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Effect of a dielectric medium on spontaneous radiation in a uniform magnetic field:
Higher harmonics and the helical Cerenkov effect
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The mechanism of the spontaneous emission in a uniform magnetic field with a dielectric medium is
being studied. The actual process can be divided into two branches: a vacuum branch and a Cerenkov
branch. In the limit of vanishing matter density, a vacuum branch is the only one that remains. For
each of these two branches, we derive general expressions for angular energy and power distributions
with the corresponding spectra. For the Cerenkov branch, however, we deduce that a new effect, a heli-

'V V'

cal Cerenkov effect, exists in a dielectric medium. This effect, unlike the ordinary Cerenkov effect, de-

pends on the radius of curvature of the electron trajectory, measured in a plane perpendicular to the
direction of the electron guiding center. Furthermore, for an index of refraction n that is independent of
the radiation angle and also is a slowly varying function of the radiation frequency, the spontaneous
emission from spiraling electrons may go into a large number of harmonics for either of the two
branches. As compared to a vacuum, the effect of the dielectric medium is to increase the overall energy
emission.

PACS number(s): 41.60.Bq, 32.60.+i, 32.80.Wr

I. INTRODUCTION

As is well known, the presence of a dielectric medium
can significantly alter a mechanism of electron radiation
as compared to a vacuum [I]. For example, it was found
that the radiation resulting from electrons interacting
with a static wiggler magnet in a dielectric medium can
go through two branches: a vacuum branch and a
Cerenkov branch [2]. Not surprisingly, the same thing
should be true for radiation in a medium caused by other
forces on the electron rather that just the ones coming
from a wiggler magnet. Indeed, we find that in a medium
the spontaneous emission from spiraling electrons caused
by a uniform magnetic field can also go through vacuum
and Cerenkov branches.

The spontaneous emission in a dielectric medium from
electrons moving on helical orbits in a uniform magnetic
field [3] is a good example for deducing some general
characteristics of spontaneous emission in a medium.
First, we learn that generally, a new effect, a helical
Cerenkov effect, should exist in a dielectric medium.
This effect, unlike the usual Cerenkov effect, depends on
the radius of curvature of the electron trajectory; for ex-
ample, for higher-kinetic-energy electrons, say, 1 Mev
and above, it is strongest when the radius of curvature
becomes comparable to the radiation wavelength. Fur-
thermore, we find that as long as index of refraction n is a
slowly varying function of the radiation frequency, the
spontaneous emission may go into a large number of har-
monics for either of the two branches.

Specifically, in this article, we derive the expressions
for energy and power spectra and the corresponding en-
ergy and power angular distributions of spontaneous
emission in a dielectric medium from electrons in a uni-
form magnetic field. This is done by utilizing the cus-
tomary definition of the Bessel functions which, in turn,

allows us to expand the electron current density into a
Fourier-like series [3]. It is from the expression of a
power spectrum that we deduce a new helical Cerenkov
effect whose existence, however, depends more on the
curvature than the nature of the electron trajectory. Fur-
thermore, from the expression for angular energy distri-
bution, we conclude that the harmonic emission is clearly
identifiable only for the isotropic dielectric medium
whose index of refraction n is a very slowly varying func-
tion of the radiation frequency.

When this is the case, we can actually evaluate analyti-
cally the total, over kinematically allowed radiation fre-
quencies, spontaneously emitted energy distribution at a
sufficiently small radiation angle, provided that the fun-
damental and higher-harmonic frequencies are much
smaller than the first resonance frequency of the dielec-
tric medium. In these evaluations, the spontaneous emis-
sion into higher harmonics is assumed to be negligible
beyond some sufficiently high harmonic number [3].
From the practical point of view, this means that appre-
ciative amounts of energy are emitted only into a finite
number of harmonics, which, in principle, should be true
for any radiation angle, again provided that all the har-
monic radiation frequencies are much smaller than the
first resonance dielectric frequency. Of course, when
some of the radiation frequencies are close to a resonance
frequency of the medium, index of refraction n becomes
strongly dependent on the radiation frequency and the
evaluations of energy spectra and angular energy distri-
butions generally can be carried out only through numer-
ical methods, except perhaps when a simple model is as-
sumed for the dielectric function [4].

For the sake of completeness, we mention another well
established and important radiation by relativistic elec-
trons in a uniform magnetic field, the spontaneous syn-
chrotron radiation. It occurs in a vacuum when the elec-

46 5138



EFFECT OF A DIELECTRIC MEDIUM ON SPONTANEOUS. . . 5139

tron is moving in a uniform circular motion in a plane
perpendicular to the direction of the uniform magnetic
field with electron radiating in the direction of the elec-
tron velocity. The expression for the angular-spectral en-

ergy distribution that is used quite often in calculations
was obtained by Schwinger [5] in 1949, although, under
the terminology of circular motion, similar results have
been obtained already in 1912 by Schott [6].

Taking into account that, on one hand, the uniform
magnetic field plays a rather important role in radiation
generation and, on the other hand, that the helical

V'

Cerenkov effect and the spontaneous harmonic emission
in a medium may be of significant practical interest, we
feel, is suicient justification for studying the spontaneous
electron emission in a dielectric medium with a uniform
magnetic field.

In Sec. II the general multiphoton formalism suitable
for treating the spontaneous emission in a dielectric
medium with finite interaction time is briefly described.
Here the general expressions for energy and power spec-
tra as well as angular energy and power distributions in a
dielectric medium are given. In Sec. III, the new helical
Cerenkov effect is derived, compared with the usual
Cerenkov effect, and we discuss the electron energies and
radiation frequencies for which it should be possible to
observe it. Here, also, the specifics of the higher-
harmonic emission in the dielectric medium are elaborat-
ed. The results are discussed and summarized in Sec. IV.

