equate Eqs. (6) and (7), to
find an integrable expression for dEO(z) Idz.

To simplify Eq. (7), we introduce the quantities ro and ro, defined by

kjI 0=k~&o+kyyo ~ kj~o =kx&0 kyyo

This allows Eq. (7) to be written as

dP(z, t) W
IOEO(z)sin8 cos(P —a)sin[k~ro+kj R cos(((}—a)]+cos(/+a)sin[k~rz +k~R cos(/+a)]

dz 2U
(8)

where Io =Noe A Uly is the dc beam current. We now invoke the identity

exp(ib cosg) = g ( —1)"[e„J2„(b)cos2ng+2iJz„+,(b)cos(2n+1)g],
n=0

where J,(b} is the sth-order Bessel function of the first kind, and s„ is again the Neumann symbol, equal to 1 for n =0
and otherwise equal to 2. After some manipulation involving use of a Bessel function recursion relation, Eq. (8) can be
written in turn as

dP(z, t) 8'
IOEO(z)sin8 g ( —1)" Kz„+&(k&R )[sin(k~ro)cos(2n+1)(P —a)+sin(k~ro )cos(2n+1)(/+a)]

dz n=0

—Kz„(k~R )[cos(k~ro)cos2n(P —a)+cos(kjro )cos2n(/+a)] ', (9)

where K, (b) = (e, l2) [dJ, (b)/db ]. Equation (9) can now be equated to Eq. (6), to yield

. z
d 0(} el, m rEWsinz8 = — ' Iosin8 g ( —1)"V'„,

dz
(10}

where T„represents the term in curly brackets in Eq. (9).
Next, a time average over the time of interaction T=zy IU is carried out. On the left-hand side of Eq. (10) a factor —,

results for the time average of sin 8, since AT » 1. On the right-hand side we require the integrals

g,
' —'(z)= f dt sin(k z cot)cos[s(—$0+a)+s(gz pt)]-

zy o

U
2zy(co —sp )

cos[s($0+a)+(sg —k )z]—cos[s($0&a)+(sg —k )z+(co —sp)zy/U] . ,0 II 0 II

in terms of which one obtains the time-averaged result
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dE0(z)
dz
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~I, m ZTE

ab U ~ 2n+i(kiR)[g2„+i(z)sin(k r«)+ (+)I. X ( —1)" IC
n=o

i"o g2~+i z)sin(kiro )]

46

tg2„(z)cos(kyar* )+g~+)(z) (k „)], (12)

I

)S(L) =L sin s
, sin(sgo)I, (8„82)—cos(sgo)Iz(8„8z)[, 16)

where

slil90)+ 92

1 1& 2 g g

In derivin E . 1g q. (12), a term containing (ai+s ) in 1

of (co —sp ) has been omitted due t
rapi y varying temporal nature. Equation (12)

L ie
g e interaction length from z =0 to

, yielding for the amplitude of the sth-h
field the result

e st - armonic electric

E (L)=E (0)+
2E Z

b
IoK, (kiR )

S(L), s odd
X '

C(L}, s even

where

S(L)=( —1)('+')n[G 'LiL)sin(kiro)

(13)

and

1
[Si(8, +82) —Si(8, ) ]

(8 8 )
1 I ~ &d (COSH 1)

2 1& 2 g g

1
[Ci(8,+ 82) —Ci(8, )

—ln(1+ 82/8, ) ]

+6,'+'(L)sin(kiro )] (14)

and

C(L }= (
—1)' [G,' '(L)cos(kiro

(15)+6,+'(L)cos(kiro )],
with G,

'+ '(L) = —dzzg, —(z), and E,(0) the input field.

The quantities S(L) and C(L) are
gove thvern e cou lin of

are geometric factors that

eit er odd or even
ve p

'

g power to the waveguide field te sat
en temporal harmonics of the be

modulation fre uenc
e earn

s a be referred to as the corn
q ncy p, respectively. Hereafter th ese

e geometric coupling factors. We
s a evelop selection rules from these f t f
metric s s

se ac ors or sym-
ystems that govern the growth f d'

iven w
o ra iation into a

g' waveguide mode at a given t 1 h
The

empora armonic.
he cumulative power flow at the sth harm

wi i erent s values do not contribute, since these
would involve products of differ

which h
o i erent harmonic functions of

p w ic have zero time average.

wth 8, = g
—k))L, 8z=(co —sp)yL/U, and Si x and

i erentiating Eq. (16) with respect to sgo to find

the value which maximizes ~S(L) gives

tan(sPo) = —I, (8„82)/I2(8„8z)

and

max S (L)=L [Ii(8„82)+I~(8i82
t

Figure 1 depicts max S (L)/L
82. As can be se

as a function of 0& and

2. s can be seen, the function has a peak 1 fvaueo unity
2=, as local maxima along 0, = —6I =0 an

falls below 0.113 for 0) 10.
2 7 d

O. g

III. EVALUATION OF THE POWER TRANSFER

FIG. 1. diminution of power transfer
due to im erfect

rans er from beam to wave
imper ect phase matching for a =0. See

definitions of parameters.
a= . ee text for

As was discussed in I, the integrals G'+'(L—
~~

—m~) are themselves zero. Th is amounts to a re-
quirement for spatiotem oral haspo p e matching over the

e earn to the wave. The phase difference between

i se to maximize the power transfer to the field. Ho
er, the value of this hase diff

e e . owev-

p ase i erence will depend upon th
wo coe cients, as well as u

e
as upon the two integrals G, (L)—

in Eqs. (14) and (15). To illustrate we ca, we choose the simple
i n =, and sink~ro =sink r* =

C(L) =0, and
p J 0 1 We now have
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G,' '(L) = ——sin(sgo+sa) .
L ~

2
(17)

