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Nonlinear dynamics of driven relativistic electron plasma waves
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We have examined the nonlinear dynamics associated with beat-wave (Ace, hk) generation of long-

wavelength plasma waves (hk ~co~/c) in the presence of a strong (5n/n —0. 15 to 0.75) short-

wavelength density ripple [k; —(5 to 130) hk] using the relativistic Lagrangian-oscillator model. Two

cases are considered: time-varying detuning ratio (e~/hco) and time-varying laser intensity I. In the ab-

sence of the plasma ripple, it is found that the Lagrangian-oscillator motion contains half-harmonic

components in an Arnold tonguelike parameter space (cop/LekN v /c) centered around ~~/hco=0. 5.
The effect of the ripple is twofold: (a) It lowers the minimum driver strength needed to access the half-

harmonic parameter region around co~/6~=0. 5, and (b) it makes a second parameter region available,

centered around co~/dao=2. 0. Although the Lagrangian model exhibits further period doubling fol-

lowed by a transition to chaos when a time-varying laser intensity is used, wave breaking sets in after the

first bifurcation, thereby limiting the validity of the model. The origin of the first period doubling, how-

ever, is found to be linked to the stability of an equivalent Mathieu equation to
~

subharmonic reso-

nances. Finally, a particle-in-cell-code simulation shows spatial wave-number peaks displaced by hk/2
on both sides of the driver frequencies, giving support to the idea that the first bifurcation behavior may

be observable in an experiment.

PACS number(s): 52.40.Nk, 52.60.+h, 52.35.—g

I. INTRODUCTION

The complex dynamical behavior of driven nonlinear
oscillators has received much interest in the past decade.
Physical systems modeled through nonlinear oscillators
have been identified in many areas including fluid
mechanics, physical chemistry, laser physics, nonlinear
optics, and electronics. Such nonlinear oscillators exhibit
phenomena such as bistability, hysteresis, and the oc-
currence of subharmonics followed by a transition to
chaos. The behavior of driven relativistic large-
amplitude electron plasma waves can be described by
model equations essentially reducible to a nonlinear oscil-
lator equation which therefore exhibits the aforemen-
tioned phenomena. Through collinear optical mixing in a
plasma [1] such a wave can be easily excited. Thus it is

possible to study these fundamental phenomena experi-
mentally, allowing one to explore the relationship be-
tween temporal and spatial subharmonics and the transi-
tion to chaos in a plasma system.

In collinear optical mixing two laser beams with slight-
ly different frequencies, co, and co2, are injected into a
plasma. If the difference frequency hco(=co& —

co&) is ap-
proximately equal to the plasma frequency, the pondero-
motive force associated with the laser light will resonant-
ly excite a longitudinal plasma oscillation. Energy and
momentum conservation require

CO] 602 —
CO&

k, +k2=k

where the + stands for co- or counterpropogating laser
beams. The phase velocity of the plasma wave in the case
of copropagating beams equals the mean group velocity
of the light waves, which for an underdense plasma is al-
most the speed of light in a vacuum. It was suggested by
Tajima and Dawson to use these high-phase velocity,
large-amplitude plasma waves for particle acceleration,
known as the plasma beat-wave accelerator [2].

In order to achieve considerable acceleration gradients
(i.e., large electric fields} inside the plasma large laser in-
tensities are required, and one arranges the experiment so
that the plasma density gives a plasma frequency equal to
the beat frequency, i.e., co&

/b, co= 1. The large laser inten-

sity can lead to the phenomenon of relativistic detuning
of the plasma frequency [1] and is usually time varying.
In experiments the actual obtained plasma density can
differ significantly from the resonant density and may
also vary in time. Furthermore, in the process of building

up the large-amplitude plasma wave, competing instabili-
ties such as stimulated Raman scattering (SRS} and/or
stimulated Compton scattering (SCS}and stimulated Bril-
louin scattering (SBS) will scatter laser energy out of the
plasma and create low-phase-velocity short-wavelength
electron plasma waves and ion waves [3]. These waves
represent in effect a spatial and temporal modulation of
the plasma dielectric constant.

In this paper we study through numerical modeling the
nonlinear dynamics associated with the generation of a
plasma beat wave in such a spatially modulated plasma
under temporally varying conditions. In Sec. II we del-
ineate the problem associated with varying the plasma
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frequency in time and derive the well-known relativistic
Lagrangian oscillator model [4] with the addition of a
rippled component to the plasma density. The effective
damping in the equation of motion of the fluid momen-
tum will contain a contribution of the ionization rate for
the case of a temporally varying plasma density.

The obtained equations are then solved numerically in
Sec. III giving the following results: The plasma wave
exhibits hysteresis when the plasma density (laser intensi-
ty) is varied in time, for a given damping rate, wave-
length, and amplitude of the plasma ripple, and a laser in-
tensity (plasma density). Furthermore, when the laser in-
tensity is varied in time, regions in parameter space are
found where the motion of the fluid element shows period
doubling followed by chaotic motion [5] or where an in-
complete period-doubling tree [6] is observed. However,
reconstructing the waveform in the laboratory frame we
find that wavebreaking occurs before the second bifuca-
tion thereby limiting the validity of our model. The
physical origin of the first bifurcation is analyzed by ap-
plying a perturbation technique to an equivalent general-
ized Mathieu equation.

In Sec. IV results are shown from the fully relativistic,
electromagnetic, particle-in-cell code wAvE [7] which has
been used to verify the validity of the analytic model. It
includes all the effects competing with the buildup of a
large amplitude plasma wave in one dimension. We con-
clude with a summary of the obtained results.

