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Irreversible aggregation kinetics: Power-law exponents from series

Sandra Song and Douglas Poland
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The kinetics of irreversible aggregation are studied using power series in time for general sum and
product kernels of the type (i +j ) and (ij) . Assuming a power-law form for the asymptotic behavior
of the first moment of the cluster distribution, Mo —t ~, we are able to determine the exponent y by in-

verting the series to give t as a function of the first moment. Exact solutions are known for a=0 and 1.
Our numerical method gives y as a function of a for a in the range from 0 to 1 for the sum kernel. For
the product kernel we are able to determine y near a=0 and 1, but a power-law form does not seem to
fit the series well in the midrange near a= 2. For the product kernel we clearly detect the onset of the

gelation transition at a =—'.
PACS number(s): 64.60.Qb

I. INTRODUCTION

We consider the kinetics of the irreversible aggregation
of clusters described by the general reaction

powers of time for arbitrary a in the range given above
and then, by appropriate manipulation of the series, using
techniques developed to determine critical exponents,
evaluate the exponent for the power law

(i)+ (j)~(i +j), Mo- t (1.9)

where the letters indicate the number of monomer units
in a cluster. Ignoring the efFects of excluded volume and
assuming mass-action kinetics (i.e., reaction-limited ag-
gregation), the time evolution of the system is given by
the Srnoluchowski equation [1] 2t =t' . (1.10)

We note that we will take the scale factor in (1.2) as
a =2, giving the relation between our time (t} and the
common convention (t'}:

dck oo

d( ) 2 g ij i j Ck g KjkCj
i+j=k j=1

(1.2)
We do this so as always to give the beginning series for
Mo(t) as

where ck indicates the concentration of a k-mer. We
treat the case of monodisperse initial conditions

Ck(0} ~kl (1.3)

i.e., the system is all monomer (of unit concentration) at
t =0. The moments of the distribution are defined as

M„= g k "Ck .
k=1

(1.4)

K;j = 1 (constant),

KJ=(i +j )/2 (sum),

Kj =(ij ) (Product)

for the range

0~a~1 .

(1.6)

(1.8)

We will refer to the case a= 1 as either the simple sum or
simple product kernel, as appropriate.

Our purpose here is to solve (1.2) as an exact series in

Mo is the net concentration of clusters, while M
&

is the
total number of monomer units in the system (usually
conserved, i.e., M, = 1).

We will treat rate constants (kernels} of the form

M, (t &t, }=1, M, (t&t, }&1,
M, (t =t, )=~ .

(1.12}

(1.13)

From (1.12) one sees that the gelation time is the onset of
the lack of conservation of monomer units. For t ~ t the
system is referred to as existing in the so1 phase, while for
t ) tg, it is in the gel phase. Using power series in time,
we have access only to the behavior in the sol phase up to
the sol-gel transition time. We will be able to use the
series to determine tg as a function of a, i.e., detect the
onset of gelation (the sol-gel transition). For finite ts, Eq.

Mo(t) =1 t +—
It is for this reason that we have also inserted the factor
of 2 in our definition of the sum kernel in (1.6).

For the constant kernel K; =1, (1.2} was solved in
1918 by Smoluchowski [1]. In 1962 McLeod [2] solved
(1.2} for the simple product kernel K,j=ij McLe.od
found that his solution was valid only for 0 & t &

—,
' [using

our t in (1.10) with M2 becoming infinite at t =
—,'].

