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Parametric control of microstructures in directional solidification
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We consider the effect of a periodic oscillation on the growth velocity of a liquid-solid interface during
the directional solidification of a binary mixture. By using a different formalism for the description of
the interface motion, we confirm the eventual stabilizing properties of the oscillation found in the
analysis of Wheeler [J. Cryst G.rowth 67, 8 i1984)] in the same configuration. In addition, we determine,
in the small-forcing-parameter limit, the regions in the stability diagram where the oscillation has a sta-
bilizing or a destabilizing effect. A stabilizing effect is found in an intermediate range of wave numbers
and for a frequency larger than unity. The stabilizing effect is increased for larger partition coeScient
and larger forcing frequencies. The magnitude of the capillary length is relatively neutral concerning
this stabilization.

PACS number(s): 68.70.+w, 81.10.Fq

INTRODUCTION

Directional solidification of melts is a major problem of
metallurgy. Depending on the conditions of growth, mi-
crostructures form on the solidifying liquid-solid inter-
face and determine the mechanical properties of the ma-
terial. A method frequently used for the solidification of
gas-turbine blades is directional casting where the crystal
develops from a chill [I]. The inconvenience of the
method is that the microstructure which develops on the
solidifying interface is not uniform because growth rate
and temperature gradient cannot be controlled during the
growth. More refined is the Bridgman-type method
which allows one to grow crystals at constant velocity in
a uniform temperature gradient [I]. The analysis of the
microstructures of the solidifying interface which develop
in this configuration was studied extensively during the
past ten years on model systems like the binary mixture
succinonitrile-acetone [2]. For a fixed temperature gra-
dient the flat interface is stable at low velocity. Above a
critical velocity the interface becomes cellular with a
well-defined primary spacing function of the pulling ve-
locity. Above a second larger critical velocity, the cells
become dendritic and their primary spacing less homo-
geneous [3]. Then for larger velocity the flat interface
restabilizes. Thus for a directional growth at constant ve-
locity: Microstructures appear inevitably in a large
domain of the control parameters; and microstructures
cannot be controlled, i.e. for given temperature gradient
and growth velocity, morphologies and primary spacing
are determined after a nonlinear nonsteady growth,
where intrinsic nonlinearities or extrinsic noise can affect
the characteristics of the final state of the microstructure.

The basic idea that we begin to investigate in that pa-
per is that if, on the constant control parameters men-
tioned previously, we superpose an adequate time-
dependent component, the range of control parameters
where microstructures appear can be either reduced or
extended. And microstructures can be controlled, mor-
phologies as well as primary spacing.

This idea was inspired from an experiment on flame
propagation in a tube. When a cellular flame reaches
some particular position in the tube, the acoustic energy
contained in the tube suddenly increases and the flame
oscillates in the acoustic field so generated [4]. At the
same time, the cellular structure disappears and the flame
can propagate with a flat shape even if its burning veloci-
ty is well above the critical velocity characterizing the
cellular instability of flames propagating at constant ve-
locity. This property was explained by Markstein [5] and
implemented by Searby and Rochwerger [6] by showing
that a disturbance of the shape of a flat flame oscillating
in a periodic acoustic field satisfies a Mathieu equation.

In the case of directional solidification of binary alloys,
Wheeler [7] showed that the effect of a periodic growth
rate on a solidifying planar liquid-solid interface was in
general stabilizing. A simple way to make the liquid-
solid interface oscillate is to add an oscillatory corn-
ponent to the pulling velocity of the sample. Another
equivalent way, which will be adopted in the analysis, is
to add in phase an oscillatory component to the tempera-
ture of the heaters which maintain the temperature gra-
dient. In that case, a point of constant temperature
moves relatively to the heaters with an oscillating veloci-
ty.

We consider here a planar liquid-solid interface in such
a moving temperature gradient and reconsider the
analysis of Wheeler [7] by using an integro-differential
equation for the solidifying interface. We first describe
the motion of the planar liquid-solid interface when the
oscillating component of an isotherm velocity is a
sinusoidal function. Then we study the stability of this
interface and confirm the results found by Wheeler, i.e.,
that a flat oscillating interface can remain stable versus
shape deformations even if the control parameters of the
directional solidification are in the instability range of the
growth at constant parameters. In addition to this
analysis, in order to investigate the stability property
more carefully, we perform an analytical expansion of the
growth rate of a perturbation at small forcing parameter
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and delimit, in the stability diagram of the growth at con-
stant velocity, regions where the growth rate is lowered
or increased by the oscillating component. We study the
relative size of these regions as a function of the material
properties (partition coefficient, capillary length} and of
the frequency of the oscillation.