II. LAGRANGIAN MODEL OF RELATIVISTIC
PLASMA WAVES

A. Why a Lagrangian models

The nonlinear features of the plasma wave can be
classified into two categories: bistability, with the associ-
ated hysteresis effect, and the existence of subharmonics
with the possibility of a transition to chaos. Bistability
and hysteresis were inherently present in the work of
Tang et al. [4] but were discussed more explicitly by Ma
and Xu [8] within the slowly varying envelope approxi-
mation. They studied the case where the time-varying
plasma frequency is very close to the resonance frequency
4~, for a&a2 much less than one where a; is the quiver
velocity of the electron in the laser field normalized to the
speed of light vo~/c. The damping in their model is
dominated by collisional effects but they neglected any
velocity dependence of the collision frequency. Further-
more, the assumption that the fiuid element displacement
is modeled by

g(r, wo }=e(r}sin[r—wo+ 4 (r)],
where e and 4 are the slowly varying amplitude and
phase, respectively, precludes the authors from observing
subharmonics in the motion of the fluid elements.

The possibility of chaotic behavior of the plasma wave
for large driver strengths has been discussed by
Mendonga [9]. In this paper the analogy was used be-
tween the equation of motion of the longitudinal electric
field, derived under the weakly relativistic approxima-
tion, and the Duffing equation [10]. The weakly relativis-

tic approximation is valid when a; is much less than 1

and the amplitude of the plasma wave satisfies the condi-
tion n, /no&&1, where n& is amplitude of the density
modulation and no is the background plasma density.
The DuSng equation models the motion of a nonrela-
tivistic particle in an anharmonic potential. It has been
shown [11]that chaotic motion occurs for displacements
which brings the oscillator close to the turning points of
the potential.

First, as pointed out by Mori [12] and by McKinstrie
and Forslund [13],Mendonqa erred in the sign of the fre-
quency detuning of the plasma frequency in the equation
of motion of the longitudinal electric field. When deriv-
ing the equivalent potential from the restoring force
terms in the equation of motion, this leads to the wrong
shape of the anharmonic potential. Second, even for the
correct shape of the potential we found that, analogous to
the Duffing oscillator, chaotic motion occurs for displace-
ments that bring the oscillator close to the turning points
of the potential. However, when treating the relativistic
terms exactly one arrives at a shape of the associated po-
tential well which does not have any turning points.
Indeed, in a one-dimensional Lagrangian frame it is
straightforward to show that the equation of motion in
the absence of damping for the momentum of relativistic
plasma waves is given in its simplest form by

p ~ 2 dt NL (4)
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FIG. 1. Plot of potential V(p}=V I+p —1 and its Taylor
expansion p /2 —p /8.

where p is the momentum of the fluid element and FzL is
the ponderomotive force. The restoring force can now be
derived from a potential

V(p) =+1+p2—1 .

In Fig. 1 we show the exact potential as given by Eq. (5)
and its Taylor expansion up to second order, which is
equivalent to the aharmonic potential in the DufBng
model. As can be seen from Fig. 1, the two potentials
start differing significantly in shape beyond ~p~= 1 and
the use of the Taylor expansion for the potential is not
justified for the large-momentum regime for the following
reasons. While the exact potential has only one stable
equilibrium point and the radius of curvature of the po-
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tential never changes sign, its Taylor expansion has one
stable and two unstable equilibrium points and clearly,
the radius of curvature of this potential changes sign.

From nonlinear dynamics it is well known that the ex-
istence of unstable equilibrium points changes the behav-
ior of any system in a fundamental way. In particular for
the Duffing oscillator it is found that (a) it exhibits hys-
teresis and period doubling only for driver strengths that
bring the oscillator close to these unstable points; (b)
when the amplitude exceeds momentarily the turning-
point limit, the oscillator is unstable and undergoes a
jump to the lower amplitude branch or continues to roll
down the potential towards infinity. From this we con-
clude that the rich nonlinear behavior (i.e., period-
doubling route to chaos and bistability) exhibited by the
model equation of the longitudinal electric field as ob-
tained under the weakly relativistic approximation, is an
artefact of this approximation [14].

However, it is well understood that the Duffing oscilla-
tor undergoes period doubling and shows hysteresis when
the particle moves in an asymmetric potential well. In
practice such a situation can arise without the excursion
of the fluid element becoming unreasonably large when
the wave is excited in a plasma whose density is rippled.
The background plasma can be rippled, for example, due
to the presence of a SRS and/or SCS-generated slow-
phase-ve1ocity electron plasma wave or due to a SBS-
generated ion wave.

B. Fluid equations for ionizing plasma

Since in the beat excitation of relativistic plasma waves
the amplitude of the longitudinal electric field is critically
dependent on the ratio co /b, co, it is necessary to study
the effect of detuning (b,coAco~) caused by a time-
dependent plasma density [15]. The main phenomenon
leading to a time dependence of the bulk plasma density
in the focal volume of the laser beam on a time scale
relevant for the beat excitation is laser-induced ioniza-
tion. Ponderomotive and/or thermal self-focussing [16],
which decreases the plasma density, occurs on a time
scale set by the ions and will not be included in our ana-
lytic model.

This ionizing plasma can be modelled with the follow-
ing two approaches. In the first approach one treats each
newly added amount of electrons and ions as a new
species in the plasma. The new species starts out at rest
and will move under the influence of the electromagnetic
fields present inside the plasma. It is then necessary to
solve a system of N-coup1ed second-order nonlinear
difFerential equations, where N is the number of groups of
plasma "species" one wishes to follow, making a rigorous
analytic treatment of this problem not tractable. The
second approach involves making the following approxi-
mation: We model the plasma using a one-particle distri-
bution function [17]. The momentum associated with an
infinitely small fluid element is obtained by adding up the
momentum vectors of each individual particle. So, when
new particles, which are initially at rest, are added to a
particular fluid element, its total density increases while
its momentum is reduced.