We shall discuss specific examples of imperfect phase-
matching below but, in the remainder of this section, we
shall assume that the two matching conditions are
fulfilled, i.e., 8& =82=0, in which case we have

B. TK modes in square waveguide, axis-encircling beam

We next consider an axis-encircling beam coupling in a
square waveguide to TE modes. Here k„xo=k„yo
=me/2, and a=n /4 .For this case, we find from Eqs.
(18) and (19)

This allows the geometric coupling factors Eqs. (14) and
(15) to be written as follows:

~
C(L)

~

=L ~sin(sgo)cos(sn /4)cos (m m /2)

+cos(sgo)sin(sm. /4)sin (mn. /2) j (23)

~S(L) ~
=L ~sin(sgo)cos(sa)sin(k„xo)cos(k„yo)

—cos(sgo)sin(sa)cos(k„xo)sin(k~ko)
~

(18)

and

(S(L)(
=L ~sin(sPo)cos(sn /4) —cos(sgo)sin(sn /4)

~

and X ~cos(me. /2)sin(me. /2)
~

=0 . (24)

~
C(L)

~

=L ~sin(sgo)os (sa )cos(k„xo )cos(k~yo )

+cos(sgo)sin(sa)sin(k„xo)sin(k~yo)
~

We now consider special cases.

(19)

A. TKO modes, axis-encircling beam

First, we consider the case treated in I for TED
waveguide modes with an axis-encircling beam by taking
k„=0, k =ma/b, and . yo=b/2. Thus a=n/2 and

k~y0 =m m /2. As a result, we find from Eqs. (18) and (19)
r

0, s even or m even
~S(L)= .

L icos(sgo)~, s odd and m odd (20)

and

0, s oddorm odd

Lysin(sgo)~, s even and m even . (21)

P(L) =P(0)+ IOEO(0)LK, (kiR )
U

I ~ZTE W
2

This shows that odd and even temporal harmonics are
selectively coupled respectively to wave guide modes with
even (m odd) and odd (m even) spatial symmetry. This
selectivity is of importance in combating spatial mode
competition, since it cuts in half the number of
waveguide modes that can, in principle, couple to the
beam, and thus increases the mismatch in phase for the
nearest competing modes to more than would be the case
without this selectivity.

In either the case of even or odd temporal harmonics,
the form of the result for power transfer found in I is
recovered, namely

Since S(L)=0 for all m, one sees that radiation only at
even values of s (i.e., even temporal harmonics) is coupled
out in this case. Equation (23) gives

~
C(L)

~

=L ~sin(sPo) ~

for even m when s=4, 8, 12, . . . , 4n, while
~
C(L }~

=L ~cos(sPo) ~
for odd m when

s =2, 6, 10,. . . , (4n —2), . . .; otherwise
~
C(L }~

=0. The
magnitude of the power transfer is given by Eq. (22} in
this case, subject to the above selection rules, but since
here eI =2, it is seen that the third term in Eq. (22) is
twice what it is for TEO modes. With two field corn-
ponents available to couple to the beam, twice the power
can be transferred under otherwise equal conditions, as
compared to modes with only one field component.

C. TEI modes in rectangular waveguide,
axis-encircling beam

In this case, kxo=lm/2, k yo=m~/2, and
tana =ma /lb. The geometric coupling factors are, from
Eqs. (18) and (19),

~S(L )
~

=L
~
sin(s $0)cos(sa )sin( l n /2)cos(me /2)

—cos(sgo)sin(sa)cos(ln /2)sin(mm /2)
~

(25)

and

~C(L)~ =Lysin(sgo)cos(sa)cos(lm. /2)cos(mn. /2)

+cos(sgo)sin(sa)sin(lir/2)sin(m n /2)
~

. (26)

If 1 and m are either both even or both odd, Eq. (25)
shows that S(L)=0, so that only even harmonics of p are
coupled from the beam. Similarly, if one index is even
and the other odd, Eq. (26) shows that C(L)=0, so that
only odd harmonics of p are coupled from the beam. In
particular, the geometric coupling factors are as follows:

~C(L)~=L(sin(sgo)cos(sa)~, 1 even, m even; (27}

since the relative phase $0 between the fields and the
beam gyrations wi11 adjust itself in each case so that ei-
ther ~$(L)

~

=L or
~ ( C)~L= L[11]. For TED modes

e&
= l. As was pointed out in I, Eq. (22) indicates that

power transfer occurs even when Eo(0) is zero, i.e., even
when there is no input signal. The power grows quadrati-
cally with the interaction length and the beam current.
Examples of devices to generate power at 94 and 1000
GHz are given in I.

[C(L)[=Licos(sgo)sin(sa)~, 1 odd, m odd;

[$(L))=L)sin(sgo)cos(sa}[, 1 odd, m even;

and

($(L))=
L) cso(sP )0is(nsa)~, 1 even, m odd.

(28)

(29}

(30)

These equations show that, in general, the magnitudes
of the geometric coupling factors will be less than L,
since the values of cos(sa) and sin(sa) will be less than
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unity. However, by a judicious choice of the waveguide
dimensions, one of these can be unity for a particular
waveguide mode, and less than unity for a nearby comp-
leting mode. An example of this is given in Sec. IV.

D. Circularly polarized waveguide modes,
axis-encircling beam

It might be expected that stronger wave growth than
that described in the preceding sections of this paper
might be possible if the waveguide can support circularly
polarized modes. In a rectangular waveguide, circular
polarization arises from a superposition of two modes
with the same phase velocity such that the field pattern
rotates m. /2 without change in amplitude or spatial pat-
tern each temporal quarter cycle. The only superposition
that can satisfy this is a TEO and a TE o mode of equal
amplitudes in a square waveguide, provided one propa-
gates as sin8(z, t) while the second propagates as
cr cos8(z, t). The parameter o takes on values of +1, and
allows consideration of either a clockwise (+1) or coun-
terclockwise (

—1) sense of rotation. Thus the waveguide
electric field we consider is

E( xy, z, t)=E&(z)[e„sin(k y }sin8

I', (L)= '

'2 ' 2

2ZTE — Io E, (k R )
a

L

for m odd, s odd
2 2

+2(k R )
a

for m even, s even.