I. MODEL

In directional solidification of a binary liquid mixture,
the motion of the solidification front is determined by the
difFusion of solute in the melt together with a set of
boundary conditions on the interface. The solute concen-
tration c satisfies the usual diffusion equation

rn the slope of the liquidus line in the binary phase dia-

gram, Tp the crystallization temperature of the pure
melt, R the local radius of curvature, Q the latent heat
released per unit volume, and o. the liquid-solid surface
tension. As, in the slow growth regime, the latent heat
release at the interface can be neglected, the temperature
in the sample is simply T=T~+G(z —f(t)). Here
T = To+me „/E is the temperature of the planar inter-
face and f(t ) = f 'v(t')dt' is the time-dependent position

of the isotherm at temperature T . G is the temperature
gradient imposed on the sample, E the partition
coeScient, and c„ the bulk mixture composition. In ad-
dition, solute conservation at the interface requires

c(1 IC}v n—= DVc —ri .

in the liquid and difFusion in the solid is neglected. Tem-
perature and solute concentration at the interface are re-
lated to the local interfacial curvature by the Gibbs-
Thomson relation

0 TpT= To+mc— (2)

Here, D is the coeScient of solute diffusivity in the liquid,
I

In the following, we use dimensionless quantities
defined as tt =E(c—c„)/c„(1 EC) fo—r the concentra-
tion field and 1/2v=D/U&lz for the control parameter
of the growth. Here, Up is the constant velocity of the
liquid-solid interface when the oscillating component of
the heaters is switched off and Iz the thermal length
defined as lz = ~m ~c„(1 E)/E. —Green-function method
allows one to determine an integro-differential equation
for the shape of the interface as (see Appendix A)

dp2—
2 R

1 [z(x, t )—f(t )]
2v

=+f dt' f dx'[1 +z(x', t')] 1+%,+ [z(x', t') —f(t')] G(p, p')

+ oo dp—f dt' f dx', + [z(x', t') —f(t')] BG
(

f
)

Bz BG
(

J
)p&p

g i g i p&p (4)

where

Y(t t') —(x x')2+(z z—'+t t')2— —
G(p ~p') =

4 ( g)
exp —

4(

is the Green function of the diffusive field in a frame moving with constant unit velocity, and p [p ] the points of coordi-
nates (x,z, t) [(x',z', t')]. Here, length is adimensionalized by the diffusive length D/Uo, velocity by Uo and time by
D /UG.

II. FLAT OSCILLATING INTERFACE

Consider that the temperatures of the heaters which maintain the temperature gradient oscillate in phase with a
sinusoidal component, T= T„+ETsinQt. Then, the flat interface oscillates in the temperature gradient moving with
the velocity v=(b, TQcosQt/G}. [The corresponding isotherm position is f(t)=fosinQt where fo=hT/G. ] From
Eqs. (4) and (5), one deduces an integro-differential equation for the interface position zo(t ):

[zo(t }—zo(t')+ t —t']'
[(1+zo(t')] 1+ [zo(t') —f(t'}]

4 t t'—2v
1 — [zo(t) —f(t)]=f dt'] r

exp
4v — V'4m( t t')—

[zo(t') f(t')) [zo(t) —zo(t—')]
1+

2 2v (t —t')
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To integrate Eq. (6) numerically, one proceeds as fol-
lows: One discretizes the interval ]—ao, t [ with N points
located at t; =t —iAt, i =1 to N. the product N At is
suSciently large in order that the integral evaluated on
the segment [tN, t ] by using the trapezoidal rule approxi-
mates correctly the whole integral. Suppose known the
values z;=z o(t;),i=1 to N, one determines the value
zo(t) by using the secant method on the difference be-
tween the left-hand side (lhs) and right-hand side (rhs) of
Eq. (6). As an initial condition (t =0), one chooses zo =0
for t & 0 and the forcing term f( t ) is applied for t ~ 0.