Bn(r, t) + 8 pn r, t
Bt Br

'
m y

=An(r, t)

and the equation of motion of the fluctuations is found to
be

—[p(r t)]+v ' —
q E+ +vp=0,Bp(r t} pXB

ai Br ymoc

(8)

where U =A, [NO/no —1].
It is noticed that the global effects of injecting new

plasma into an oscillating plasma are (a) the time-varying
plasma density results in a time-varying plasma frequency
and (b) and ionization rate introduces an effective damp-
ing for the single-fiuid momentum [15]. Making the anal-

ogy with a mass-spring system, these effects can be easily
understood. Since the newly added mass is initially at
rest, it slows down the oscillating mass and at the same
time changes the spring constant, i.e., the oscillation fre-
quency. The obtained fluid, Eqs. (7) and (8},complement-
ed by Maxwell's equations are used to derive the equation
of motion of the longitudinal fluid element displacement
in a plasma with a rippled density. The driving force is
the ponderomotive force resulting from the beating of
two transverse linearly polarized electromagnetic waves.

C. Equation of motion

The equation of motion for a Lagrangian oscillator [20]
moving in a one-dimensional cold plasma in the electro-
static limit is now given by

= —eE+F~L —vp .Bp

Bt
(9)

Here p is the 1D fluctuating part of the fluid element
momentum p [see Eq. (A10)]. The damping term con-
tains the efFect of ionization and in addition any other
(phenom enological) momentum damping mechanism

The functional form describing the rate at which new
plasma is being produced depends on the involved ioniza-
tion process. Consider therefore a beat-wave excitation
experiment using a high-intensity (I) 10' W/cm ) CO&
laser [18]. For such a long-wavelength, high-intensity
laser the Keldysh parameter [19] is much smaller than l.
Tunneling ionization is then the dominant process in the
plasma formation. Since the newly born electrons start
out at rest the source of the plasma can be modeled as

S(r, p, t ) =A(t)[NO —n(r, t)]5(p),
where A(t) is the time-dependent ionization rate, r and p
are, respectively, the position and momentum vectors of
the fluid element, t is the time, No and n(r, t) are the neu-
tral gas density and plasma density, respectively. The
Dirac function in the source term implies that the elec-
trons are born at rest.

The fluid equations are obtained by taking moments of
the Vlasov equation with this source term. The details of
the derivation are given in the Appendix. The resulting
equation of continuity is then
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(e.g., collisions). The ions are assumed to be immobile.

Fzt is the ponderomotive force given by [21] E =4m eNp g+ (cosk;xp —cosk;(xp+()E

l

(15)

m0 a]a2
I'tcL = cb,co sin(b, k x b—,co r) .

y
(10) Using

n; =Np(1+esink;x)

or, substituting for x =xp+ g

n,. =Np[1+ e sink;(xp+ ()],

(12)

(13}

where g is the ripple size. This periodic density ripple is
particularly interesting since experimentally it has been
observed that such a ripple is easily excited in a tunnel-
ionized plasma through stimulated Brillouin scattering,
coincidentally with a beat-excited electron plasma wave
[18]. The effect of random ripples is not considered but
will be the subject of future studies. From Eq. (11}we
then obtain for the electric field

E=4neNp f [1+esink;(xp+P)]dg' (14)
0

or

Here y is the Lorentz factor, m0 the electron rest mass, c
the speed of light, and a& 2 the quiver velocity of the elec-
trons in the laser fields normalized to the speed of light.

As long as the Lagrangian fluid elements do not cross,
the one-dimensional Gaussian law can be integrated im-
mediately to give the electric field, i.e.,

E+4ne f n;(x =xp+g')dg' .
0

In the usual case n, is uniform (=n, ), so one has
E =4m.n, g, the simplicity of which accounts for the popu-
larity of the model. Koch and Albritton [22] used the
model in a ramp plasma [N, (x)=Np(1+x /L )

=Np(1+xp/1+x/L)] to investigate wave breaking in

plasma waves driven by so-called optical resonance.
Here we are interested in a rippled plasma [23]

aP
at ' at

(16)

and

=Ve (17)

Eq. (9) becomes

c} g v c}g cop e+ + g+ cos[k,xp —cosk, (xp+g)]
y dt y

where

c sin[6k(xp+g) —bco t], (18)y' 2

2 2 1/2
Ue +Up

c2
(19}

with (v1/c)=a, a2, which depends on the laser intensi-
ties.

From the dispersion relation for electromagnetic waves
in a plasma we also have

COpcbk=c(k, —k1)=bco 1+
2N ~N2

(20)

and since typically co&, co2 &&co& this reduces to chk =hco.
We now have to distinguish between sweeping the plasma
frequency through ionization and/or plasma blowout,
and sweeping the driver frequency [8] through, for exam-
ple, chirping the laser beam. For the former we normal-
ize time with respect to hco ', space with respect to
Ak ', and obtain

c}w a c}w P bk k; 1 aa2+
&

+
&

' w+e coswp cos wp+ w '=
4 sin[(wp+w )—r] (21)

with w=bkg, wp=k, xp, r=hcot, a=vlbco, p=co Ihco, and y=[1—(wp/hco) —a,a2] '~2. For the latter we nor-
malize time with respect to co, space with respect to c /co, and obtain

c} g r c}g 1 e bco 1 a1a2 . Aco b,co+ + g+ —[cosawp —cos~(wp+g)] =
4 sin (wp+g)—

aq2 y2an y3 K
' '

N. y4 2 Q. '
N

(22)

wtth g g/c Ico wp xp Ic /cop 'f/ cop'r r =v/co
Ic=ck; /co~, and y =[1—(g) —a,az]

The results of numerically solving the equation of
motion given by Eqs. (21) and (22) are presented in the
next section. Since the obtained results for sweeping ~&
or sweeping hco are very similar, we limit the discussion
to the case of a time-varying plasma frequency.