M2~ 00 indicates that the mean-square cluster size goes
to infinity; this singularity has since been interpreted as
the onset of gelation (formation of infinite clusters), and
the time of the onset of gelation is referred to as tg. The
general characteristics of the gelation phenomena are
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(1.9) must be appropriately modified [see (5.6) and (5.7)].
Of crucial importance for the use of a series solution of

(1.2) is the question of the existence of the series. For the
simple product kernel McLeod [2] determined that for
the range of a given in (1.8), there was a unique, analytic
solution near t =0. However, for a) 1 he showed that
the radius of convergence was zero. Van Dongen [3] in-
terpreted the case of a) 1 as leading to instantaneous
gelation. For the case of the sum kernel White [4] has
proved that for a in the range of (1.8), there exists a glo-
bal (a11-t) solution that is well behaved (i.e., no gelation).
Leyvraz and Tschudi [5] have proved for the product
kernel that a~ —,

' is a necessary condition for gelation.
They comment [6] that for the product kernel there is no
proof of gelation occurring in the range —,

' (a&1, but
that heuristic arguments favor it. Leyvraz showed [7] for
a diagonal product kernel K;~ = i 5;& that there is gelation
at a finite time for co & 1 (i.e., K;; =i gelation if a & —,

' ).
Ziff [8] has speculated that the diagonal kernels are a
sufficient diagnostic of gelation and that gelation will
occur if a & —,'; however, Buffet and Werner [9] have given
a counterexample where for a particular diagonal-only
kernel, there is gelation, and the addition of off-diagonal
kernels destroys it.

For purposes of having a few reference systems with
which to compare our series solutions, it is useful to re-
view the exact solutions of (1.2). For the simple product
kernel K, =ij, as we have mentioned already, McLeod
[2] gave a solution for t &

—,'. Leyvraz and Tschudi [6] in-

terpreted the singularity at t = t as the gelation
phenomenon and gave a solution both for t (t and
t ) t for the kernel

K,j = ( Ai +B)(Aj +B);

kernel; and taking A =B=0 and C =1, we get the sim-
ple product kernel. One readily finds the following.

constant kernel (all t):

Mo: MI: 1 M2 = 1+2t1 (1.18)

simple sum (all t):

M= ' M=1 M=e' (1.19)

simple product (t &
—,
' ):

MO=1 —t, M) =1, M2= 1
(1.20)

simple product (t & —,
' ):

1 1M= —,M= —,M=~.0 4t& 1 2t& 2 (1.21)

constant kernel (all t):

(r) rk —ly(1+r)k+1 (1.22)

simple sum (all t):

c, (r)=e 'e

c (t)=e '(1 —e ')e (1.23)

c (t)= ', e '(1 —e—') e

We note that for the simple product kernel, M2 goes to
infinity at the finite time t =ts =

—,
' (for the constant ker-

nel and the simple sum kernel, M2 goes to infinity at
infinite time, i.e., ts = ~ ).

The detailed distributions are the following.

they find that in general t =
t 2 A ( A + B)]

'. Later,
Van Dongen and Ernst [10] gave a general solution for
the bilinear kernel

I k —2

cI,(t) = (2r)k
—l~ —2kt .

k!

simple product (t &
—,
' ):

(1.24)

(1.14)

and present explicit recipes for the calculation of A (t),
g(t), and a recursion relation for the Xl, . All of the clas-
sic exact results can be obtained from the moment equa-
tions that they give:

dMo = —
( AMO+2BMoM&+CM, ) (all t), (1.15)

dM,
=0, M, =l (r &t, ),

dt

dM2 =2( A +2BM2+ CM~~) (t & r ) .
dt

(1.16)

{1.17)

Taking B =C =0 and 3 =1, we get the constant kernel;
taking 2 =0, B =

—,', and C =0, we get the simple sum

K, = A +B(i+j )+Cij

which for appropriate choices of A, B, and C gives the
constant, simple sum, and simple product kernels. They
give the general solution of (1.2) with the bilinear kernel
in the form

simple product (t & —,
' ):

cl, (t) =cI, (ts ) 12t . (1.25)

In 1988 Kokholm [11]gave a simple proof of the glo-
bal existence and uniqueness of the solution for the sim-

ple product kernel with monodisperse initial conditions.
Lu [12] has solved the case of the general bilinear kernel
with polydisperse initial conditions, while Treat [13] has
also treated the bilinear kernel (with C =0) for the case
of general initial conditions.