For given parameters, K, v, fo, Q one determines zo as
a function of time as is shown in Fig. 1. After a transient
stage, the interface oscillates with a well-defined period T
in the temperature gradient. A useful quantity character-
izing this oscillation is the mean position of the interface:

consequences on the stability of the Bat oscillating
liquid-solid interface [8]. In Fig. 2 we draw zo as a func-
tion of Q for K =0.5 and for fo =2 and 4.

In order to understand more completely these curves,
one can perform an analytical expansion of Eq. (6) at
small forcing amplitude fo. For this, one expands zo(t)
as

fo . fo
z (t ) = . a exp(iQt ) — a*exp( i Qt—)

2i ' 2l'

+ [P2+a2exp(2i Qt )+a& exp( 2i Q—T ) ] .
f2

4

(8)

After identification of the terms of the expansion of same
order in Eq. (6), one obtains

zo =—f zo(t )dt .
1

An important property of the interface oscillation is that
despite the fact that f ( t ) has a zero mean value, zo is pos-
itive, i.e., the mean position of the oscillating interface is
displaced towards the liquid. It follows that the mean
undercooling 5= 1 —zo /2v is reduced with possible

a)(Q)=

1 —2v

1

1+2iQ
&1+4iQ

2E —1

&1+4iQ

2 —Re&1+4iQ —Re 1

&1+4iQ

r

132 1 1 (1 K)—
K = —

/a& f
Q Im +

&1+4iQ

+—0 Ima, —K
r

(1—K)
Re a; &1+4iQ+ —2

1

2v 1+4iQ
(10)

III. LINEAR STABILITY ANALYSIS OF THE FLAT OSCILLATING INTERFACE

Consider a slightly distributed planar interface z =zo(t )+z, (t )exp(ikx), where z„ the amplitude of the disturbance,
is much smaller than zo. Then from Appendix B, z& satisfies
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FIG. 1. Time evolution of the position of the planar interface
under periodic forcing conditions. Here, K=0.1, 1/2v=0. 5,
0=4, and f0=0.025.

FIG. 2. Mean position of the liquid-solid interface as func-

tion of the forcing frequency. The material parameters are
do=0.01, K=0.5. The control parameter of the growth is

1/2v=1. 5. The upper curve (white squares) corresponds to the
forcing parameter f0=4. The other one (black circles) to

0 2.
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zi(t ) A (t, k )= 1 dt'[z, (t')B(t, t', k)+zi(t')C(t, t', k )+D(t, t', k)[zi(t'}exp —k (t t—') z—i(t)]],
where A(t, k), B(t,t', k), C(t, t', k), and D(t, t', k) are time-dependent functions determined in Appendix B parameter-
ized by v the control parameter, E the partition coe%cient, and do the capillary length.

Consider first the case of the planar interface moving at constant velocity (fo=0, z0=0). Then, Eq. (11) has a solu-
tion of the form z, (t )

=@exp(crt�
) where o satisfies the dispersion relation for disturbances of the planar interface:

1 —dek — (1+4tr+4k )' =2o+2K dok + +1— —dok
2v 2v 2v

(12)

The corresponding marginal stability curve, the curve
Rea =0 in the plane (k, l/2v}, is drawn in Fig. 3 for
K=0.5 and do=0. 01, the instable domain lying in the
lower part of the diagram.

Numerical integration of Eq. (11) is performed in a
similar way as for Eq. (6). In addition, one has previously
recorded in a file the steady limit cycle zo(t) that is used
for the computation of the coeScients A, 8, C, and D. In
order to check the program, one considers the flat nonos-
cillating steady planar interface (f&=0, zo=0) and
verifies that z, (t}=expot is the solution when Eq. (12)
holds between o. and k. Consider the point of coordi-
nates (k=2.5, 1/2v=0. 5) (Fig. 3) lying in the unstable
region of the stability diagram obtained for the parame-
ters X=0.5 and do=0.01. Figure 4 shows the evolution
of a perturbation of the flat interface oscillating at the
frequency Q=2 for a forcing parameter f0=1.5. The
perturbation decays with time so that the parametric os-
cillation has in this case a stabilizing effect. To evaluate
quantitatively the effect one considers the mean value cr

of din!z, (r)~!Idt. Decay or amplification of a perturba-
tion corresponds to the negative or positive real part of
o. In Table I are reported values of cr for two different
sets of parameters. In the first case, I( =0.5, all the wave
numbers considered have negative corresponding values
of cr so that the flat oscillating interface can be stabilized
in a range of parameters where the flat interface moving

at constant velocity is unstable. In the second case
EC=0. 1, the interface is not completely stabilized since
some wave numbers remain unstable. But the range of
unstable wave numbers is reduced.