In what follows, for the sake of simplicity, we shall as-
sume that the medium is nonmagnetic so that the mag-
netic permeability p satisfies p=1. Then magnetic fieMs
B and H, related by B=pH, are the same.

II. MULI j.PHOTON DESCRIPTION
OF SPONTANEOUS EMISSION IN A MEDIUM

OVER A FINITE INTERACTION TIME

S(T)=exp (m(T)) exp[iI(A, j;T; —)]

Xexp[iI( A, j;T;+ )] . (2)

Here ( m ( T) ), the total number of photons of any polar-
ization emitted spontaneously over interaction time T, is
formally given as the commutator of action integrals [3],
which, with the quantization rules for A ~(x) [1],is evalu-
ated to be [3]

Here we modify the S matrix, describing the spontane-
ous emission in a medium [1,2] from an infinite interac-
tion time [1,2] to a finite interaction time S matrix. To
do that we utilize the finite interaction time T action in-

tegral [3] in terms of the free photon potential and the
conserved electron current density as

I(A,j;T)=I(A,j;T;+)+I(A,j;T;—),
I(A, j;T;+)=f dt f d x A&(x;+)j"(x), (1)—T/2

I ( A,I;T; )=It—( A,J;T;+ ), a~"(x)=0,
where A„(x;+) and A„(x;—)=A„(x;+) are the
positive- and negative-frequency free-photon four-
potentials. The S matrix, suitable for describing the
spontaneous emission in a dielectric medium, i.e., the
multiphoton processes in which the electron recoil is
neglected, is given as [3]

(m (T))=[I(A,j;T;+ ),I(A,j;T; —)]

=i f dt„ f dt~ fd x d y j"(x)j"(y)D&+„'(x—y)

d k j"'(k;T)D'+„'(k)j "(k'T)

(3a)

(3b)

Here D„'+, '(k) is the four-dimensional Fourier transform
of positive-frequency singular function D„'+„'(x), which
for a medium at rest becomes [1]

Pi(k) =5;.—k;k;, (4b)

D„'+'(k)~D J+'(k) = inP;, (k) 5—( ~k~ neo), (4a)—

the S matrix is describing radiation in a medium over an
infinite interaction time, this is an improvement. For
now, the angular energy distributions, etc. , will depend
explicitly on finite interaction time T.

Now, in order to arrive at expressions for emission en-

ergy, power spectra, angular energy, and power distribu-
tions, we utilize (m (T) ) from relations (3). By noticing
that d k = (k~ d ~k~dQ, relation (3b) is rewritten as

where, appropriately, the fourth component of the four-
momentum has been identified as photon's angular fre-
quency co, and

j(kT)= f dt fd x e ' j(x) .—T/2

One should notice that the index of refraction n may de-
pend on co. As we see, through relations (3)—(5), the S
matrix conveniently contains a simultaneous dependence
on n, the index of refraction, and T, the finite, rather than
infinite, interaction time. As compared to Ref. [2], where

f dcodQ d 8'(co;T)
co dco dQ

dW(co;T) d~ d W(co;T)
dco dco dQ

dP(co) 1 d W(co;T)
dQ T dcodQ

1 dW(co;T)
T dc'

(6a)

(6b)

(6c)

(6d)
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where d W (co; T) Idio, d W(co; T) Idcod 0, P (co), and
dP(co)/dA are the emission energy spectrum, angular-
spectral energy distribution, power spectrum, and angu-
lar power spectrum distribution, respectively. From
these definitions we also obtain that for spontaneously
emitted radiation, the expressions for the angular energy
distribution and the total energy are

co, =eB/My, (12)

Here, t =x, a is a constant phase (to be determined
shortly), vi = lvi(t)l is a constant magnitude of the elec-
tron perpendicular velocity, and co, is the electron rela-
tivistic angular cyclotron frequency

dW(T) fd d W(co;T)
dA " dcodQ

W(T)= fdQ

(7a)

(7b)

with M being electron mass, y =(1—v ) ', and we took
e to be negative of the electron charge, e & 0.

We wrote the solution for r(t) in such a way that in the
absence of the uniform magnetic field, B =0 (co, =0},we
obtain

Now, for a medium at rest (neo = l kl ), we use relations
(4) which, after having integrated the 5 function, yield

d W(co;T) neo

16m

r(t;B=0}=r,(t;B =0)+zx, (t),
ri(t;B =0)=ri+xv, t+yvzt,

v
&

= vysina, v 2
=v~cosa

(13a)

p (k, co;T)=j;"(k,co; T)P, (k)j (k, co; T),

j,(k, co; T)=j;(k—=knee, co; T),

(9a)

(9b)

where one should keep in mind that n may depend on ro.
From relation (8), with the help of relations (6) and (7),
we obtain {m ( T) ), d W/d co, dP /d Q„P ( co }, d W /d Q,
and 8'.

III. SPONTANEOUS RADIATION IN A MEDIUM
WITH A UNIFORM MAGNETIC FIELD;

HELICAL CERENKOV EFFECT

v(t) =vi(t)+ zv 3,
vi(t) =vi[ —x sin(co, t+a)+y cos(co, t+a)];
r(t) =ri(t)+zx3(t),

x, (r)=v', r+x', ;

(loa)

(lob)

(1 la)

(1 lb)

ri(t) =(vi Ico, )[x cos(co, t +a)+y sin(co, t+a)]+Ri,

In this section we elaborate on spontaneous emission in
a dielectric medium due to a uniform magnetic field.
Particularly we shall be interested in deriving the helical
Cerenkov effect and seeing under what conditions the
spontaneous emission in a medium can go into the funda-
mental and the higher-harmonic frequencies.