(34)

(35)

1,5, 9, 13, . . . , (4n+1), . . . ,

o =+1 (counterclockwise rotation)

3, 7, 11,15, . . . , (4n —1},. . . ,

o = —1 (clockwise rotation).

The result for odd temporal harmonics [Eq. (34)] is seen

to be twice that for linear polarization [see Eq. (22)] and
twice that for even temporal harmonics [Eq. (35)]. How-

ever, the result given by Eq. (34) is subject to the follow-

ing selection rules for the sense of circular polarization of
the wave that can satisfy frequency and wave number

matching with the beam:

+e o sin(k x )cos8], (31}

where k =ma/a and 8(z, t)=k~~z ut. —
The derivation for the power transfer from a beam

with current density given by Eqs. (1) and (2) to this
waveguide field follows the same procedure as was fol-
lowed in Sec. II. An outline of the derivation is given in
the Appendix. The results are summarized here.

For waveguide modes with even spatial symmetry (m
odd) we find that only odd temporal harmonics are excit-
ed. The field amplitude obeys

Of course, the wave will automatically emerge in that po-
larization for which the power transfer is greatest, just as
the relative phase po will adjust itself to maximize the

power transfer. But in utilizing the power generated, it
could be important to have knowledge of the polariza-
tion, which has been shown here not to conform to sim-

ple intuition.

E. TK mode in square waveguide,

non-axis-encircling beam

im -ii/2
1 )(m —i i/2

dz U a

X g It&„+i(k R )sin[8+sr( —1)"(2n +1)P] .
n=0

(32)

As an example of coupling to a non-axis-encircling

beam, we consider a beam centered along the waveguide

diagonal with xo=yo=Ro/&2 so that a=a./4. Equa-
tions (18) and (19) can then be written

S(L)=—isin(kiRO)sin(sgo —sir/4)iL

Likewise, for waveguide modes with odd spatial syrnme-

try (m even) we find that only even temporal harmonics
are excited. The field amplitude obeys

and

i
C(I. ) i

=L isin(sPo)cos(sm. /4)cos (kiRO/2)

dEO(Z) ~ ZTE=2v'2r, 1 )m/2
dz U g2

X g K2„(k R )sin2n P
n=0

Xsin[8+o. ( —1)" ' —] .
4

(33)

+cos(sgo)sin(st/4)sin (kiRo/2)i,

where k~=&2k . Thus, either even or odd temporal
harmonics can be excited, in contrast to the case of
square waveguide with an axis-encircling beam, where

only even temporal harmonics are excited. But for exam-

ple, when the beam axis is located so that kjRo=nm,
~here n is an integer, the geometric coupling factors be-

come

Integration over the interaction time and the interaction
length, as in Sec. II, yields for co=sp, k~~ =sf, and

Eo(0)=0, and

iS(L)i =0 (3&)
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L Icos(sgo)sin(sm. /4)I, n odd
I
c(I.) I

= .
L Isin(sgo)cos(sIr/4)I, n even .

(39)

(40)
(44)

This leads to the maximum value of G,'*'(L) as follows:

L sin[(sg —k1)L/2]

[(sf—kii )L/2]

Thus, for n even IC(L)I=O for s=2, 6, 10, . . . , (4j
+2), . . . , while for n odd IC(L)I=O for
s=4, 8, 12, . . . , (4j), . . . . As a result, coupling to every
other even harmonic and to all odd harmonics may be
suppressed by this judicious choice of the beam axis. For
instance, with m = 10 and xo /a =

—,'„a device designed to
operate at the tenth harmonic would not have coupling in
the TE,0,0 mode at any neighboring harmonics closer
that the sixth or the fourteenth. But since the design
cutoff frequency would be slightly below the tenth-
harmonic frequency, the sixth harmonic would be cutoff
and the fourteenth harmonic would have much lower ini-
tial wave growth than the tenth, as well as a large
mismatch in phase velocity with the beam s spatiotem-
poral modulation. Similar geometric considerations ap-
ply for rectangular wave guides with non-axis-encircling
beams that permit a variety of mode-suppression stra-
tegies to be employed.

IV. IMPERFECT PHASE MATCHING

In this section, we attempt to assess the potential for
minimizing wave growth at a given frequency in
waveguide modes other than the design mode. Such
mode competition can reduce the output power of a har-
monic converter based on the principles discussed in this
paper since waves of differing phase velocity can interfere
destructively and significantly reduce the transfer of
power to the waves. To find the growth rates of compet-
ing modes, it is necessary to evaluate the integrals
G,' +—'(L) and their infiuence upon the geometric coupling
factors S(L) and C(L) as given by Eqs. (14) and (15).
Figure 1 shows graphically the effect upon coupling of a
mismatch in both frequency or wave number. However,
we can obtain an analytical form for G,'

+—'(L) when fre-
quency matching prevails, but wave-number matching
does not.

From Eq. (11), in the limits as aI ~sp, we find

g,
' '(z) = —

—,'sin[s($0+a)+(sg —
kii )z ] . (41)

Thus G,'
+—'(L)= f dzg, ' '(z) follows as

0

G,'*'(L)= cos[s($0+a)+(sg —
kii)L ]

1

2s —k

%e shall use this last expression to evaluate the wave
growth for modes other than the design mode by substi-
tuting kii=sg for the design mode and kii:kii for the
competing mode.