III. NUMERICAL RESULTS

In order to capture the full nonlinear complexity of the
behavior of the plasma waves, it is necessary to resort to

I

a numerical integration of the relativistic equation of
motion for the Lagrangian fluid element as given by Eqs.
(21) and (22). Due to the high dimensionality of this pa-
rameter space we have limited ourselves to a subspace of
experimentally accessible values. In principal the damp-
ing rate has contributions due to collisions, Landau
damping [21], ionization of the plasma, and mode cou-
pling [23] to slow-phase-velocity plasma waves. As
pointed out by Matte and Martin [24] collisional damp-
ing is negligible for the case of relatively large driver
strengths (v„,/c larger than 0.1) and plasma wave ampli-
tudes. Landau damping is only important when the ratio
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of phase velocity of the waves to thermal velocity of the
plasma electrons v&/v, „ is less than 4. Therefore as a
direct damping mechanism for the high-phase-velocity
waves it can be neglected. However, mode coupling can
establish very efficient transfer [25] between fast and slow
electron plasma waves which can couple their energy to
the plasma through Landau damping. Its contribution to
the damping rate is typically on the order of a few per-
cent. The contribution of the ionization process to the
damping depends on the ionization rate which in this pa-
per is assumed to be on the order of 0.01' . Therefore
the total damping rate is varied within the range
0.01m) -0.

leone.
The range of wave-number ratios is determined as fol-

lows. One mechanism for generating the density modula-
tion is the generation of ion waves through stimulated
Brillouin scattering (SBS). This produces ion waves with
wave number k, =2kp, where kp is the wave number of
the laser frequency. If we take the experimental condi-
tions of the experiment of Leemans et al. [18], the ratio
k;/b, k can be varied from about 19 to 71 by taking
different laser line pairs to excite the beat wave. However
this ratio can be as low as 2 if one considers the ion wave
to be generated through the ion-acoustic decay instabili-
ty. The ion wave could be present in a partially preion-
ized plasma before the beat wave has grown by using a
short high-intensity laser pulse riding on a moderately in-
tense pedestal. The pulse pedestal would generate an ion
wave through SBS in the preformed plasma, while the
high-intensity pulse would then complete the ionization
of the gas and generate a beat wave in the rippled plasma.

We consider for most cases a driver strength limited to
v„,/c= 1. The detuning ratio co /boo is varied in the
range of 0.5-2. We have chosen to vary these two pa-
rameters as a function of time while keeping the others
constant.

A. Detuning ratio and laser intensity varying with time

It has been suggested that sweeping the plasma fre-
quency [15] or laser frequency [8] in time could result in
building up a large-amplitude plasma wave. The idea is
to compensate for the relativistic detuning which lowers
the plasma frequency by increasing the plasma density,
and thereby keeping the driver and plasma wave longer
in phase. For the case of an unrippled plasma density we
have observed hysteresis loops [8] in plotting the fiuid ele-
ment displacement versus detuning ratio when co /h~
=1.0 and co /b, co=0.5 for a range of driver strengths
and damping coefficients. An example is shown in Fig. 2
for U„,/c =0.2, I =0.01. The first loop, around

u~ /Ac@=1.0, is the usual beat-wave excitation which has
at exact resonance a secular growth. The second loop,
around co /Ace =0.5, reQects a parametric oscillator exci-
tation process [1]with the pump frequency at about twice
the resonance frequency. This mode is seen to grow to
saturation at an exponential growth rate for driver
strengths large enough to overcome damping.

Aside from this hysteresis e8'ect, half-harmonic genera-
tion is observed when the plasma density or the laser in-
tensity are varied as a function of time. We next consider

t.0-

~ 05-

0 0
0.5 1.0

a /hm

1.5

FIG. 2. Detuning curve for a relativistic Lagrangian Quid ele-

ment for U„,/c=0. 2 and I =0.01 in the absence of a density

ripple. The arrows show the existence of hysteresis loops.

in more detail the case of a time-dependent laser intensi-
ty. The amplitude of the Quid element excursion was fol-
lowed as a function of time for a driver strength which
had a Gaussian time dependence, i.e.,

—(f —to /ht )F=Fpe (23)

where

1 UoscF =—
2 c

(24)

corresponds to the peak laser intensity, tp is the time at
which the laser intensity peaks, and ht is the laser pulse
width. A variety of ratios of the oscillator resonant fre-
quency and the driver frequency were used, as well as a
variety of ripple sizes and wave numbers. For very early
times the system behaved linearly. The homogeneous
solution, oscillating at the natural frequency, was soon
dominated by the driven solution. The amplitude in-
creased approximately linearly. At later times the system
developed higher harmonics indicating that it had en-
tered the nonlinear regime. The phase-space plot showed
an outward spiralling curve, because the driver strength
is continuously increasing, and was elliptically shaped
due to the harmonic content of the motion.