Next, we choose the uniform magnetic field to be in the
z direction, B=zB, which causes an electron to spiral
with the velocity and the position, respectively, as [3]

From here we see that a is determined from
tana= —v i Iv 2. We can further elucidate a by introduc-
ing

VQ= UOVO

vo =x sin8& costa+ y sin80singo+ z cos80, (13b)

Vy =Vg

which, when compared to relations (10) at co, =0, yield

COSOQ V 3 /VQ sinOQ = U j /UQ
0 0

costa= —sina, sin/0= cosa, $0=a+ —,
(13c)

so that

vp= —x sinu+ y cosa+ z 1—
Up Up

1/2
Ug

2
Up

(13d)

j "(x,t„)= ev "(t„}5( xr(t—„)),
v"{r )={v(t ), 1},

(14a)

In general, the expression for the four-vector electron
current density is

R,'=r', +r', (B), r', =xx', +yx', ,

ri(B)=( —vi Ico, )[xcosa+ y sinu] .

(11c)
which we shall use. As indicated by (5), the finite interac-
tion time T Fourier transform ofj (x, t„) is

j "(k;T)= —ee f dt„v"(t„) xpe[i[t„(ro v3lklcos8) ——g(lkl)c so(co, t„+a—p)]]e, ,

e =exp[ i k(r oiz—+3x)], e, =exp[if(lkl)cos(a —P)], (14b}

lkl v, sin8
P lkl}=
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where we used relations (10) and (11),and

k=x sin8cosg+y sin8sing+z cos8 . (15)

p (k, co;T) as

p (k, co; T)=16m avp(1 —cos 8, )

Phase factor e, assures that j" is associated with a free
electron when co, ~0. Formally this phase factor can be
dropped when calculating, say, energy spectra from rela-
tions (3)—(7). For a vacuum this is indeed the case since a
free particle does not radiate. In a medium, however, a
free charged particle radiates by means of a Cerenkov
effect and, in order to avoid any ambiguity in the deriva-
tion of the hehcal Cernekov effect, we shall keep phase
factor F, in definition of the electron current density.

A. The usual Cerenkov efFect

We first derive the usual Cerenkov effect, so that the
helical Cerenkov effect, derived later, can be compared
with it. Taking the co, ~0 liinit in relation (14b) and tak-
ing into account (13) and (9b), we obtain

j"(k,co; T) = eu—&&2me5(co[1 —n(co)upcos8, ];T),
vg =(vp, 1),k=knco, (16)

cos8, =k.vp=sin8sin8pcos(P —Pp)+cos8cos8p .

X5 (co[1—n(co)vpcos8, ];T), (20)

1X5 cos8,—;T
n co up

T= Tcoupn(co), cos8, =1/n(co)up .
(21)

According to relation (8), the angular-spectral energy dis-
tribution of the Cerenkov radiation is

d 8'(co; T) acoupT 11—
dco d Qz 2m' n i(co)up~

where a=e /4m and the definition of 8, from relation
(16) has been taken into account. Furthermore, with the
help of (18b), (18c},and (19), for a sufficiently large T, say
T &)2~/co, we can treat the finite time 5 function as an
ordinary 5 function, giving

8/aup T
p (k, co;T)= 1—

con(co) n (co)vp

Here the finite time 5 function is given by

1»2;„sin(sT/2)5s;T = dt e"'=
27' —r/2 'irs

where 5(s; T}is significantly different from zero for

Isl-

(17a)

(17b)

X5 cos8,—;T1

n covp
(22)

where dQc—=dPcd cos8c. Relation (22), with the help
of relations (6b) and (6d) yields a familiar form for the ex-
pression of the power spectrum of the Cerenkov radiation
[ll

Furthermore, we have P(co)= acovp 1 ——1

n (co)vp
(23)

5( —s; T)=5(s; T),
5(0;T) =T/2';

(18a)

(18b)

5(as; T)= 5(s; T},T= lalT;a

5(s; T~ Do ) =5(s),

(18c)

(18d)

and for the sufficiently large T from (17b) and (18b) we
deduce that (n, m =0,+1,+2, . . . )

B. The helical Cerenkov efFect
and the higher harmonic spontaneous emission

When the uniform magnetic field is different from zero
(8%0,co, %0), the expression for j"from (14b) can be in-
tegrated over t„only if k is collinear with B. To deal
with the general case, we use

5(s„;T)5(s; T) =- 5„~5(s„;T),= T
2' (19)

e
—&zcosP — ~ ( &)lJ (&)ekilP

I (24)

where it is assumed that s„As if num. As we see, for a
suSciently large T the finite time 5 functions behave very
much like ordinary 5 functions.

Next, according to relations (8} and (9}, we evaluate
l

where JI is the Bessel function. When applying relation
(24} to the term in (14b) containing a cosine function and
taking into account relations (9b) and (10b), we obtain
(n~= lkl)

oo

j,(k, co; T)= iee e, oui g ( —i)'+'e " 5(co—(1 nu3cos8—) ico„T)[—e"+"~Ji+,(g)+e'~' "~Ji,(g')], (Zsa)

oo

j2(k, co; T)= eVF, rivi g ( i)'+'e —"—5(co(1 nuscos8) lco—, ; T)Ie'"+—"~ Ji+(g) —e'" "~J, ,(g)], (25b)

oo

j~(k, co; T)= 2eVe, mu3 g ( —i) e' '~ '—5(co(1 nv3cos8) lco„—T)J&(g'), — ' (25c)

j (k, co; T}=j 3(k, co; T) lu3, (25d)
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where now

n (co)covj sin8
(25e)

that

~co[1 —v3n(co)cos8] —leo, ~
&&a), .0 2 7T

(28)

and finite time 5 function is given by relation (17). As we
can see from relations (25), the expansions of the Fourier
transforms of the current density components at the
physical photon momentum ( n co=

~
k

~ ) involves also
I &0, rather than just I & 0, when n (co)%1. For example,
for sufficiently large T, if 1 n—(co)v3cos8&0, terms with
I & 0 will dominate in (25).