V. EXAMPLES

In this section, we give two illustrative examples of pa-
rameters for devices to generate radiation at 94 GHz. In
I two examples at the fifth harmonic from beams modu-
lated at 18.8 GHz were given, one using a 300-kV beam
in a TE3Q rectangular waveguide and a second using a
500-kV beam in a TEso waveguide [11]. The examples

given in this section will be based on use of a 200-kV
beam which, as will be shown, can provide ample power
growth at the fifth harmonic of the beam rotation fre-

quency p. The first illustrative device utilizes an axis-
encircling beam in a rectangular waveguide supporting a
TE32 mode, while the second utilizes an axis-encircling
beam in a square waveguide supporting a circularly po-
larized TE30 mode. For both cases we will evaluate
growth rates for competing waveguide modes at the fifth
harmonic as well as other competing harmonics. These
examples show that operation in a square waveguide al-
lows suppression of mode competition that is shown to
seriously impede single-node interaction in a rectangular
waveguide. Operation of fifth-harmonic devices at beam
energies lower than 200 kV will also be discussed briefly.

A. TE» rectangular waveguide

The TE32 rectangular waveguide mode is chosen for a
fifth-harmonic example since the selection rules of Sec.
III C dictate that one mode index must be even and the
other odd; otherwise coupling is absent. Furthermore, as
shall be seen, the waveguide dimensions will accommo-
date the axis-encircling beam.

Equation (29) states that maximum coupling to this
mode will result if Icos(5a)I=1, so that the allowed
values of a include Ir/5, 2Ir/5, etc. Therefore one has
ma /1b =tana =0.7265, 3.0777, etc. For I =3 and m =2,
this gives a/b =1.0898, 4.6165, etc.

To proceed further, we must apply the conditions for
phase matching between the beam and the wave. These
conditions, which were derived in I, are

—cos[s(go+a)] ' . (42) and

k
tt
c ci)P

|i
(45)

We shall now assume, for simplicity, that the beam axis is
positioned such that only one terIn in either Eq. (14) or
(15) is nonzero. This enables the relative phase $0 for
maximum power transfer to be easily determined, much
as was done to find Eq. (16). This gives the value of
s(go+a) whIch IIlaxlIIllzes G» (L) to be

s(go+a) =cot '[csc(sg —
kii)L

—cot(sg —kit)] .

kiR =s
' 1/2

1+y pI
(46)

where Pii= U/cy and PI= W/cy. For a 200-kV beam
with $V/U=4, Eq. (45) gives kI=3.3201 cm ' at 94
GHz, while Eq. (46) gives k|R =3.4218. The magnetic-
field value, as derived in I, is given by
0/p =1—

ping=0. 9716. Since here p=(2Ir)18. 8 GHz, this
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TABLE I. Power transfer at 94 0Hz to TE modes that can compete with the design mode TE32.
Waveguide dimensions are 0.600X0.551 cm. Axis-encircling 200-kV beam has a velocity ratio
W/U=4. 0. Listed are the respective cutoff frequencies f„axial wave numbers kii, relevant coupling
parameters isin5ai or icos5ai and k,R, fifth-harmonic coupling constants E,(k,R }, initial power
growth rates P(L)/(IOL)' which do not include wave-number mismatch, and power transfers P(L)/Io
after an interaction length of 8.0 cm, including phase interference effects. (Figures in brackets are
power of 10.)

Mode k

(cm ')

fsin5a[
or

icos5a i
(%'/A cm ) (W/A )

k, R EC~(kiR) P(L)/(IOL ) P(L =8.0 cm)/Io

TEio
TED,
TE2i
TE]2
TE3P
TED

TE3q

24.986
27.231
56.910
59.919
74.959
81.692
92.654

18.979
18.843
15.669
15.169
11.880
9.740
3.320

1.000
1.000
0.603
0.837
1.000
1.000
1.000

0.923
1.006
2.102
2.213
2.768
3.017
3.422

9.53[—4]
1.23[—3]
1.97[—2]
2.33[—2]
4.78[—2]
6.13[—2]
8.49[ —2]

3.38[—2]
5.78[ —2]
1.78[+1]
2.57[+1]
1.38[+2]
2.77[+2]
1.56[+3]

2.09[—5]
4.36[—4]
2.73[—2]
5.29[ —2]
7.34[—1]
7.28
1.00[+5]

gives B=9.0728 kG, so that R =cPi/0=0. 1763 cm and
k~ = 19.405 cm '. The harmonic coupling constant
K5(ktR ) =J5(kiR ) =0.08493.

The waveguide dimensions are determined from
a=(ml/kt)[1+(ma/Ib) ]' . For (a/b)=1. 0898 and
4 6165 one finds a =0 6003 and 1 5717 cm, and
b =0.5509 and 0.3405 crn, respectively. Only the first set
of waveguide dimensions will accommodate an axis-
encircling beam with a gyration radius of 0.1763 cm, so it
is the obvious choice.

We evaluate the third term in Eq. (22), using
ZTE =120tr/Pii from Eq. (45}, to find P(L)=1562(IOL }2

W, for Io in A and L in cm, corresponding to an output
power of 100 k% for a 1-A beam at L =8.0 cm, assuming
linear theory to still be valid at this power level, a point
that is discussed in Sec. VI of this paper.