Several authors have treated the case where higher-
order reaction terms are incorporated in the model.
Jiang and Gang [14] included both second- and third-
order kernels of the form K; =ij and K; k =ijk, giving
explicit expressions for the cluster size distribution for
monodisperse initial conditions. For the general nth-
order process (but one order only) with kernels of the
form K,".. . =k,k, Jiang, Gang, and BenKun [15] dis-

cussed the critical properties and universality, but did not
give a general solution. For the case of an nth-order pro-
cess with either a constant or a simple sum kernel, Kar-
pivsky [16]gives a general solution.
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II. TIME-POWER SERIES SOLUTION

We assume a time-power series solution to (1.2):

ck —g Ak„r /n . .
n=0

(2.1)

gation and annihilation in lattice gases, and Poland [19]
has treated the growth of Eden clusters in a similar
manner.

If yg is the radius of convergence of the series (i.e., the
singularity of interest is the one closest to the origin),
then the ratios

y (t)= 1 —Mo(t) (2.2)

with the time variation illustrated in Fig. 1(b). Formally,
one has

Using (2.1) in (1.2) gives a set of recursion relations [17]
for the Ak„. For irreversible aggregation Mo(t) will drop
from Mp = 1 at t =0 to Mp =0 at t = |x},as illustrated in

Fig. 1(a). We introduce the variable

r„=b„ /b„

of the (2.4) series are asymptotic [20] to

1 1r„-y 1+———1
n y

Fory =1,onehas

1/y= 1 n(1—r„)—.

(2.6)

(2.7)

(2.8)
y=

n=1
a„t", (2.3)

Alternatively, one can use the Pade technique [20], giving

where the a„are obtained through some finite value of n

by the recursion process. Inverting the series (2.3}gives

1 8 1nt (y)—=(1-y)
y Blny

(2.9)

t= g b„y".
n=1

forming Pade approximants to the derivative.
2.4

III. SUM KERNEL
For the power-law behavior of (1.9) one has (assuming
t =oo)

'1'
1

1 —y
(2.5)

(b)

The behavior of (2.4) or (2.5} is illustrated in Fig. 1(c}.
The reason for this transformation is that t = t (y ) goes to
infinity at y = 1 (as, for example, do the heat capacity and
compressibility at the critical point}, and hence we can
use the techniques developed to determine critical ex-
ponents. Song and Poland [18] have successfully used the
approach outlined above to treat diffusion-limited aggre-

Mo-t ' (a=0), Mo=e ' (a=1) . (3.1)

The a=1 result is equivalent to t = —ln(1 —y), which
gives 1/y=0 in the ratio formula of (2.8). Thus we ex-
pect that the exponent y in the power law of (1.9) will
vary from 1 to infinity over the range a=0 to 1, or that
1/y will vary from 1 to zero over the same interval.

For the case of a=0. 5, the series Mo(t) through ten
terms is given by

As an example of how the procedure outlined in Sec. II
works, we treat the case of the sum kernel of (1.6) with
0~ a ~ 1. White [4] has proved that there is no gelation
in this range, so we expect the power-law behavior of
(1.9) in the whole range. At the extreme values of a, we
have

Mo(t) = 1 t +0.7929—t —0.5756t +0.3992t

—0.2693t +0.1783& —0. 1166t

+0.0755t —0.0486t +0.0310t ' +

while the series for t (y) is

t (y}=y+0.7929y +0.6818y +0.6096y4

(3.2)

(c) +0.5578y +0.5181y +0.4865y

+0.4605y +0.4385y +0.4197y 'O+ (3.3)

FIG. 1. (a) Schematic variation of Mo, the total concentra-
tion of aggregates, as a function of time. (b) Schematic variation
of the function y =1—Mo as a function of time. (c) Part (b)
when inverted to give t as a function of y; the dotted line is the
asymptote at y =1.

The key as to whether or not this method will work is
how well behaved the t (y) series is. All of the t (y) series
that we have obtained have coeScients of uniform sign
that vary monotonically in magnitude, as illustrated in
(3.3).