An analytical expansion at small forcing parameter is
necessary in order to understand the stabilizing proper-
ties of the parametric oscillation. For this, one uses the
multiscale method and expands the perturbation as

z, (t)=ZO(t, ~, T)+foZ, (t, r, T)+foZi(t, r, T), (13)

where fo is small, r= jot, and T=fot . Solving Eq. (11)
up to the second order in fe, one obtains (see Appendix
C)

zi(t }=40exp(oOr+0zT}''

X [1+fo[A,,expi Qt+A,
&
exp( iQt )]J,—(14)

where A,
&

and o.
z are determined in Appendix C. Thus, in

the limit of small forcing parameter, the growth rate of
the perturbation is modified proportionally to the square
of this parameter. In Fig. 5, we determine regions where
the oscillation has a stabilizing or destabilizing effect.
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FIG. 3. Marginal stability curve for the flat interface moving
at constant velocity. The material parameters are do =0.01 and
K =0.5. In the unstable domain three particular points are con-
sidered: their wave numbers are, respectively, k =0.9, 2.5, and
3.5. They have the same control parameter value 1/2v=0. 5.
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FIG. 4. Time evolution of a perturbation of an oscillatory in-
terface. Here do=0. 01, @=0.5, 1/2v=0. 5, 0=2, f0=1.5.
The wave number of the perturbation is k =2.5.
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TABLE I. Values of ~ for two different sets of parameters

do =0.01
X=0.5 0=0.5, f0=4

1/2%=0. 5
E=O. ), 0=), fo= 1.5

op

0.9
2.5
3.5

0.008
0.67
0.88

—0.45
—0.26
—1.2

0.5
1.7
4.0

0.08
0.63
1.2

—0.017
0.172

—2.55

1.0

Typically [see for instance Fig. 5(a)] the stabilized region
o z &0 lies in the center of the diagram, and separates two
regions, respectively at small and large wave number,
where the oscillation has a destabilizing effect (cr2) 0).
In general, except at very low forcing frequency [Fig.
5(b)], the maximum of the marginal stability curve lies in

the stabilized region so that the instability threshold of
the oscillating interface occurs at larger pulling velocity
than for the flat interface. As can be seen from Figs. 5(a)
and 5(b), an increase of the forcing frequency 0 leads to
an increase of the size of the stabilized region. From Fig.
6, an increase of the partition coeScient leads to an in-
crease of the size of the stabilized region. The destabi-
lized regions shrinks and eventually disappears for very
low frequency [Fig. 6(b)]. Comparison between Figs. 5
and 7 shows that the magnitude of the capillary length is
relatively neutral.

IV. CONCLUSION

We studied the effect of an oscillating growth velocity
on the morphological instability of a solidifying liquid
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FIG. 5. Regions in the stability diagram where the oscillation
has a stabilizing (o.2 &0) or a destabilizing (o2&0) effect. Here
do=0. 0001 and K=0.15. In (a), Q=2, a stabilized region at in-
termediate wave numbers separates two destabilized regions at
low and large wave numbers. In (b), Q=0.05, the stabilized re-
gion shrinks to the benefit of the destabilized region at large
wave number. In particular, the marginal wave number of the
planar interface moving at constant velocity is now in the desta-
bilized region so that the periodic oscillation favors the mor-
phological instability.

0 15 30 45 60 75

FIG. 6. Regions in the stability diagram where the oscillation
has a stabilizing (o2&0) or a destabilizing (o2&0) effect. Here
the partition coefficient is larger K=0.5, do=0. 0001. In both

(a) where Q=2 and (b) where Q=0. 1, the stabilized region
takes the major part of the diagram.
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binary mixture. By using an integro-difFerential equation
for the interface we confirm the results of an earlier study
by Wheeler [7] that the oscillation of the interface has in

general a stabilizing effect on the morphological instabih-
ty. In addition, we determine, in the small-forcing-
parameter limit, the regions in the stability diagram
where the oscillation has a stabilizing or a destabilizing
effect. A stabilizing effect is found in an intermediate
range of wave numbers and for a frequency larger than
unity. The stabilizing efFect is increased for larger parti-
tion coe%cient and larger forcing frequencies. The mag-
nitude of the capillary length is relatively neutral con-
cerning this stabilization.
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APPENDIX A: INTEGRO-DIFFERENTIAL EQUATION
FOR THE LIQUID-SOLID INTERFACE