Coupling parameters and wave growth rates at the fifth
harmonic have been calculated for other TE modes with
cutoff frequencies below 94 GHz for the same waveguide
dimensions and the same electron beam as in the above
example. Only modes with one index even and the other
odd are chosen in view of the selection rules Eqs. (29) and
(30). (This reduces from 13 to 7 the number of modes
that must be considered. ) Results are shown in Table I.
The initial growth rates P(L)/(IcL ) are evaluated
without including the phase interference factor (sin8/8)
as given by Eq. (44), with 0=(kl —kii)L/2 while the

values of P(L =8.0 cm)/Ic include this factor. The com-
peting modes of consequence are seen to be TE03 and
TE3c, for which the initial growth rates are 18%%uo and
8.9%%uo that of the TE32 mode, respectively. However,
after evolving a distance of 8.0 cm these modes are seen
to grow to less than 10 times the power level of the
TE32 mode. Of course, these results assume that the
modes evolve independently according to the predictions
of linear theory as derived in this paper. It is conceivable
that nonlinear coupling between the modes at smal1 in-
teraction lengths could cause the final power level in the
TE32 mode to differ somewhat from what is shown in
Table I. It will be shown in the example of Sec. V B that
choice of a square waveguide for supporting circularly
polarized modes can help to suppress the competition
from nearby modes because of the sparsity of the avail-
able mode spectrum.

It is also of interest to find the power levels generated
for harmonics other than the design harmonic. For the
example given above, where the design harmonic is the
fifth, we can find the power flow into waveguide modes
which will couple to other harmonics. Table II shows re-
sults of this for the modes with the highest linear growth
rates for the harmonics indicated. It is apparent that
without some form of filtering in the output waveguide,
coupling at the fourth and sixth harmonics would inter-
fere significantly with that at the Gfth. This fact provides

TABLE II. Power transfer at various harmonics which can compete with the fifth harmonic, for the
same beam and waveguide parameters as in Table I. For each harmonic, the waveguide mode with the
highest growth rate has been selected. (Figures in brackets are powers of 10.)

Harmonic f Mode
(GHz)

f,
(0Hz)

m/kt}c kiR K&(k,R) P(L)/(IGL ) P(L =8.0 cm)/Io
W/A cm) (W/A )

56.40 TED l

75.20 TE22
94.00 TE32

112.80 TE33
131.60 TE43

27.231 1.142
73.914 5.435
92.654 5.926

110.870 5.425
129.080 5.133

1.006
2.730
3.422
4.094
4.767

0.057
0.115
0.085
0.063
0.046

1.34[+2]
2.53[+3]
1.56[+3]
7.26[+2]
3.91[+2]

4.40[ —1]
5.54[+4]
1.00[+5]
1.90[+3]
3.32[+2]
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further motivation to examine the interaction with circu-
larly polarized modes in a square waveguide where un-
desired harmonics can possibly be suppressed, again due
to the sparse mode spectrum.

B. Circularly polarized TK03 mode

In the example discussed in Sec. V A, the initial power
growth at the fifth harmonic is predominantly in the
design mode TE32 although the growth rates in at least
two other modes are not insignificant. But after a growth
length of 8.0 cm, power in the TE32 mode is predicted to
grow to 100 kW, which is a factor of about 10 larger
than that of the competing modes. This demonstrates the
powerful effect of imperfect phase matching in preventing
the cumulative Bow of power in a waveguide mode not
phase matched to the beam's spatiotemporal modulation.
However, it is also demonstrated that the fastest growing
modes at other harmonics are not strongly suppressed,
since among the plethora of available modes at least one
at each competing harmonic is not greatly mismatched in
phase with the beam.

This competition from interactions at other harmonics
could be alleviated by use of a waveguide circuit with
high- and low-pass filters to block unwanted frequencies.
A simpler alternative is to employ a square waveguide
which, because of mode degeneracy, will have half the
number of independent modes as a rectangular
waveguide of the same cutoff frequency.

In the example of this to be described, we employ the
same electron beam as in the example of Sec. V A, with a
beam energy of 200 kV and a velocity ratio W/U=4. 0.
The beam is axis encircling. From the selection rules of
Sec. IIID, a mode with an odd mode index is required.
As shall be seen, the TE03 mode is the lowest which can
accommodate the axis-encircling beam. In addition,
odd-harmonic excitations in circular polarization were
shown to have twice the growth rate as do even-harmonic
excitations. For the fifth harmonic, the sense of mode ro-
tation is counterclockwise. (See Sec. III D.)

Following the procedure of Sec. VA allows one to
determine the device parameters, which are shown in
Table III. The power growth rate is somewhat higher in
this case than in the TE32 rectangular waveguide example
of Sec. V A because the waveguide cross-sectional area is

smaller in the present instance. Linear theory predicts
that the output power at 94 0Hz would rise to 100 kW in
an interaction length of 6.8 cm for a beam current of 1 A.

The only modes that can compete with the design
mode at the fifth harmonic are the TED, /TE, o and the
TE&z/TE2i degenerate sets. For these the initial power
growth rates are 0.239 and 105 W/A cm, the latter of
which is only 4.8% that of the design mode. (In the
above rectangular waveguide example a growth rate 18%
that of the design mode was found for the strongest fifth-
harmonic competitor. ) After an interaction length of 6.8
cm, these competing modes have 10 the power of the
design mode, or less.

At harmonics other than the fifth, the fastest growing
mode sets are TEoi/TEto (third harmonic), TEoz/TEzo
(fourth harmonic), TEi3 /TE3i (sixth harmonic), and
TE,4/TE4, (seventh harmonic). The initial power growth
rates for these are 307, 606, 175, and 414 W/A cm, re-
spectively, as compared with 2170 W/A cm for the fifth
harmonic. These other harmonic growth rates are pro-
portionally much lower than those found in the above
rectangular waveguide example. After an interaction
length of 6.8 cm, the other harmonics have evolved to
only 153, 11.9, 3.05, and 5.14 W/A, respectively, as
compared with 100 kW/A for the fifth harmonic.