As they now stand, relations (25) are definitely correct.
However, in maintaining a practical point of view, we
shall assume that interaction time T is rather large, say
T »(2rrlco, ). Now, as in the case of n =1 (a vacuum),
we still may call I a harmonic index; however, since gen-
erally n may depend on co, it may not always be a simple
matter to determine how co and I are related. Specifically
we can define the radiation resonance angular frequencies
from relations (25) as

Comparison of (28) with (26) tells us that, from a practi-
cal point of view, in an expression that is dominated with
a 5 function containing a specific I, we need not distin-
guish between co and co(I), as we can set co=co(l) every-
where except in the 5 function itself [3].

At this point we introduce the photon orthonormal po-
larization unit vectors valid in any reference frame [3].

rl(k, 1 ) =x cos8 cosp+ y cos8 sing —z sin8,
(29)

q(k, 2)= —xsinP+y cosP, ri(k, 3)=k,
where k is given by (15). In terms of these vectors, the
photon circular polarization unit vectors are [3] (P=+1):

e(k, p) = —[rl(k, 1)+ipal(k, 2) ]
2

co(l) [1—n(co(l))v3cos8] —Ico, =0 . (26)
(cos8+ 1)eo(P)

2

Relation (26) is simply the constraint on co(1), 8, and I;
only two of them can be viewed as independent parame-
ters. As we see, for fixed I and 8, it is not always a simple
matter to determine co(1). As usual, the off-resonance an-
gular frequency is defined by

exp(i13$)
( 8 1} ( ~)

sin8

av(P) = (x+igy),
2

e(k, P} e(k, 5}=5ps,

(30a)

(30b)

(30c)

5col=[1—v3n(a)(l))cos8][co —a)(I)] . (27)

As in the case of a vacuum, it is again a free parameter,
telling us how the true co differs from the co(1). However,
for sufficiently large T, T »2m /co„we have from (17b)

e(k,P);e(k,P) =Pi(k),
P= —1

(30d)

where P;~ is given by (4b). As in the case of a vacuum, we

define

jo(k, co;P; T)=en(k, 13) j(k, co; T)

~2eevjm g ( i)'e '—5(co[1 v3n(co—)cos8] Ico„T—)e"+'~'~J&+&(g),
I = —oo

where we took into account that

I+P=25p(y])q P=+1

With this, we finally have (P=+I }

j (k, co;p; T)=e(k,p) j(k, co; T)

(31a)

(31b)

(cos8+ 1)j 0(k, co;13;T)+ (cos8—1)jo(k, co; —P; T) —j 3(k, co; T}— (32a}

v'2, ( i )'e'"& '5(co—[1 n(cu)v 3co—s8] —Ice, ; T}

X [ [(vc s8+o1)JI p(g+)+( s8c—o1 )JI p(g)] —2v3sin8JI(g)] . (32b)

With the help of relations (19), (18c), and (30d), relations (8), (9},and (32b) yield for the angular-spectral energy distribu-
tion

d W(a);T)
1codQ

d W(co;T;I)
6 COCf 0 (33a)

with the harmonic angular-spectral energy distribution given as
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d W(co; T; I) aLco(1) '
& 8 I Icoc

Z 5 cos8
16m(v3) p= & n(co)v3 n(co)u3co

X [u~[(cos8+1}JI+p(k)+(cos8 1)Ji p—(k)]»3»n8Ji(k)]
T=n(co)cov3T,

n (co(1))co(l)u j sin8 n (co)coul In
(I)1 —n

N

(33b)

1cos8=—rl(1) = o
1—

n (co}u3

lN
&1.

lN —= 1 n(co—)v 3 cos8,
N

(34a)

Here L =U3T is the interaction length, and, consistent
with (26) and (28},we identified co(l) with co. Let us point
out that as long as relation (28) holds and once I is fixed,
N and 8 are not completely independent from each other.
This means that for a given 8, different N's generally will

appear at different l's. Conversely, for a given N,
different 8's generally will appear at different l's.

It is the presence of index of refraction n (co} that re-
quires nontrivial constraints involving 8, co, and l. Name-
ly, from relations (26) and (28) [co(l) =co], we have

dW(co; T)
dN

d W(co; T;I)
dN

(36a)

with the harmonic energy spectrum as

d W(co; T; I}
dN

aL g co[v, [[1+rl(co,l)]JI+p[g(co, l)]
8(u3 }

+[9(co,!}—1]JI p[g(co, l}]
—2v3[1 r! (co, l)—]' J, [g(co, l}]]

implying

sgnl —= sgn [1 n(co )u 3cos8], —1%0

n (co)v3cos8-=1, I =0 .

(34b)

(34c)

lN
&1,rl(co, I ) =

N

1
0n (co)v3

n (co)cov~ [1 rl (co, I ) ]—'~
(co;I }=

(36b)

Relation (34c) is nothing but the kinematics of the helical
Cerenkov effect to be discussed shortly. From relations
(34) we see that the spontaneous emission can occur in
the vacuum, forward, and backward Cerenkov branches
[1,2] with the corresponding I: For the vacuum branch,

Numerically, of course g(co, l)—=cos8, except that now it
is expressed in terms of N. The angular power spectrum
distribution and the power spectrum can be obtained by
dividing relations (33) and (36) by T, respectively.
Specifically for the power spectrum we have

n(co)v3 &1, n(co)v3cos8& 1, l~ 1;
for the backward branch,

n (co)u3 & 1, n(co)v3cos8& 1, I ~ 1;

(35a)

(35b)

P(co) = g P(co;I),
$ = —oo

1 dW(co;T;I)
T dco

(37a)

(37b)

and for the forward branch,

n (co)u3 ~ 1, n(co)v3cos8~ 1, 1&0 . (35c)

The expression for angular-spectral energy distribution
(33a) holds regardless of whether T, the interaction time,
is large or small. However, with the assumption that T is
large [co(l) =—co] we can treat the 5 function in (33b) as an
ordinary 5 function yielding from (6b) the energy spec-
trum

As for the evaluations of the angular energy distribution
and the total energy, these can be done only after n is
specified as a function of N.