Applying (2.7} to successive pairs of ratios from (3.3)
gives the following series of estimates ofy~ and 1/y:
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y = 1.0063, 1.0029, 1.0018, 1.0012, 1.0009, 1.0007, 1.0006, 1.0004, . . . ,

1/y=0. 596, 0.587, 0.583, 0.580, 0.579, 0.577, 0.576, 0.575, . . . .

(3.4}

(3.5)

Clearly, y~ is approaching the value y = 1 rapidly, and the estimates of I/y seem to be monotonically approaching a
limit. If we assume yg

= 1 exactly, we can use (2.8) to obtain the following series of estimates of 1/y:

1/y=0. 586, 0.579, 0.577, 0.575, 0.574, 0.573, 0.572, 0.571, . . . . (3.6)

So with some confidence we take

1/y =0.57+1 (a=0.5)

and

t
—1.75

(3.7)

(3.8)

The ratios for the function t = t (y) as a function of 1/n
are shown in Fig. 2 for various values of a in the range
a=0 to 1. For all values of a shown, the ratios give
linear plots Iindicating that the power-law form of (1.9) is
very closely obeyed for all r]. For all values of a, the ra
tios extrapolate to the expected value I/y~=1. The
values of 1/y obtained from the slopes are shown in Fig.
3 as a function of a and, as expected, we have a smooth
variation of 1/y from 1 to 0.

We note that 1/y(a) is approximated by the following
simple relation:

1 (a=0)
= . 4 =0.571 (a= —')

1 —a/4 2

0 (a=1) .

(3.9)

IV. PRODUCT KERNEL

From the comments made in the Introduction, we ex-
pect the following behavior for the product kernel of (1.7)
with 0 a 1:

y =1 for O~a& —,',
yg (1 for —,

' &a~1,

yg= —,
' for a=1 .

(4.1)

The last result follows from the fact that for a=1,
MD=1 —t and tg

=
—,',' henceyg =

—,'.
Whatever the exact functional form of t as a function

of y, if the singularity at the gelation transition deter-
mines the radius of convergence, then r„~y ' as
1/n ~0. The ratios r„of (2.6} for the function t =t(y)
for the product kernel are shown in Fig. 4 for various
values of a. For a & —,

' the ratios extrapolate to yg '=1,
as expected. For the example shown with a& —,', i.e.,
a =0.9, the r„extrapolate smoothly to y

' = 1.56

(yg =0.64}, which is approaching the known limit y =
—,
'

for a = 1.0. The values of y can be obtained either from
the extrapolation of the ratios or by the use of Fade ap-
proximants; the values obtained from the two methods
agree closely. The values of y (a) obtained from Pade
approximants are shown in Fig. 5(a). One sees that the
conjectures concerning the behavior of y (a) given in

4.0

0.9-
rn 08

OV-

0.0

0.2

0.4

0.6

0.8

05
0.0 0 1 02 05 04 05

FIG. 2. Ratio plots r„of (2.6) as a function of 1/n obtained
from the function t =t(y) for the sum kernel of {1.6). The ap-
propriate values of a for each curve are indicated. The ratios
all extrapolate to y~

= 1 at 1/n =0.

(4.1) are borne out. We find that yg(a= —,')=0.977;
within the accuracy of our methods, we cannot say that
this number is not exactly 1.

For yg=l, one has t = oo. Asy drops in value from
yg(a= —,')= 1 to yz(a= 1)=—,', tg drops from

tg(a= ,')= ~ —to tg(a= 1)=—,'. In that range the series
t =t(y) converges to a finite limit at the singularity

y =y . The values of tg obtained from extrapolating the
t (yg ) series are given (plotted as 1/t~ ) in Fig. 4(b); we as-
sume that t~(a= —,')= ~.