C. Interactions with beam energies below 200 kV

The example presented in Sec. VB employs a 200-kV
beam with a velocity ratio W / U =4.0 interacting with a
circularly polarized TE03 mode in a square wavcguide.
The linear power growth rate found is 2170 W/(Acm)2.
This would indicate that a power output of 100 kW, cor-
responding to a harmonic conversion efficiency of 50%,
could be expected for a 1-A beam after an interaction
length of 6.8 cm. The validity of the assumption that
linear theory holds at 50% conversion efficiency is dis-
cussed in Sec. VI. However, in comparing the interac-
tions which are possible at beam energies lower than 200
kV, we shall consider the interaction lengths 1.5o% re-
quired to achieve 50% harmonic conversion efficiency
based on linear theory to be a valid measure of the rela-
tive strengths of the interaction.

Table IV gives the parameters and the power growth
rates for beams with velocity ratios W/U =4.0 and beam

TABLE III. Power transfer into modes of a square waveguide of width a =0.486 cm from a 200-kV
beam with W/V=4. 0. The design mode is TEO3 at 94 GHz (s =5) in circular polarization. The only
competing modes at 94 GHz are TED& aud TE&2. Modes that grow most rapidly at the harmonics s =3,
4, 6, and 7 are also included for comparison. (Figures in brackets are powers of 10.)

Harmonic f Mode
(RHz)

f.
(GHz)

klR Es(klR) P(L)/(IoL ) P(L =6.8 cm)/Io
W/(A cm) (W/A )

56.40
75.20
94.00
94.00
94.00

112.80
131.60

TED,
TED~

TE03
TED,
TEIL
TEI3
TE14

30.884
61.769
92.653
30.884
69.059
97.665

127.339

1.195
1.753
5.930
1.059
1.474
2.000
3.962

1.141
2.281
3.422
1.141
2.550
3.607
4.703

7.08[—2]
8.19[—2]
8.49[ —2]
2.11[—3]
3.72[ —2]
4.11[—2]
4.49[—2)

3.07[+2)
6.06[+2]
2.17[+3]
2.39[—1]
1.05[+2]
1.75[+2]
4.14[+2]

1.53[+2]
1.19[+1]
1.00[+5]
4.08[—3]
7.52[ —1]
3.05
5.14
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TABLE IV. Parameters for fifth-harmonic converters with beam energies lower than 200 kV. For
all cases the beam velocity ratio W/U=4. 0. The lengths L5o% to achieve an electronic efficiency of
50% (according to linear theory) and the corresponding power levels are for a beam current of 1 A.
(Figures in brackets are powers of 10.)

Energy
(kv)

50
70

100
150
200

Width a
(cm)

0.4811
0.4820
0.4830
0.4845
0.4857

B field

(kG)

7.295
7.529
7.883
8.476
9.073

R
(cm)

0.1027
0.1188
0.1375
0.1601
0.1763

k~i

(cm ')

1.971
2.272
2.618
3.029
3.320

K,(k,R)

0.0168
0.0279
0.0435
0.0669
0.0849

P(L)/(IOL )

W/(A cm)

1.47[+2]
3.50[+2]
7.36[+2]
1.49[+3]
2.17[+3]

Lgo
(cm)

13.0
10.0
8.2
7.1

6.8

Power
(kW)

25
35
50
75

100

energies down to 50 kV. The interacting waveguide
mode in each case is TEQ3 circular polarization in square
waveguide. The table gives the waveguide dimensions a,
the magnetic fields B, the gyration radii R, the axial wave
numbers k

~~,
the fifth-harmonic coupling factors

K5(k~R), and the power growth rates P(L)/(IOL )2.

Also shown are the interaction lengths L5Q% required to
reach a harmonic conversion eSciency of 50% for a 1-A
beam current, together with the output powers in each
case.

VI. DISCUSSION AND CONCLUSIONS

A derivation has been presented for the first-order
power transfer into the fields of a TE& mode rectangular
waveguide from a relativistic electron beam carrying spa-
tiotemporal modulation. This work extends a previously
published paper [1] that is limited to TED~ modes [11]
and is not competent to treat non-axis-encircling orbits,
circularly polarized excitations, and competing modes.
The present paper considers an idealized electron beam,
free of momentum or guiding-center spreads, in order to
bring out the essential physics of this class of interac-
tions.

The general result found for the power transfer from
the beam to the fields of a TEI mode waveguide is simi-
lar to that found for the TEQ mode. Thus cumulative
power Bow from the beam to the fields of a selected
waveguide mode is shown to occur when both frequency
and wave-number matching occur, i.e., when the frequen-
cy for the interacting waveguide mode is equal to an in-
teger multiple of the beam modulation frequency and
when the wave-number of the mode is equal to the same
integer multiple of the beam modulation pitch number.
In the present work geometric coupling factors are de-
rived [Eqs. (14) and (15)] that account for the guiding
center location of the beam and the particular symmetry
properties of the waveguide mode. When certain specific
symmetries prevail, the power transfer is found to be
identical for TEI modes as for TEQ, except that the
former can be a factor of 2 stronger than the latter, due
to the presence of two electric-field components rather
than one.

Power transfer from the beam to the waveguide fields
is shown to occur in synchrony with an externally applied
input field. However, it is also shown that power transfer
occurs even in the absence of an external field. In this

latter case, and when wave-number matching prevails at
one of the temporal harmonics of the beam modulation
frequency, the power level grows quadratically with both
the interaction length and the dc beam current. When
perfect wave-number matching does not occur the power
transfer is reduced by a phase-interference factor, such as
(sin8/8), where 8 is half the total phase mismatch along
the interaction length.