0.6

0.4 . ,

We consider the liquid-solid interface as a curve z(x, t )

in the frame moving in the z direction with constant unit
velocity (we use the same adimensionalizations as in the
main text). The corresponding dimensionless diffusion
field u(x, z, t) is defined for z)z(x, t). An integro-
differential equation for the interface can be determined
by using a procedure explained in many papers ([9] for in-
stance) and thus not reproduced here in detail. The
analysis starts with the determination of the Green func-
tion of the two-dimensional diffusion field, in a frame
moving with unity velocity:

0.2 .

0 6 12 k 18 24 30

FIG. 7. Regions in the stability diagram where the oscillation
has a stabilizing (02 (0) or a destabilizing (02 & 0) effect. Here
the capillary length is larger do=0.001, K=0.15. If we com-
pare (a) where 0=2 and (b) where 0=0.1, respectively, with
Figs. 5(a) and (b), we notice that the effect of the capillary length
is relatively neutral.

(x —x') +(z —z'+t t'}—
4(t t')-Y(t t')—

G(x,z, t~x', z',t')=, exp4n.(t —t') (Al)

where F is the Heaviside function. Then the integro-differential equation for the interface is

—,'u(p)= —f dt' f dx'[1+z(x'}]u(p')G(p, p') —f dt' fdl'n [G(p,p')V'u(p') u(p')V'G—(p,p')], (A2)

where p [p'] is an arbitrary point of the interface of coordinates (x,z{x)) [{x',z(x'))] and n the unit vector normal to
the interface. Here, from Eqs. (2) and (3),

1 Ct0
u(p) =1— [z(x)—f(t)]-

2v
T

Bu (1—K) do
Btl 2V

(p ) = 1 — [z(x ) f(t ) ]— (1—K ) [1+z—(x )]cos8,

(A3)

(A4)

where 8 is the angle between the normal to the interface and the direction of propagation. Furthermore, the Green
function (A 1) satisfies the integral relation

—
—,
' = —f dt' f dx'[1+z(x')]G(p, p'}+f dt' fdl'n V'G(p, p'). (AS)

so that by subtraction of Eq. (A5) from Eq. (A2) and by using boundary conditions (A3}and (A4) one obtains
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dp2—
2 R

1
[z(x ) f(—t )]

2v

t +00 dp 1=+f dt'f dx'[1+z(x')](1+K), + [z(x')—f(t')] G(p,p')
00 00 R' 2v

—f dt' f dx', + [z(x') —f(t')] , (p,p') —, , (p,p')aG, az aG
(A6)

APPKNDIg B: INTKGRO-DIFFERENTIAL EQUATION FOR THK LIQUID-SOLID INTERFACE
LINEARIZED AROUND THE STEADY STATE zo( t )

Consider a slightly disturbed planar interface z =zp(t )+z i(t )exp(ikx), where z& is much smaller than zo. Then from
Eq. (A6), z, satisfies

—d k—1 2
p

1
z& (t )exp(ikx )

=+f dt'f dx'i, (t')exp(ikx') 1+ [zo(t') —f(t')] G(po, po)

+ f dt' f dx'[1+io(t')]K dpk + z, (t')exp(ikx')G(po, po)

+ dt' dx' 1+zp t' 1+ zp t' — t'

X (po,po)[z, (t)exp(ikx) —z&(t')exp(ikx')]
az

—f dt' f "dx' dpk + z, (t')exp(ikx'), (pp, pp)

—f dt' f dx' [z,(t') —f(t')]

X — (pp, po )[z, (t )exp(ikx ) —z, (t')exp(ikx')]8 G

Bz

, aG—ikz, (t'}exp(ikx'), (po,po) (Bl)

To proceed further we need to compute the following integrals:

f "dx'exp[ik(x' —x }]G(po,po) = —,&2 exp[ —[k (t —t')]]exp
00 2&m (t —t'}'"