Then, suddenly, the motion underwent a first bifurca-
tion. The frequency spectrum contained half harmonics
(—,', —,', —,') while in phase space the limit cycle had split into
two loops. For a relatively small ripple size e & 0.25, only
one bifurcation was seen, whereas for 0.25&a&0.5 a
second bifurcation could be seen, both cases resulting in
an incoinplete Feigenbaum tree [6]. Figure 3(a) shows
such an incomplete bifurcation tree and the existence of
hysteresis for a case where the ripple size @=0.15, wave-
number ratio k; /Ak =30, and detuning parameter
co /hco=1. 7. For large ripple sizes (@=0.75) the behav-
ior was found to be more complicated [Fig. 3(b)]. For an
increasing laser intensity a series of continuous pitchfork
bifurcations [26] followed by windows of alternating
chaotic and regular motion would occur after the first
discontinuous bifurcation. As the intensity reduced the
system returned to a periodic motion with period five, un-
derwent a bifurcation to produce period 10 subharmon-
ics, became chaotic again for a narrow range of driver
strengths, and eventually followed an inverse period-
doubling cascade to return to a regular periodic motion
with decreasing amplitude. In these calculations, the
damping rate was I =0.03, the wave-number ratio was
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k;/I5, k =60, and the peak driver strength was F=0.25.
In Fig. 4(a) a parameter space plot is shown for the

driver strength as a function of plasma frequency detun-
ing ratio. We have limited the driver strength to a value
corresponding to v„,/c =1 and varied the detuning ratio
co /hco from 0.3 to 2.2. As third parameter we have used
the ripple amplitude. Two distinctly different regions for
the detuning ratio are found. In the absence of the ion
ripple, period doubling was only observed around
co /keg=0. 5 in a parameter subspace of (co /bc@, R
resembling an Arnold tongue [26]. Lowering the damp-
ing rate had the effect of lowering the tip of the "tongue. "

In the presence of an ion ripple, it was found that the
Arnold-like tongue around co /hco=0. 5 became slightly
broader and the tip of the tongue was also found to ex-
tend further down as the ripple strength increased. In
addition to this modification of the parametric instability,
a new parameter subspace around I0 /bee=1. 8 was
found in which period doubling occurred for v„,/c vary-
ing between 0.1 and 1.

The range of wave-number ratios for which bifurca-

0.16 I
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tions occur is found to be limited to 15&k, /.I5.k (130.
As can be seen from the restoring force term in Eq. (23),
k;/hk determines the excursion the fiuid element has to
make in order to sample the nonlinear restoring force due
to the ripple. This explains the lower bound. On the oth-
er hand, increasing k;/hk reduces the electric field con-
tribution of the ripple, and thus the magnitude of the
nonlinear term with respect to the linear term, explaining
the upper bound. It is also important to note that the de-
tailed nonlinear dynamics of the Quid elements depends
on their initial position [i.e., xo and wo in Eqs. (21) and
(22), respectively] in the rippled plasma. This issue will
be addressed in the next section.
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The results obtained have all been based on a
I.agrangian-oscillator model. The observed period dou-
bling was associated with the motion of a single oscilla-
tor. Therefore if wave breaking due to crossing of the
different oscillators occurs before any of the bifurcations
occur it would invalidate the above model. Furthermore
one needs to know if wave breaking would not prevent
one from observing this phenomenon in a laboratory ex-
periment. Since the displacement of the Quid element
will contain spatial frequencies at b,k;, wave breaking will
occur when hk, g) 1. To verify whether the period-
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FIG. 3. (a) Bifurcation tree for the relativistic Lagrangian
fluid element. The abscissa is the driver strength F and the ordi-
nate is the amplitude of the displacement of the fluid element
around the equilibrium position. The driver strength increases
linearly with ( v, /c )~,k =0.7. The damping rate equals
I =0.03k,cu, ripple size e=O. 15, wave-number ratio k;/hk =30,
and detuning size co~/hco = 1.9. The arrows show the hysteresis
loops existing in conjunction with a bifurcation; (b) same as (a)
but with ripple size @=0.75. Notice a discontinuous jump at
F=0.09.
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FIG. 4. (a) Parameter space plot of driver strength vs detun-
ing ratio for different ripple sizes (@=0.15, 0.25, and 0.75) for
which the indicated phenomena occurred. Solid lines and dot-
ted lines connect data points with ripple size @=0.15 and 0.75,
respectively; (b) analytically calculated region in parameter
space for which the Lagrangian-oscillator equation, in the ab-
sence of a ripple, is unstable to half-harmonic perturbations.
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doubling route can be completely modelled with the
Lagrangian-oscillator model, we followed the motion of
many oscillators (up to 1000 per ion wave length) starting
out with different equilibrium positions. It was found
that wave breaking occurs before the second bifurcation
takes place but after the first bifurcation. For example,
taking @=0.15, k; /b k =60, co /b, co = l. 775, 1 =0.03, a
first period doubling was observed for F=0.11, while
wave breaking was seen for F=0.226. This clearly limits
the validity of our model for describing the period-
doubling route in this beat-wave system. Furthermore,
one-dimensional models are typically characterized by a
higher wave-breaking threshold than two- or three-
dimensional models, which could restrict the accessible
parameter space even further. This issue needs further
theoretical investigation. The origin of this first bifurca-
tion, which occurs before the onset of wave breaking, is
analyzed in the next section.

IV. ORIGIN OF THE FIRST BIFURCATION

The analysis is based on a theoretical study by
Szemplinska-Stupnicka and Bajkowski [27] on the
subharmonic resonance and its transition to chaotic
motion in a nonlinear oscillator. The analysis proceeds
as follows. First we reduce the model equation of the
driven relativistic Lagrangian oscillator to an equivalent
driven Mathieu-Duffing equation. After solving for a
steady-state solution, oscillating at the driver frequency,
the stability against half-harmonic perturbations is ana-
lyzed. The resulting equations describe the boundary of
the region of (b,cv/top, F) parameter space in which the
steady-state solution is unstable against perturbations at
half the driver frequency. For completeness we have de-
rived these equations in the general case of nonzero rip-
ple. Only for the case of zero-ripple amplitude, however,
have we found an analytical solution. The boundary of
this region is in excellent agreement with the Arnold-like
tongue, obtained by solving the exact Lagrangian equa-
tion using a Runge-Kutta routine.