The aforementioned geometric coupling factors lead to
selection rules for systems of sufficient symmetry. Thus
for axis-encircling beams it is found that only odd tem-
poral harmonics are excited in a TEQ mode when m is
odd, and only even temporal harmonics are excited when
m is even. For axis-encircling beams exciting TE
modes in a square waveguide it is found that power
transfer only occurs at even temporal harmonics, and
that harmonics s=2, 6, 10, . . . , (4n —2), . . . are excited
when m is odd while harmonics s=4, 8, 12, . . . , (4n), . . .
are excited when m is even. For axis-encircling beams in
a rectangular waveguide, conditions are derived as given
by Eqs. (27)—(30) which allow the dimensions of the
waveguide to be selected to maximize coupling at a given
harmonic in a desired mode. In a square waveguide,
where circularly polarized TEQ modes can be supported,
the power transfer rate is shown to be twice that for
linearly polarized TEQ modes for odd temporal harmon-
ics (m odd), but equal to that for linearly polarized modes
for even harmonics (m even). For circularly polarized
odd-harmonic excitations the sense of rotation is shown
to be counterclockwise for s=l, 5, 9, . . . , (4n+1), . . .
and to be clockwise for s=3,7, 11,. . . , (4n —1),. . .
For non-axis-encircling beams it is shown that in general
both even and odd temporal harmonics can be excited in
any TEI mode. However, for TE modes in a square
waveguide, off-axis guiding center locations can be found
for which power transfer is absent at all odd harmonics
and at every other even harmonic.

Examples are given to illustrate the applicability of the
theory in the conceptual design of converters to furnish
fifth-harmonic power at 94 GHz. Such converters could
offer attractive alternatives to conventional gyrotrons
since the factor-of-5 reduction in the magnetic field re-
quired would obviate the need for a superconducting
magnet system. Further advantages for the harmonic
conversion mechanism, as discussed in I, could include
low wall heat loading, low power collector demands, and
no need for open mode converters as millimeter-wave
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gyrotrons. The examples given in this paper show that
respectable power transfer rates occur for the TE3z mode
in rectangular waveguide, and for the TEQ3 mode sup-
porting circular polarization in a square waveguide.
However, mode competition is shown to be a serious is-
sue for the TE32 case, particularly at the fourth and sixth
harmonics. These effects are strongly suppressed in the
square waveguide TE03 case, due mainly to the sparse
mode spectrum of the square waveguide. The example
demonstrates that power at the 100-kW level can be ex-
tracted from a 1-A, 200-kV spatiotemporally modulated
beam in an interaction length of only several centimeters.

Fifth-harmonic operation at beam energies lower than
200 kV is also briefly described. It is found that respect-
able power growth rates exist for 1-A beams with ener-
gies as low as 50 kV, and that power levels at 94 GHz of
several tens of kilowatts can be generated in interaction
lengths of about 10 cm. These results could have practi-
cal significance for systems applications where higher
beam energies are not desired due to the need for x-ray
shielding. A figure of measure to compare results for
conceptual devices with lower beam energies is taken to
be the length L5Q% at which half the dc beam power is
predicted to be converted to radiation. This assumes that
the linear theory developed in this paper can be used in
what is clearly a strongly nonlinear regime, a point dis-
cussed in I. What is envisioned to make this possible is a
gradually tapered-down magnetic field in the interaction
region that maintains the phase matching between the
beam and the fields, even as significant beam power is
converted to rf power. The feasibility of this strategy has
been examined in an approximate nonlinear analysis of
the coupling mechanism [8], and is currently the subject
of a more exact numerical simulation study [9]. Results
of these studies show that the conversion of transverse
energy from the beam to the fields can be highly efficient,
as was speculated in I. Furthermore, while the power
transfer rate does decrease as the rf power level increases
along the interaction region, the length for transfer of
half the available power was shown in several examples to
be only about 10% greater than the length calculated
from linear theory. Of course the precise difference be-
tween linear and nonlinear values of L50% will depend
upon the initial beam energy and other factors. Never-
theless, the preliminary nonlinear results cited here ap-
pear to give sufficient justification for using the linear
values of L5Q% as a measure of the strength of the in-
teraction when comparing different cases.

Aside from a full study of the nonlinear aspects of this
interaction, other issues which need to be addressed in-
clude the effects of momentum and gyration center
spreads on the power transfer rates. Space-charge forces
are expected to degrade the spatiotemporal modulation
on the beam from the ideal form assumed in this paper,
particularly for high perveance beams. In addition, cou-
pling to TM modes needs to be examined as well, since it
can be expected that these could lead to cumulative ex-
traction of both longitudinal and transverse momentum
from the beam. Furthermore, a full treatment of mode
competition is not possible if, as in the present paper,
only TE modes are considered. Extension of this work to
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APPENDIX: COUPLING OF SPATIOTEMPORALLY
MODULATED BEAMS

TO CIRCULARLY POLARIZED TEp~ MODES

For a square waveguide of side a the electric field is
taken to be

E(x,y, z, t) =Eo(z)[e„sin(k y )sin8

+e csin(k x )cos8], (Al)

where k =mela, H=k~~z —mt, and cr =+1, correspond-
ing to clockwise (+1) and counterclockwise (

—1) rota-
tion of the fields. The amplitude Eo(z) is slowly varying
with z. The equilibrium current density of the beam is
given by Eqs. (1) and (2). The instantaneous power fiow
1S

P(z, t)= f dx I dy(E„+E )= Eo(z),
Zyp 0 0 2z~p

(A2)

which is seen to be independent of time, as is usual for
circular polarization. From Eq. (A2) it follows that

dp (z, t) a dEo (z)
Eo(z)

dz Z~E dz

But, in addition, we have

(A3)

higher energy beams and higher harmonic interactions
should be straightforward, although the mode competi-
tion issue might be expected to intensify as the waveguide
mode indices increase. A parallel study for modes in cy-
lindrical waveguides would also be of interest, since there
all modes can be excited in circular polarization, and
since fabrication of experimental devices with cylindrical
elements is usually preferred over devices with square ele-
ments. Mode competition issues should be comparable
for cylindrical and square waveguide systems, since their
spectral mode densities are essentially equal.