Thus, from the r =i(y) series we are able to confirm
the conjecture that there is a gelation transition at a finite
time for the case of the product kernel in the range
—,
' (a ~ 1. From the series we can determine the behavior
of both y (a) and t (a), as shown in Fig. 5.

For a &
—,
' the form of (2.5) represents a strong singular-

ity (t~~ as y~l) and hence is easy to study using
series methods. The straight lines in Fig. 4(a) for the
cases a=0, 0.1, and 0.2 are drawn using the values of
1/y obtained from the Pade approximants to the t =t (y)
series. One sees that the ratios are nicely asymptotic to
these lines. The values of 1/y for a=0, 0.1, and 0.2 are
shown in Fig. 6 and one sees that 1/y(a) decreases with
increasing a (as was the case for the sum kernel, as shown
in Fig. 3}. For higher values of a, the ratios and Pade ap-
proximants obtained from the r =r (y) series become less
straightforward to interpret. Part of the problem is that
for a & —,', tg is finite at yg and hence is more dificult to
abstract from the series (no quantity goes to infinity).
Thus, in order to continue our analysis, we turn to a



IRREVERSIBLE AGGREGATION KINETICS: POWER-LAW. . . 5067
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FIG. 3. The exponent 1/y for the sum kernel as a function of
a obtained from the slopes of the ratio plots in Fig. 2.
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FIG. 5. The locus of the gelation transition as a function of a

for the product kernel. The gelation concentration expressed as

yg (=1—Mo) was obtained from Pade approximants to the
t =t(y) series. The gelation time tg was obtained from the
series tg=t(yg); the point at a=0.5 assumes that tg~ao at that
value of a.

1.5-

1.0-
n

(b)

1.0 -"

0.5-

0.5- 0.9
0.0-

0.0
0.0 01 0.2

1/n

05 0.4 05 -0.5-

FIG. 4. Ratio plots r„of (2.6) as a function of 1/n obtained
from the function t =t(y) for the product kernel of (1.7). The
appropriate values of a for each curve are indicated. For a &

~

the ratios extrapolate to yg =1; for the cases a=0, 0.1, and 0.2,
the straight lines were constructed using the slopes and inter-
cepts obtained from Pade approximants to the series. For the
case a=0.9, one has yg (1 (1/yg=1. 56); for this case the
straight line was constructed using yg and 1/y from the func-
tions M&(t) and M&(y).

-1.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. The exponent 1/y [defined in (2.5)] for the product
kernel as a function of a. The points near a=0 were deter-
mined from Pade approximants to the series t =t(y). The
points near a= 1 were obtained by combining the exponents for
Mp(t) and Mp(y).
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hy -At",
where

(5.7)

P—
V~ /Vy (5.8)

Using the exponents determined from the data of Fig. 8,
the values of 1/y obtained from (5.8) and (5.9) for
a=0.8, 0.9, and 1.0 are shown in Fig. 6 [Pade approxi-
mants applied to t =t (y) give the same results]. One sees
that I/y ~—1 as a~ 1 and (5.6) gives the known result
in that case, t =y. The solid line in Fig. 4(b) for the case
of a =0.9 uses the value of 1/y obtained from the data of
Fig. 8; one sees that the ratios obtained from the function
t =t (y) are consistent with this slope.

In Fig. 6 one sees that we have been able to determine
I/y(a) first from the function t =t(y) for values close to
a=0 [using the data of Fig. 4(a)] and second from the

2.2

2.0-

Equations (5.6) and (5.7) relate the singular parts of the t
and y dependences of M2. Equation (5.6) is the analog of
(2.5) for a finite value of ts at the transition point. One
has the following correspondence between the exponent y
of (2.5) and the exponent p, of (5.6):