Now we can discuss the helical Cerenkov effect, which
corresponds to the 1=0 terms in relations (33)—(37).
Taking into account that

J „(x)=J„(—x)=( —1)"J„(x),
from relations (33b} we obtain that the angular-spectral
energy distribution for the helical Cerenkov effect is

d W(co T 0) L afi co8 1 T ( 28 )J2(g )+
dco dQ 2'r n (co)u 3

Uj

o Ji(ko) .
U3

(38a)
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5 cos81,—.
, T . 1 — Jp(go}+

2m. n(co)v3 [n(co)u3]

2
Vl

o J i(4o}
U3

(38b)

where 0=0& denotes the radiation angle of the helical
V'

Cerenkov effect satisfying

cos8& =1/n(co)v3,

n (co)cou~sin8&
0

(38c)

(38d)

that is, in going from (38a} to (38b), we assumed that T is
suSciently large so that we can treat the finite time 5
function as an ordinary 5 function. Integrating (38b)
over the solid angle and dividing the result by T, or by di-
viding (38b) at 1=0 by T, we obtain the power spectrum
of the helical Cerenkov radiation to be

1 , , Jo(ko}
[n(co)v3]

2+, Jf(ko}
U3

P(co;0)—=acou3. 1—

(39)

u3 [from Eq. (38c)]=up [from Eq. (21)], (40a)

Comparing the power syectra of the helical Cerenkov
effect and the ordinary Cerenkov effect (23), we see that
the former goes into the latter when u~ ~0, since
J ( go~0 )~5 p as (o~0. This is not surprising since
when v~=0 and vXB=O, the electron behaves as a free
electron; that is, it does not feel the presence of the mag-
netic field.

To the total power spectrum in relations (37) we shall
have contributions also from l =+1,+2, . . . . Will these
additional terms obscure the helical Cerenkov effect?
Generally, no. The reason for this is that different l's
have different kinematics. Namely, at the angle 8& let the
helical Cerenkov effect (1=0) occur with particular an-
gular frequency co. Then, as relation (34a) indicates, for
the same 8=8& but 1%0, we shall generally have different
co's. However, how do we find 8h at which (1 =0) helical
Cerenkov effect occurs? This is simple, at least in princi-
ple. Namely, kinematics of the ordinary and helical
Cerenkov effect are the same except that in the ordinary
one U0 comes, while in the helical one v3 comes. Thus if
we have that

(x 2+@ 2)3/2
R(t)=

/xy' —yx /

(41}

For the electron in a uniform magnetic field whose guid-
ing center is in the z =B direction, the application of re-
lation to (41) to expression (1 lc) for r~(t) yields

Ug Myvi
eB

(42)

which, when inserted into relation (38d), yields (with A,

the radiation wavelength)

effect if we are to observe the same radiation frequencies
at the same angles.

In fact, from the preceding discussion we see the main
characteristics that distinguish the helical Cerenkov
effect from the ordinary Cerenkov effect: while the ordi-
nary Cernekov radiation travels down the cone of angle
8, with respect to v0, the helical Cerenkov radiation trav-
els down the cone of angle 8& with respect to B. As a
consequence, on the global level one should be able to
detect in principle how the ordinary Cerenkov effect
changes into the helical Cerenkov effect when a
suSciently strong uniform magnetic field is introduced
into the dielectric: the Cerenkov radiation cone, whose
axis is given by v0, changes into the helical Cerenkov ra-
diation cone, whose axis is given by B.

Next, let us deduce some geometric characteristics of
the helical Cerenkov effect which are not present in the
usual Cerenkov effect. Specifically, what we wish to show
is that the helical Cerenkov effect& besides having a radia-
tion cone whose axis is given by B, has a power spectrum
that is quite difFerent from the power spectrum of the or-
dinary Cerenkov effect. For example, it can be dominat-
ed by either J0 or J, if the radius of curvature of the elec-
tron trajectory (measured in the plane perpendicular to
the direction of the electron guiding center) is given in
respective multiples of the radiation wavelength. To ela-
borate on the last point, let us assume that the electron
guiding center is pointed in the z direction. Then the ra-
dius of curvature, as measured in the x-y plane [the elec-
tron trajectory in this plane is described by x =x (t) and

y =y ( t ) ], is given by the expression

Oq=O, . (40b}

then we must have n (co)cos8, [from Eq. (21)]
= n (co)cos8I, [from Eq. (38c)]. As long as the dielectric is
the same in both cases, one excepts ~ to be the same also;
hence, numerically we expect

){,gp

2m.n ( co }sin8&

1
sin0& = 1—

[n(co)v 3 ]

1/2 (43)

In other words, if for a given dielectric we tabulate v0
vs 8, for the ordinary Cerenkov effect, relations (40a) and
(40b) should tell us at which 8„,for a given v 3, we should
observe the helical Cerenkov effect. From relation (40a)
it is clear that we need a larger electron velocity in the
helical Cerenkov effect than in the ordinary Cerenkov

(oM(1=0,s=0)=0, gp~(l =l, s =0)=1.8, (44a)

while, in general for go) 2, JI (go) have (s =1,2, . . . )