In conclusion, this paper has extended the previously
published analysis to the full panoply of TE modes in a
rectangular waveguide. Selection rules and phase-
matching conditions are developed to allow the conceptu-
al design of devices that cumulatively convert spatiotem-
poral modulation from an electron beam into millimeter
wave radiation. Power levels in the range of 100 kW at
94 GHz appear to be achievable using a 200-kV, 1-A
beam in a fifth-harmonic device with an interaction
length of about 10 cm. Circularly polarized modes ap-
pear to be relatively free of mode competition. Lower-
bearn-energy devices are also shown to be capable of
fifth-harmonic operation, albeit with lower output power.
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= —f dx f dy(Jp„E„+Jp E ) . (A4)
For an axis-encircling beam we have

As in Sec. II, Eqs. (A3) and (A4) will be equated to ftnd
dE()(z) /dz.

Substituting from Eqs. (Al), (1), and (2) into Eq. (A4)
and integrating over x and y gives

dP(z, t) W
dz 'U ''

r

X —sin8singsin[k yp+k R sing]

+o cos&cosgsin[k xp+k R cosset]
' .

and

sin(k xp) =sin(k yp) =sin(m rr/2)

( —1), m odd

0, m even
j

cos(k xp)=cos(k yp)=cos(mm/2)

(
—1) », m even

0, m odd.

(A5) Thus
I

( —1)' "r g e„J2„(k R )cos2ng, m odd
n=0

sin[k~yp+ k R sing] = '

( —1) g 2J2„+)(k~R )sin(2n+1)$, m even,
n=0

while

( —1)' "r g e„(—I )"Jz„(k R )cos2ng, m odd
n=0

sin[k xp+k R cosP]= '

(
—1) g 2( —1)"J2„+,(k~R )cos(2n +1)P, m even .

n=0

Substituting these expressions into Eq. (A5) gives

dP(z t) W (~ ))»=Ip Ep(z)( —1 ) g e„J2„(k R )[—sin8 sing+ (r( —1 )"cos8cosg]cos2n (()
dz n=0

(A6}

for m odd, and

dP(z, t) W=Ip Ep(z)( —1) g 2Jz„+,(k R )[ —si ns8i ansi (n2n +1)P +o( —1)"c s8oc sPoc (o2sn + 1)$] (A7)
dz U n=0

for m even. After manipulation of Eqs. (A6) and (A7) we

equate the results to Eq. (A3} to give

dEp(z) W ZTE
( —1)(m -')»

Xg(1)K2+)(kR)
n=0

Xcos[8+o ( —1}"(2n+ 1)P]

for m odd, and

dEO(Z) g ZTEp 2~2I W TE
( 1)

dz U g2

X g K2„(k R )cos2ng sin[8+ cr( —1)" ' —
]

n=0 4

(A9)

I

for m even, where K, (b) =(e, /2)J, '(b).
We now average Eqs. (A8} and (A9} over the time of in-

teraction T=yz/U. This requires a different manipula-
tion for each expression. For Eq. (A8), we require the in-

tegral

1 Tl, (z)= —f dt cos[A(z)+Bt],T 0

where A (z) =k)(z+o ( —1)"(2n +1)(gz+Pp) and B =to
+cr( —1)"(2n+1)p. This integral is seen to approach
zero as z increases unless the matching condition
cp+o( —1)"(2n + l)p=0 is met. Thus for even n, corre-
sponding to harmonics s=1,5, 9, 13,. . . , (4j+1),. . . we

have (r = —1 (counterclockwise sense of rotation), while
for odd n, corresponding to harmonics
s=3,7, 11,15, . . . , (4j —1),. . . we have o =+1 (clock-
wise sense of rotation). When these matching conditions
are met the above integral goes over to I, (z) =cosA (z).
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For Eq. (A9) we require the integral

T
I2(z) =—f dt cos(2ng)sin[8+a( —1)" '~/4] .

T 0

If we drop the small antiresonant part of Iz(z) we have

I2(z) = f dt sin[ A '(z) B—'t ],T

0

where A'(z)=(k~~ —2ng)z 2n—go+a( —1)" 'n/4 'and
B'=u —2np. The integral will tend towards zero as z in-
creases unless B'=0. Thus for all even harmonics
to =2np, we have Iz(z) = [sin A '(z}]/2.

The time-averaged values of Eqs. (A8) and (A9) are
thus

integral
LI3= f dzcosA'(z}

0

=L cosh,
sin(a&L )

a)L
+sinb&

cos(a, L ) —1

ajL

where a& =k1+0( 1)"(2n+1)g and b, =o( —1)"(2n
+1}gc. I3 will be small unless a&L =0. This is seen to
require observance of the same selection rules for rota-
tion as in the time averaging above, in which case
I3=L cosh&. Similarly, integration over z in Eq. (All)
involves the integral

LI~= f dzsinA(z)
0

(
dEO(z} w TE ( ])/z1 )(m —1)/z

dz a' —L cosh
1 —cos(a2L )

a2L

sin(azL )
+sinb~

a2L

XK2„+t(k R )cosA(z)

for co=(2n+1)p, and

(A10)

dEo(z) W ZTE
2Io ( —1) Kz„(k~R )sin A '(z)

(A 1 1)

for co=2np In.tegration over z in Eq. (A10) involves the

where a2=(ki —2ng) and b2=o( —1)" 'n/4 2ng—o

Again, we see that I4 will be small unless a2L=0, in

which case I4 =L sinb2. This requires observance of the
same matching condition as in the evaluation of Iz(z), ir-

respective of the sense of wave rotation. Once the rela-
tive phase angle Po adjusts to the value that maximizes

the power transfer we find the results given in Eqs. (32)
and (33).
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