(zo —zp+t —t')

4(t t')— (B2)

f+-, aG (Zp Zp+t t )
dx' (Po,Pp) —

3i& (zp zp+t —t')exP
Bz

' 4v'w (t —t )3i~ 4t —t' (B3)

+00 QG
dx 'ex p[ik (x ' —x )],(pp, p p )

00 c}z'

(zo —zo+ t t')~—
(zo —zo+t —t')exp[ —[k (t —t')]]exp

4&m. (t —t')'i' 4(t t'—
+, , BG, ik 1 — 2, (zo zo+t t')—

dx'exp[ik(x' x)],(po—,pp)= —,exp[ —[k (t —t')]]exp
00 Bx' '

2 ~ (t —t')'i' 4 t t'—(B4)

(B5)
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+-, , a'Gf dx'exp[ik(x' —x)] (po,po)
00 az2

+ —
2 (zo —zo+t t'—) exp[ —[k (t —t' }]]exp

4~m (t —t')'" 8&Fr (t t—')'"
+-,a'6f dx 2 (po po)

(zo —zo + t t'—)
4(t t-')

(B6}

+
5~& (zo zo + t t ')—exp

4 ~ (t —t'}'" 8 7r (t —t')'~'
(zo —zo+ t —t')

4(t t')- (B7)

Then the integro-differential equations for zi(t }can be written as

z, (t)A(t, k)= f dt'[z, (t')B(t, t', k }+z,(t')C(t, t', k)+D(t, t', k)[z, (t')exp[ —k (t —t'}]—z, {t)]j,
where

(B8)

A(t, k)= —,
' dok — —+ jt dt' —,exp

1 &, 1 1

4 7r (t —t')'"
[z,(t ) z,'(t'—)+ t t']'—

4(t t')-
X [1+zo(t')] 1+ [zo(t') —f(t')],[zo(t )—zo(t')+ t t']-I{, , 1

2v (t t')—

[zo(t') —f(t')],, [z,(t }—z,(t')+ t —t']'
4v (t —t')' (B9)

8(t, t', k )= exp
1 1

2 n (t —t')'"

C(t, t', k)= 1 1
, &

exp
4 m (t —t')'"

[z,(t ) z,'(t'}—+ t t']'—
4(t —t'}

[zo(t ) z,'(t'}+—t t']'—
4(t t')-

1+ [zo(t') —f(t')] exp —[kz(t —t')],
2v

exp[ kz(t —t'—)]

(Blo)

[ +'o( ')]K dok + +[I+zo(t')] 1+ [zo(t') —f(t')], [zo(t) —zo(t'}+t —t']
2v 2v t —t

dok'+, [zo(t )—zo( t')+ t —t']
2v {t t')—

1 1
[zo{t'}—f(t')] 2k +— — [zo(t) zo(t')+t ——t']

2v 2 (t t')'— (Bl 1)

[zo(t') —f(t')]
D(t&t &k )= — exp

8v n(t —t ')'~2.
[z,(t ) —z,'(t')+ t —t']'

4(t t')- (B12)

Here the factor D(t, t', k ) was introduced in order to avoid the divergences of the integrals for t' close to t.

APPENDIX C: LINEAR STABILITY ANALYSIS IN THE LIMIT OF SMALL FORCING PARAMETER

Assume that the forcing parameter fo is small so that the unperturbed solution zo(t }is determined by Eq. (8). Intro-
duce the time scales t, ~=fot, and T=fot, and as is usual for a standard multiscale method, expand the solution of Eq.
(12) as

z, (t ) =Zo(t, r, T)+foZ, (t, r, T)+foZ2(t, ~, T) . (Cl)

Furthermore, expand the coefficients A(t, k), 8(t, t', k), C(t, t', k), and D(t, t', k) as

A(k) = Ao(k )+fo( A i(k}exp(iQt )+ A i (k)exp( i Qt ))+fo( A—&o(k )+ A&2(k)exp{2iQt }+A 22(k)exp( 2iQt ) ), —
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B(t, t', k)=Bp(t, t', k)+fo(B&(t, t', k)exp(iQt)+B&" (t, t', k)exp( i Qt))

+fp(Bzp(t t, k)+Bzz(t, t', k}exp(2iQt)+Bzz(t, t', k)exp( 2—iQt))

C(t, t', k)=Co{t,t', k)+fo(C, (t, t', k)exp(iQt }+C",(t, t', k)exp( i—Qt))

+fo ( Czp( t, t ', k ) +Czz(t, t', k )exp(2iQt )+ C zz (t, t ', k )exp( 2—i Qt )},
D(t, t', k)=fo(D&(t, t', k)exp(iQt)+D& (t, t', k)exp( i—Qt))

+fp(Dzp(t, t', k )+Dzz(t, t', k )exp(2iQt )+Dzz(t, t', k )exp( 2i—Qt ) ),
where all the coefficients are determined in Appendix D.