Now, as demonstrated in Fig. 1, for gp 2, Jp(go), and

J~ (go) have, respectively, single maxima, say s =0 maxi-

ma, at
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[&O(x)1 R (1 =os)= (4s —1)A,

Sn co sin8h
(47a)
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minima (zeros) and maxima approximately at, respective-
ly,

(l, s ) =(21 +4s —1}

1=0,1,2, . . . , s=1,2, 3, . . . , (44b)

gp~(l, s)=(21 +4s + 1)

1=0,1,2, . . . , s =1,2, 3, . . . . (44c}

Since for gp & 2 (1 =0, 1,2, . . . , s =1,2, . . . )

(1+1,s)=go (1 —l,s+1)=fosr(l, s),
we have that

(45a)

o (l,s)=koM(o, s},
gp (0 s + 1)=gpsr(1 s)

(45b)

Relation (45b) and Fig. 1 show that for go & (3m/4) =-2.4,
the positions of maxima (minima} of Jp coincide with the
positions of minima(maxima) of J,; specifically at
go=5m /4, 9n /4, . . . , Jo has maxima while J t

—=0, and at
go=7rr/4, 11m /4, . . . , Jf has maxima while Jp =—0. This
means that as gp is varied from zero to larger values, the

'IS

power spectrum of the helical Cerenkov efFect is alterna-
tively dominated by (sin8&Jp) term (Jf =0) or by Jf
term (Jp -=0), when we say that we have the "pure" heli-
cal Cerenkov effect power spectrum. We can enlighten
this point by associating the minima and maxima of JQ
and J

&
with the radia of curvature of the electron trajec-

tory. Substituting relations (44} into (43a), we obtain the
corresponding curvature radia as

Rsr(l =o,s =0)=0,

RM(1 = l, s =0)= 1.8A,

2m n ( co }sin8&

(46a)

(46b)

FIG. 1. The approximate positions of maxima and minima of
both Jo (solid line) and Jl (dashed line) which are helpful in

determining the helical Cerenkov effect power spectrum.

(4s + 1 )lt

8n (co)sin8&

(1 )
(4s + 1)A,

Sn (co)sin8„

(1 1 )
(4s +3}A,

Sn (co)sin8k

(47b)

(4Sa)

2= 1

1 —(u3)
(49)

we definitively have nu 3 & 1. Relation (43b} gives
sin8& =0.63 (8& =—39'), which in turn, according to (46b},
gives R -=0.34K,. Hence we may say that the helical
Cerenkov effect will start superseding the ordinary
Cerenkov effect (that is, Jf will start to dominate in the

where s =1,2, . . . .
We see that at go=0, which is achieved by either

u~ =0, co,%0, or u ~%0, co, ~ ~ (B~ ~ ), R =0. As seen
from (46a) now Jo 1, Jr=0, 1%0, and the power spec-
trum becomes qualitatively similar to the power spectrum
of the ordinary Cerenkov effect. This shows that the
power spectrum of the helical Cerenkov effect will as-
sume more of the shape of the power spectrum of the or-
dinary Cerenkov effect (be more dominated by Jo } as the
radius of curvature of the electron trajectory satisfies
R ((A, . Practically this could be achieved by increasing
B and/or by decreasing v~.

At this point we need to find out more specifically un-
der which conditions it should be possible to observe ex-
perimentally the helical Cerenkov effect. Namely, follow-
ing Fermi [7] Huybrecht and Schoenberg [S] have found
that the total energy loss of an electron passing through a
medium is distributed between ionization excitation and
the Crenekov radiation. The contribution of the
Cerenkov radiation to the total energy losses are general-
ly quite significant [9]. In fact, the increase in losses
beyond the minimum of the ionization curve for electrons
with y&4 generally is determined completely by the
Cerenkov radiation [9], particularly for lower frequency
radiation [S,9] such as visible frequencies and smaller [10]
(other relevant references on this subject can be found in
Ref. [9]). We shall assume that the same things hold also
for the helical Cerenkov effect and restrict our discus-
sions about its experimental observability to radiation
frequencies in the visible and below, and for fairly ener-
getic electrons with kinetic energies of 1.5 MeV and
above.

Next we notice that J& has the largest maximum at
go—= 1.S (compare with Fig. 1). Now the radius of curva-
ture of the electron trajectory is given by (46b) and for ki-
netic electron beam energies of 1.5 MeV and above, the
helical Cerenkov radiation angle 8& is not too far from
8 '"=Ic s(1o/n) Then, wi. th n (co) & 1, n (co)sin81, -=1, the
dominance of term J

&
is going to be largest when, as rela-

tion (46b) suggests, R =—O(A, ). Specifically for water as a
medium with n = 1.33 in the visible spectrum, A, =(4 to
7) X 10 cm [10],with y3=4 (v3=0.96S), where
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spectrum), at least for medium to high-energy electrons
when the radius of curvature of the electron trajectory
starts satisfying R —=0 (A, ).

We can estimate what strength of uniform magnetic
field is needed to have R -=(A, ) for different regions of the
electromagnetic spectrum. From relation (42} we have

QUi8=
R (e/M) '

[1—(y3vi) ]'7 (50}

where e/M -=1.8 X 10" s ' T '. Choosing vi =2
X 10, k=—7X10 cm, and other parameters as given
after relation (49), we obtain B —=47 T, which is a rather
large field. Suppose that we can achieve experimentally
vi =—2 X 10;then B would drop down to 4.7 T. Howev-
er, because (u j /u 3 ) multiplies J, in the power spectrum
despite the fact that JI is at its maximum, the term
(sin8& Jo) =-O. OOS clearly dominates the power spectrum
of the helical Cerenkov effect. However, if we choose
A, =—10 ' cm, u3—=0.9, vi=—0.4 (y—=6), and assuming a
medium with n -=1.4, then at R =—k we obtain B—=4 T,
which is achievable. Furthermore, now (ui/u3) -=0.2,
allowing J, to dominate the power spectrum. In other
words, in the microwave region one should be able to
achieve the dominance of the pure helical Cerenkov term
in the power spectrum when the beam is rather energetic.