Steady-state solution of the Lagrangian oscillator

We start from the driven relativistic Lagrangian-
oscillator equation [Eq. (21)] which models the behavior
of a Lagrangian fluid element moving in a plasma with a
density ripple under the influence of the ponderomotive
force

(25)

Here K=k, /Ak, u =Km, and 6=@/K, and we have
chosen the phase of the electron in the ripple to be
wp =m. r 2 in Eq. (21). The choice of this particular phase
was made for simplicity. Another choice would result in
an additional dc term, which may complicate the
mathematical analysis but not affect the physical con-
clusion. Since we are now interested in threshold u be-
havior for strong transverse fields, we assume that the
longitudinal velocity u is small compared to the quiver
velocity v„, so that the Lorentz factor y can be approxi-

ii+ it+ (u+5sinKu )= — cos(u r) . —
r' r' r'

mated as

r= 1— vase
2 —1/2

(26)

where

= —a, (t)cosr, (27)

a, (t)=, , a,(t)=, , a,(t) = (28)

We now write u =Kit so that Eq. (28) becomes

U+ a, 0 + (a2+ a3sinr)u +a2K5 sinv = —Ka3cos1 (29)

and will look for a steady-state solution of Eq. (29) of the
form

u=up(t)=Cp+Cicos(r+8) . (30)

Substituting Eq. (30) into Eq. (29},using the identities

cos(a cosr)=2 g (
—1)"J2„(a)cos(2nr)—Jp(a),

n=0

(31)

sin(a cosr)=2 g ( —1)"J2„+,(a)cos[(2n+1)r] (32)
n=0

and grouping terms oscillating at the same frequency and
phase, we find

dc term,

a2 Cp —
—,
' a3 C, sin8 +a25sinCp Jp ( C, ) =0 (33)

cos(r+8) term,

C~ +a2C& aiCpsln8+2a25 cosCp J~(C~ )

= —Ka3cos8; (34)

sin(r+8) term, —a&C, +a3Cpcos8= —Ka3sin8 .

(35)

From Eqs. (33)—(35) one can then find Cp, C„and 8 to
calculate the steady-state solution v o.

We now perturb vo, i.e., v =vo+5v, and substitute this
into Eq. (29)

5U+ Up+a&(0p+50 }+(a2+a3sinr)(yp+5u )

+a25sin(vp+5v ) = —Ka3cosr . (36)

Assuming that the amplitude of the perturbation 5v is
small such that cos6v =1 and sin5v =5v, and realizing
that vp is a solution of Eq. (29) we find

5U+&a50+( a2+asi3rn+a25cs ou) pv5=0 . (37)

But up =Cp+ C, cos(ut+8), and hence Eq. (13) becomes

Expanding the cosine function in Eq. (25) and using Eq.
(26) we then obtain

ii+a, (t}ti+[a2(t)+a3(t}sinr]u+a4(t)5 sinKu
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5U+a&5v+ Ia2+a3sinr+a25cos[Co+Cicos(x+8)]]5v =0 .

Using the identities froin Eqs. (31) we can rewrite Eq. (38}as

(38)

5v+a, 5v+ a2[1+5Jo(C, )]+a3sinr —2az5sinCo g (
—1)"J2„+,(C, )cos[(2n+1)(x+8)]

n=0

+a25cosCo 2 g (
—1)"J2„(C,)cos[2n(v+8)] 5v=O . (39)

n=1

Rewriting sins as sins= sin(r+ 8)cos8—cos(v+8)sin8 and grouping terms, Eq. (39) becomes

5U+ a,5v + 5, +aicos8 sin(r+ 8)—[aisin8+ 2a25sinCo J, (C, ) ]cos(r+ 8)

+25a2 g a„(—1)"cos[n(r+8)] 5v =0, (40)
7f =2

where 5, =a2[1+5Jo(C, )] and a„ is equal to
—sinCo(cosCo) for n odd (even). Equation (40) is now in

the form of Mathieu's equation which has been studied
extensively. To study the stability of the Lagrangian os-
cillator equation [Eq. (25)] we now concentrate on the be-
havior of the perturbation 5v with time. According to
the results of studies by Hayashi and Abramowitz and
Stegun [28] and Szemplinska-Stupnicka and Bajkowski
[27] of the Mathieu equation, the lowest-order unstable
region occurs at a frequency close to

(41)

a3
g, =5,——,',g2 = +G sin8,

a1 a3
g3 =G cos8, g4=,g5 = —6 sIn8

(47)

The boundaries of the unstable regions can then be deter-
mined by solving the coupled nonlinear equations Eqs.
(33)—(35} and (46) and (47) using numerical techniques.
To illustrate the model we will analytically solve the case
of zero-ripple amplitude, i.e., 5=0. The set of equations
(33)—(35) then simplifies to

5v ( r ) =e "b,qi cos( ,' r +Q )—, (42)

and we therefore assume as approximate solution for the
perturbation

2 a3C1sin8

C& (1—a2)+a3Cosin8=ICa3cos8,

a1C1 a3Cpcos8 =Ea3sin8

(48)

5v(T) =b1/2cos( i r+P) . (43)

Substituting Eq. (43) into Eq. (40) and grouping terms in
cosine and sine we find the set of equations

a3
G cos8 cos2$+ +G sin8 sin2$ =(5,——,

' ),

where e & 0 for an unstable region and P is the phase with
respect to the driver frequency. At the stability limit
@=0and hence

Ea1a32
Co=

2az[af+(1 —a2) ]+a3(1—a2)

2a2Co(Co+K )

Co(1 —a2) —aiE 'C =—2=
1

(49)

(50)

from which one can obtain the amplitudes of Cp C1 and
8 as a function of the ripple amplitude 5, the wave num-
ber of the ripple E, the driver strength F, and the detun-
ing ratio P

a3 a1
2

—G sin8 cos2$+G cos8 sin2$=—
2

where

(44) 2a2Co
sin8=

a3C1

From Eq. (45} we see that G=O for 5=0 and hence Eq.
(46) reduces to

G =a25sinCo Jo(C, ) (45)

(lg5g+3g4g) +(glg3+g2g4 ) =l
(gi —gag~)'

(46)

where

and Co, C, , and 8 are the steady-state solutions of Eq.
(29). Solving Eq. (45} and using the fact that sin2$ and
cos2$ are not independent, we arrive at

[2(a,——,')]'+a', =a', .