(5.9)

functions M2(t) and M2(y) for values of a close to a= 1

(using the data of Fig. 8). In between, we have not been
able to determine the value of the exponent accurately,
probably because the function is changing character from
the behavior of (1.9) (r +00—as y ~ys ) to that of (5.6) (t is
finite as y ~ys ). In particular, we are not able to deter-
mine the value of 1/y accurately at a= —,'. Since we ex-

pect the behavior of the product kernel at a= —,
' to be

analogous to that of the sum kernel at a=1 and since for
the latter one has t = —ln(1 —y), corresponding formally
to 1/y =0, we expect that 1/y will be zero for the prod-
uct kernel at a =

—,'.
Figure 10 shows the ratios of the function t = t (y) for

the product kernel at a= —,'. For comparison two special
cases are shown. The first is the ratios for the function
—ln(1 —y), and the second is a line determined by the
slope and intercept given by Pade approximant analysis

(yg =0.977, 1/y=0. 40). One sees that the slope of the
ratio points is similar to that of the —ln(1 —y) curve, but
that the intercepts for the two are not the same. The ra-
tios do seem to be asymptotic to the curve determined by
the Pade analysis, but the intercept is not exactly at

yg =1. Thus while the ratios are extremely well behaved,
we are not able to offer a definitive value of the exponent;
indeed, part of the problem is that the functional form of
t as a function of y in this transition region is probably
not that given either by (2.5) or (5.6). Clearly, the func-
tion (1—y)-exp( t/r) d—ecays to zero too fast; we have
also tried a stretched exponential

1.8-

1.6-

1.2-

1.0 -'—

0.$
0.0 0.2 0.4 0.6 0.8 1.0

(a} (1—y) —exp[ (tie)~], —

but the exponent P obtained form successive terms in the
series (comparing actual coefficients with those predicted
by the assumed functional form) do not approach a limit,
but seem to extrapolate to zero, again indicating that the
functional form is not exponential.
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FIG. 9. Variation of the exponent v„[see {5.2)] as a function
of a for (a) the sum kernel (obtained from the slopes of the ratio
plots in Fig. 7) and (b) the product kernel (obtained from the
slopes of the ratio plots in Fig. 8).

FIG. 10. Ratio plot for t = t (y) for the product kernel for the
case a= 2. The line marked —ln(1 —y) is the result expected if
(1—y) -exp( —t). The line marked Fade was constructed using
the slope and intercept obtained from Pade approximants to the
t =t(y) series.
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VI. OTHER KERNELS

The simple product kernel K; =ij can be thought of as

applying to the aggregation of two linear polymer chains,
one with i sites for binding and the other with j sites for
binding, hence (i)X (j) possible points at which the two
can join. If one considers instead roughly spherical ag-
gregates of i and j monomers reacting as in (1.1), then the
rate of production of the product, (i +j) is

1 0-

0.9-

08-

BC' +)
=kCIi'& (6.1) 0.7

0.0 0.1 0.2 0.5 OA 0.5

c;, —=const'Xc;c, r, (i,j ) (6.3)

where we have emphasized that r„ the distance of closest
approach of the two spheres, is a function of i and j, the
number of monomers, respectively, in both spheres.

The volume of the sphere is proportional to the num-
ber of monomers in it. For a spherical cluster the radius
is therefore proportional to i ' . One then has that

where c; is the density of i-j pairs of clusters close
enough to react to give the merged product (i +j). If we
can use an equilibrium distribution of the i and j clusters
in space (assuming diffusion is fast relative to the rate of
the aggregation reaction so that the system is spatially al-
ways approximately in equilibrium), then we can estimate
c;J by using the pair distribution function g; (r; ), where
r,. is the distance between the two clusters. One has

r +b,
c; =constXc;c) j gj(rj)r dr, (6.2)

T

where r, is the distance of closest approach of the two
spheres and 6 is some small interval over which the two
spheres can be considered close enough in order to react.
Assuming a random distribution, we take g; = 1 (at this
point one could take into account excluded volume by us-
ing a more realistic, concentration-dependent form for
g;J; see Poland [22]) and we assume that 6 is very small,
giving

1'
FIG. 11. Ratio plots r„of (2.6) as a function of 1/n obtained

from t =t{y) for the kernel of (6.6) for two and three dimen-

sions.

gelation at a finite time. The slopes give the following es-
timates of the exponents y for these two cases:

0.588 (2D)
0.441 (3D) (6.7)

and

o (2D)
Mo(t)— (6.8)

s =tl(1+t), t =sl(1 —s) .