As we formally increase go beyond 2.4 the power spec-
trum of the helical Cerenkov effect will be completely
dominated by either Jv (when J, =0) or by J, (when
JD=O) at gv=(4s+1)(n/4) and. go=(4s+3)(~/4), re-
spectively [s =1,2, . . . ; compare with relations (44)].
Now taking that at y3 =—3 and n =1.5 typically [12] we
have sin8h —=0.7, relations (48) tell us that approximately
Rsc(1 =0, 1)—= SA, at s = 10. At such a radius of curvature
we have [compare with relations (44)] Jv(41m /4)
=—Jf(43m/4)-=0. 02, Jv(43m l4)=J, (41m/4—)=0 These— .
values give finite measurable power spectra. However,
since now R is so much larger, at A, —= 10 ' cm and for
ui=—0.2(y—=4), we need only B—=0.4 T. It is evident,
however, that for R»k, the helical Cerenkov effect be-
comes very weak, since JI (x) tends to zero at x ~~.

For the sake of completeness we write down the
magnetic-field values at which the pure helical Cerenkov
effect occurs. Namely the pure helical Cerenkov effect
occurs when Jp=0 and J& is at its maxima, which after
substituting (48b) into (50) yields for the magnetic field
values

8y van (cv)sin8~
BM 1 = l, s=,s =1,2, . . . . 51

(e/M)(4s +3)A.

As we see, sufficiently large s should yield a manageable
B.

I

In general, the electron may have a rather complicated
trajectory. Let us assume that it can be broken into a
large number of segments each representing an ordinary
helical trajectory. If the length of segment s is hL, and it
takes electron At time to pass it, then the velocity of the
electron guiding center in this segment is vs(s)=AL/bt.
Of course, each segment has its own radius of curvature,
measured perpendicular to the direction of the guiding
center, in term of which gv is now given as

go(s)= [[(n(co)u (s)] —I)'iR (s)co

vs (s) g (52)

col=, l —+1,+2, . . . ,
i 1 —nv3cos8i

(53)

which is valid for either the vacuum or Cerenkov branch.
Again cop, which corresponds to the helical Cerenkov
effect, 1 —nU3cosOp=0, should be determined as already
outlined in relations (40). Furthermore we have a very
important fact: the angle 8& from the helical Cerenkov
radiation is different from the angle (or angles) at which
the spontaneous radiations with col (co+0) occurs. This
fact follows simply from the inequality

1 1
cos8p, =

v
ACOS8=

nv', nu

l coc
1%0,

nU 3Q)I

which follows from relations (38c) and (34a) and which is
exact since n is assumed to be independent of co. Conse-
quently, in the angular-spectral and angular-energy dis-
tributions for spontaneous emission for col from (53), the
helical Cerenkov effect can be ignored. Next, keeping in
mind that T is assumed to be large, relation (28), we ob-
tain from relation (33) the angular energy distribution to
be

The power spectrum for segment s of the electron trajec-
tory is given by relation (39) in which u3 is replaced by
vs(s) and uj by vj(s), ui(s) being the magnitude of the
perpendicular component of the electron velocity with
respect to the direction of us(s). As we see it, the helical
Cerenkov effect is not restricted to just simple helical tra-
jectories.

Finally we discuss the spontaneous emission with 1%0
in the situation when the index of refraction is a slowly
varying function of the radiation frequency in some range
of frequencies, all of which are assumed to be much
smaller than some resonance frequency. According to re-
lation (34a), for each 1%0, there corresponds a radiation
angular frequency [compare with relations (34)]

d W(8; T) ~ d W(8; T;1)
d cos8 '

~i ~0) d cos8
(54a)

dW(8 T.1) aL1 ncv,—:w(8;T;1)=-
v 0 3 g [vi[(cos8+1)Ji+g(k)+(cos8 —1)JI &((I )]—2u3si 8Ji(k)I

gu 3 1 nu 3 cos8—
I

nvisin8,
1 —nU3cose

(54b)
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TABLE I. Vacuum branch angular energy distributions from
relation (54b) for B =4 T, L =100 cm, v3=0.63, vi=0. 6,
n =1.4, and 8=0.1 rad.

1

2
3
4
5

10
25
37

)38

f( (Hz)

5.13x 10"
1.02x10"
1.54x 10"
2.05x10"
2.56 X 10'
5.13X 10'
1.28x10"
1.90X 10'

—10

w(l) (eV)

0.39
0.58
0.60
0.55
0.45
0.13
9.14x 10-'
1.34 X 10

where formally w(8; T;I) is the angular energy distribu-
tion associated with the fundamental or harmonic fre-
quency f(=(u(/2m. Of course, for fixed 8 for each IWO
there corresponds (u(, as determined by (53).

Now, we discuss numerically relations (54), that is, the
angular energy distribution of spontaneously emitted ra-
diation when n is practical constant in the radiation fre-
quency over the spectral region of interest. When radia-
tion angle 8 is fixed, 1 —nv3cos8 is positive (negative) so
that [compare with (34b) and (53)] I = + 1( —1)
represents the fundamental radiation frequency and
I =+2 ( —2), +3(—3), . . . , represent the harmonic fre-
quencies. Clearly, d W(8; T;I) measures how much of the
spontaneously emitted energy over interaction length L
with the frequency f( goes into solid angle 2m sin8d 8.