Using Eq. (28}we finally obtain

(52)

CO
p3/2 1 + &

Eco p4

'2
a
p2

'2 1/2 ' 1/2

(53)

which describes the boundary of the parameter region for
which the steady-state solution of the oscillator is unsta-
ble to half-harmonic perturbations. Here, from Eq. (26),
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I = ( 1 —2F )
' . The boundary of this unstable region is

shown in Fig. 4(b). We also note that the existence of a
half-harmonic resonance is consistent with the discon-
tinuous first bifurcation observed in the numerical re-
sults. To assess whether even this first bifurcation could
survive in a "real" plasma we resorted to particle-in-cell
(PIC) simulations, which are the subject of Sec. V.

0

n6)A
I

N

V. PIC-Code Results

03 )00: ~ ~

50 100 150 200 250 300 350
kx

cu = 1+0 (54)

The chosen laser frequencies give a plasma wave number
6k=(24)' —[(4.411) —1]' =0.602. The ripple wave
number is taken to be k, /5k=30 and the ripple size
a=0.2. The peak laser intensity results in a normalized
quiver velocity v„,/c =0.6. The simulations were car-
ried out in an essentially one-dimensional system on a
2X6000 grid of normalized dimension 1X210 (in c/co~
units). This implies that the system can contain 20 plas-
ma wavelengths oscillating at the beat frequency. A total
of 120000 particles were used (10 particles per cell). The

The object of the particle-in-cell simulations was to
verify that a period doubling (and if possible a route to
chaos) can occur in the generation of relativistic plasma
waves through collinear optical mixing even when other
one-dimensional competing effects are included. Some of
the competing effects are Raman backscatter, electron
heating, parametric decay of the Raman backscatter
wave, mode coupling, etc.

In the simulations, the laser is incident from the left
along the x axis and is polarized along z. To reduce the
amount of computing time we have kept the ions immo-
bile. To model the density ripple the electrons and fixed
ion background were initialized at time t=0 with a
sinusoidal ripple.

Frequencies are normalized to the background (exclud-
ing the ripple) plasma frequency co 0. Distances are nor-
malized to the collisionless skin depth c /co&0. For
display purposes the wave numbers are given in units of
mode number, X,d„ the number of wavelengths of a
given sinusoidal mode that will fit within the simulation
box kxN, d, =kL/2n. , where L is the length of the box,
in this case 210c/cozo, chosen to accommodate 20 waves
with wavelength 2m/b, k.

Three different simulations have been performed: (i)

rippled ion background at t =0, (ii) no density ripple at
t =0 but with plasma temperature low enough so that the
short-wavelength plasma modes produced through back-
ward SRS are not Landau damped and hence will pro-
duce a rippled plasma, and (iii) no density ripple at t =0
and high plasma temperature so that the short-
wavelength plasma modes are Landau damped. We have
chosen to use parameters in the PIC-simulation which
have shown one bifurcation in the analytic model. The
plasma frequency is equal to one in simulation units while
the two laser frequencies are chosen to give a detuning
ratio co /bco=1. 7:co,=5 and co&=4.411 in co units. In
simulation units the dispersion relation for light waves in
a plasma is given by

FIG. 5. k spectrum of the transverse electric field E, as ob-
tained from the wA. vE simulation code at time step T=150.
The left and right arrows denote the location of the half-
harmonic at k~ —~(kl —k&) and ai k, + —,'(k, —k, ), respective-

ly.

simulation was set up to record plasma parameters every
b(co~T)=25 (every 1000 time steps) except for the co

spectrum which was recorded every 2000 time steps.
The main diagnostic consists of the k spectrum of the

transverse electric (E,) field. Indeed, if spatial period
doubling occurs in conjunction with temporal period
doubling of the kind observed in the Lagrangian Quid
model, the phase matching condition is satisfied for the
laser frequencies to scatter from these subharmonics of
the plasma wave. The k spectrum of the transverse field
should show Stokes and anti-Stokes lines of the laser fre-
quencies which are shifted by subharmonics of the beat
frequency.

At T=O the simulation was initialized with the above
parameters. At T=150, as shown in Fig. 5, the k spec-
trum of the transverse electric field E, contains Stokes
and anti-Stokes lines shifted by subharmonics of the beat
frequency. Since these features will only show up in the
electromagnetic spectrum when the phase matching con-
ditions are met, this implies that the plasma wave form
contains subharmonics both in space and in time.

In the numerical model we have found that a range ex-
isted for density modulation wavelengths k;/Ak had to
be between 15 and 130 to observe period doubling. For
the simulation parameters, plasma waves produced
through Raman scattering or ion waves produced
through SBS or the ion acoustic decay instability would
result in density modulation with wave-number ratio be-
tween 2 and 10. In order to verify that the observed
subharmonics are caused by the short-wavelength density
modulations due to the imposed ion ripple, we have per-
formed two null tests. While in both tests the initial rip-
ple is absent, the thermal electron velocity at T=O was
set equal to 0.025c in the first test while in the second test
it was set to 0.15c. This higher plasma temperature re-
sulted in Landau damping of the slow-phase-velocity
plasma waves, and no period doubling was observed.
While SRS did modulate the density in the lower temper-
ature case, the k was too low and no period doubling was
observed here consistent with the analytic results.