%ith this variable we have

(6.9)

M -(1—s)r (6.10)

As we have seen, the series can be used to estimate the
asymptotic form quite accurately. But they can also be
used to construct the function over the whole time range.
As an example, we take the kernel just discussed for the
case of three dimensions. It is convenient to introduce
the following Euler transform of time which maps the in-
terval t =0 to ~ onto the unit line

r, (i,j)= costn(Xi' '+j '
) .

Hence, from (6.3),

(6.4)

M =Ms' —(1—s) . (6.11)

(6.5)

where k is a constant independent of the size of the clus-
ters. For clusters with minimal surface in d dimensions,
the analog of (6.5) is

k (
~ 1/d+ ~ 1/d)d —1

1J {6.6)

One sees that this form of kernel is a combination of the
sum and product kernel that we have previously been us-
ing. The diagonal terms have the form K,, =i'"
from our previous discussion, we expect that gelation at a
finite time will only occur when d~ ~ (i.e., there is no
gelation in two or three dimensions).

Using the kernel of (6.6) in two (2D) and three (3D) di-
mensions, one obtains the ratios for the function t =t (y),
as shown in Fig. 11. Again, the ratios are very we11

behaved and point to y =1, indicating that there is no

M, (s)= [1—0.441s —0.245'' —0. 136s' —0.076s'

—0.042s —0.023s —0.012s —0.006s

—0.003s —0.001s ' —0.015s "]
. (6.12)

This function is plotted in Fig. 12 (solid points) and com-
pared with the simple function (solid line)

The advantage of the latter form is that I goes to zero
linearly with s. From the power series in time, we can
construct the s series for M exactly, say, through N
terms. Since M goes to zero linear in s, we can simply
add on an (E+ 1)th-order term in s to force M to go to
zero at s = 1 (it should be a very small correction,
rejecting the error arising from truncation of the series).
In this manner we obtain
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1.0 VII. DISCUSSION
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We have shown that power series in time can yield ac-
curate information about the asymptotic behavior of ag-
gregation processes. In particular, the inversion of the
time series for the first moment of the cluster distribu-
tion, Mo, to give time as a function of the variable

y =1—Mo in all cases gives a smoothly varying series
with well-behaved ratios.

Assuming an asymptotic power-law form Mo —t ~, we
are able to determine the exponent y numerically (see
Fig. 3) for the sum kernel for tz in the range 0 to 1. Ley-
vraz [23] has given the relation

1/y =(1—a)/(1 —a/2)

Mo= 1

1+0.44ls/(1 —s)

2.27

(6.13)

The relation of (6.13) reproduces the results of (6.12) to
almost three significant figures over the whole range of s.

FIG. 12. The behavior of Mo(s) for the irreversible aggrega-
tion of spherical clusters [s =t/(1+t)]. The solid points are
obtained using the truncated series of (6.12), while the solid
curve is the function of (6.13).

for the sum kernel of (1.6), based on an assumed asymp-
totic form for the cluster probabilities. At a= —,

' this
gives 1/y= —'„which is somewhat higher than the value
of 1/y =0.57 that we find [see (3.7)].

For the product kernel we clearly detect the gelation
transition for a& —,'. As discussed earlier, we can only
determine the exponent y with any confidence near the
end points, a=0 and 1. Presumably, the functional form
in the midrange of a is more complicated than a simple
power law or it is only very slowly asymptotic to a power
law. The series t = t (y ) for the case of a =

—,
' for the prod-

uct kernel is, however, very smooth, as indicated by the
ratios shown in Fig. 10. It remains a challenge to extract
the true nature of the functional form for this relaxation
process from these data.
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