Speeifieally we choose 8=4 T, L =100 em, u3=0. 63,
ui=0. 6[v=[(u3) +uj ]' =0.87,y=2.03]. For n =1.4
we are in the vacuum branch and only positive I's come
for any 8. For 8=0 rad only I =1 can come and rela-
tions (53) and (54) yield w =w (1)=0.61 eV,
f&

=5.3X10"Hz. However, for 8=0. 1 rad with other
parameters the same, we obtain many more contributions
which are exhibited in Table I. Neglecting w(l 38), the
sum over the fundamental and harmonic frequencies
from Table I yields for the angular distribution the value
w(8=0. 1 rad) =-4. 16 eV. However, if the spontaneous
emission is occurring in vacuum, n = 1, rather than in the
n =1.4 dielectric medium, the sum over the fundamental
and harmonic frequencies would yield for the angular en-
ergy distribution only w(8=0. 1 rad)—=0.03 eV. As we
see, the presence of the dielectric medium increased the
spontaneous emission into solid angle 2m sin8 d 8 (at
8=0.1 rad) by more than 138 times.

Now we choose n =1.65, u3 =0.7, U& =0.6
(v=0.92,y—=2.6), so that the spontaneous emission will
occur in the Cerenkov branch; with 8=0. 1 rad, it will
occur in the backward Cerenkov branch since 8&81,.
The contribution to the angular energy distribution
comes only from I (0. Since J „=(—1)„J„and
( —1)&=(—1) for P=+1, the angular energy distribu-
tions are calculated by substituting I~ill and changing
the sign in the last term in relation (54b), J(~—J(. With
8 =4 T and L =100 cm, at 8=0. 1 rad, the angular ener-
gy distributions are listed in Table II. Neglecting
w (I (—32), the sum over the fundamental and harmonic

TABLE II. Backvrard Cerenkov branch angular energy dis-
tributions from relation (54b) for B =4 T, L =100 cm, v 3 =0.7,
vi =0.6, n =1.65, and 8=0.1 rad.

—1
—2
—3
—4
—5
—10
—20
—31

~ —32

f( (Hz)

3.3X 10"
6.61x 10"
9.92x10"
1.32 x 10'
1.66X 10'
3.31x10"
6.61x 10"
1.02x 10"

w(l) (eV)

0.17
0.24
0.24
0.21
0.17
3.73 x 10-'
8.92X 10-4
1.05 x 1O-'- 1O-'

frequencies from Table II yields for the angular energy
distribution the value w (8=0.1 rad) —= 1.5 eV, which is of
the same order of magnitude as the example from the
vacuum branch.

IV. DISCUSSION AND CONCLUSION

The first thing to notice is that, like the ordinary
Cerenkov effect, the helical Cerenkov effect is a classical
effect in the sense that Planck constant h does not appear
in its power spectrum. The classical nature of the helical
Cerenkov effect is directly evident from out derivation.
Namely, when the electron recoil can be neglected, the
electron current density is a classical quantity and the
process involves only soft photons. The total energy car-
ried by a moderate number of photons is negligible as
compared to the energy of the electron. In such cir-
cumstances the quantum theory gives simply the statisti-
cal fluctuations around the results of classical electro-
dynamics [3]. The ordinary Cerenkov effect can be
viewed as the electromagnetic shock radiation caused by
a free electron with the velocity exceeding the velocity of
the radiation in the medium [10]. The helical Cerenkov
effect can also be viewed as the electromagnetic shock ra-
diation, however, caused by an electron moving on a heli-
cal orbit with the velocity of its guiding center exceeding
the velocity of the radiation in the medium.

There is no doubt that the presence of the dielectric
medium enhances significantly the efficiency of the spon-
taneous electron radiation into the fundamental and har-
monic frequencies (IPO), as demonstrated by relations
(55) and (56). Furthermore, let us mention that the heli-
cal Cerenkov effect, rather than the usually Cerenkov
effect, should be used to answer the question as to how
the electron beam when guided by the uniform magnetic
field radiates when passing very close to the dielectric,
such as quartz [2].

Finally, let us compare our work on spontaneous emis-
sion in a uniform magnetic field with a dielectric medium
with works by Schwinger, Tsai, and Erber [11] and by
Kroll [12], who refer to this radiation as the synchrotron
Cerenkov radiation and the synchrotron radiation in a
medium, respectively. In the language of source theory
[11], the description of the so-called synchro-
tron Cerenkov radiation in Ref. [11] is restricted to the
case of electron circular motion in the plane perpendicu-
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lar to the direction of the uniform magnetic field. The
emphasis in the numerical examples is on the case of in-
dex of refraction less than unity; this leads to suppression
of the very short-wavelength radiation. Because the elec-
tron does not propagate parallel to the magnetic field, the
helical Cerenkov effect as such is not achievable.

The treatment of the so-called synchrotron radiation in
a medium done by Kroll [12] is purely classical. The
power spectrum is defined through the Poynting vector
which is subsequently rewritten in terms of the electron
current density. This, in turn, is expanded in terms of the
Bessel functions, their first derivatives, and the 5 func-
tions. The power spectrum is given for the infinite in-
teraction time T—+ ~ from the beginning. However, the

radiation kinematics of the vacuum branch and the for-
ward and backward Cerenkov branches are not identified.
As a consequence, the helical Cerenkov effect, which
occurs where the forward and backward Cerenkov
branches meet, is also not identified in Ref. [12].

Although the expressions for power spectra in both
Refs. [11]and [12] contain the Bessel functions and their
first derivatives, the comparison with our expression for
the power spectrum, relations (36) and (37), is rendered
very diScult. This we attribute to the fact that, in deriv-
ing the expression for the power spectrum, unlike in Refs.
[11]and [12],we utilized the photon circular polarization
unit vectors which should be natural in this problem be-
cause of the electron helical motion.
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