VI. CONCLUSION

A numerical study has been performed of the nonlinear
dynamics of the generation of a plasma wave through col-
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linear optical mixing in a spatially modulated plasma
with time-varying parameters. The numerical study was
based upon the Lagrangian equation of motion for a fluid
element moving under the influence of an intense laser
pulse in the presence of an ion density modulation. The
choice for working in a Lagrangian frame arose from the
need to treat rigorously the relativistic mass increase of
the fluid electrons for large laser intensities. It was
shown that resorting to the weakly relativistic approxi-
mation in an Eulerian frame leads to the erroneous con-
clusion that beat excitation of plasma waves can be
modelled with a Duffing equation. The tmo nonhnear
phenomena on which we have concentrated are bistabili-
ty with the associated hysteresis loops and period dou-
bling with the possibility of evolving into chaos. The pa-
rameters which determine the amplitude of the plasma
wave were chosen to be the laser intensity, the plasma
density, the damping rate, the wavelength, and amplitude
of the density modulation.

The obtained model equation was solved numerically
because the commonly used slowly varying amplitude ap-
proximation precludes one from observing subharmonics
in the frequency spectrum of the wave amplitude.

%hen the laser intensity or the plasma density was
varied in time, the amplitude of the plasma wave as a
function of either of these parameters showed hysteresis
loops. Furthermore, in the absence of a ripple, an Arnold
tonguelike region mas found for detuning ratios around
bco/co~ =0.5, in which the motion of the fluid element
shows spectral components at subharmonic frequencies
of the driver frequency. In the presence of a short-
wavelength density modulation, a second Arnold tongue-
like region became accessible around b,co/co =1.8. For
relatively small-amplitude density modulations the fluid
element oscillations underwent bifurcations, leading to
subharmonics in the spectrum, followed by inverse bifur-
cations which led to a regular periodic motion oscillating
at the driver frequency. For large density modulations a
cascade of bifurcations occurred followed by a transition
to chaos and consecutive periodic windows.

By following many Lagrangian oscillators simultane-
ously it was found that wave breaking occurred before
the second period doubling, thereby limiting the validity
of the Lagrangian-oscillator model. The origin of the
first bifurcation was then linked to the stability of an
equivalent generalized Mathieu equation to —,

' subhar-
monic resonances.

Fully relativistic PIC-code simulations were carried
out to investigate further the bifurcation behavior.
Through analysis of the k spectrum of the transverse
electric field E, and magnetic field 8 it was found that
spectral components exist with k-space separations of
half the k-space difference between the two drivers
(k, —k2). Since these features only show up in the elec-
tromagnetic spectrum when the phase-matching condi-
tions are met, we conclude that this spatial difference
period doubling must occur in conjunction with temporal
beat period doubling. It needs to be mentioned however
that for these simulations a very extensive amount of
computer time was needed and the ions had to be kept
immobile. Future work should address the issue of self-

consistent density modulation caused by finite mass ions
and the resulting competition between this possible path
to turbulence and phenomena such as Langmuir collapse.
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APPENDIX

To obtain the fiuid equations in an ionizing, relativistic
plasma we now proceed with the Vlasov equation for a
one-particle distribution function to which a source term
S(r,p, t) has been added to model the time-varying plas-
ma density

+ . +q E+ . =S(r,p, t), (Al)
dt ymo c)r ymoc c)p

E+ vXB =—(m yu),
dt

(A2)

r=v, v=
r7t1p

(A3)

mhere mp and q are, respectively, the rest mass and
charge of an electron, y is the Lorentz factor, f is the
one-particle distribution function, and E and B are the
electric and magnetic fields. The source term for a
tunnel-ionized plasma is given by Eq. (6}. We assume the
plasma to be perfectly cold, i.e.,

f(r, P, t)=f(r, t)5(P —p), (A4)

where P=P(r, t) is the momentum of a particular fluid
element and p=p(r, t} is the momentum averaged over
all fluid elements. To obtain fluid equations we take mo-
ments of Eq. (Al). The mean density and velocity are, re-
spectively, defined as

n= f'"d'py (A5)

1 + „, f(r, P, t)U= — d p -.r (A6)

Denoting the fluctuating density by n =K(r, t) and the
time-dependent background electron density by
no=no(r, t), we write the total electron density as
n =n(r, t)=no(r, t)+n(r, t). Taking the zeroth-order
moment and using Eqs. (A5} and (A6} we obtain the con-
tinuity equation with the inclusion of a source term:

Bn +V. n(r, t)
Bt pl pr

=A.(t)(No no) . —(A7)

Note that since the newly born electrons start out at rest
there is no contribution of n(t) in the right-hand side of
Eq. (A7).

Taking the first-order moment we find
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—(pn )+ p pXBn(r, t) —
q E+ n=0.

at Br ym0
'

ym0c

(A8}

ap+ ap E+ pxB +X 0 0 =0(N —n )

at "ar ym c n

(A 10)

But the first term in Eq. (A8) can be written out as

t} t}p on—(pn )=n +p
at at at

(A9)

where we used the definitions of i and v given in Eq.
(A3}. The equation of motion for the momentum fluctua-
tions p is then given by

Multiplying Eq. (A7) by p and subtracting it from Eq.
(A8) we obtain as an equation of motion

+v —
q E+ +kp(No /n o

—1)=0 .
dt t}r ymoc

(A 10')
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