At zeroth order of the expansion, one obtains

Zo(t}Ao(k)= f dt'[Zo(t')Bo(t, t', k)+Zo(t')Cp(t, t', k)] .

Introduce now the quantities

13„(q,k) =f dt'exp[ q(t —t')]B„—(t, t', k ),
y„(q,k)= I dt'exp[ q(—t t')]C„(t,—t', k),

(C3)

(C4)

(C5)

(C6)

(Cj)

(C8)

fo« =0, 1,2. The solution of Eq. (C6) can be found as Zp(t)=Co(r, T)exp[ap(k)t] where cro(k) is the MullinsSekerka
growth rate solution of Eq. (12) or in the more concise form

b ( cro k ) = A o(k )
—a oP (ocr ok )

—
y (orc,ok) =0 .

At the following order of the expansion, one obtains:

Zi(t)Ao(k) —f dt'[Zi(t')Bo(t, t', k)+Zi(t')Co(t, t', k)]

Zo(t)A—~(k)+ I dt'{Zo(t')[B&(t, t', k)exp(iQt)+B,"(t,t', k)exp( —iQt)]

(C9)

Introduce the quantity

+Zo(t')[C, (t, t', k)exp(iQt)+C*, (t, t', k)exp( i Qt)]+ —Bo(t, t', k)expcrot'
d7.

+ [Zo(t')exp[ —k (t —t')] Zp(t)][D, —(t, t', k)exp(iQt)+D& (t, t', k)exp( iQt)]) . —

(C10)

5„(q,k)= I dt'exp[ —(q+k )(t t') 1)D„(t,t', k)—. — (Cl 1 }

Then, the solution of Eq. (C10) can be found as

d4o
Z, (t, r, T)=Cr, (r, T)exp(a tp+i Qt) +calf(~, T)exp( rctpiQt)+—p, t exp(apt),

d7
(C12)

where

4)(T, T) =A ~Co(7 T) A
~
= . [ A

~
+crpP~(o'p, k )+1 ](crp, k )+5](crp k )]

1

b(o p+iQ, k }

and

(C13)

+4k'+4oo
(C14)

(2E —1) dok + 1

2v
—2o.o

—4k

As usual in a multiscale method, the first correction fpZ, must be much smaller than the main term Zp up to a time of
order 1/f p. This is the case if the last term of the rhs of the equation vanishes (secular term), i.e., if d4/dr=0.

At the second order of the expansion, one obtains
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Z2(t ) Ap(k ) —f dt'[Z~(t')Bp(t, t', k )+Z2(t')Cp(t, t', k )]

= —Zp(t )[ A &0(k )+ A 22(k)exP(2i Qt )+ A zz(k)exP( —2iQt ) ] Z—, (t )[ A &(k)exP(iQt )+ A; (k)exP( i—Q: ) ]

+f dt' Zp(t')[Bzp(t, t', k)+Biz(t, t', k)exp(iQt)+B22(t, t', k)exp( 2i—Qt)]

+f dt'(Z, (t')[B,(t, t', k)exp(iQt)+B,'(t, t', k)exp( iQt—)]

, d4+ dt' Bp(t, t', k)expopt'

+f dt'Zp(t')[Czp(t, t', k )+ Czar(t, t', k )exp(2iQt )+ CD(t, t', k )exp( 2iQt—)]

+f dt' Z, (t')[C, (t, t', k)exp(iQt)+C;(t, t', k)exp( iQt—)]

+f dt'Z, (t')exp[ —k'(t —t')] —Z, (t )

X [Dip(t, t', k)+Dzz(t, t', k)exp(2iQt)+D22(t, t', k)exp( 2iQ—t)]

+ f dt'[Z&(t')exp[ k(t ——t')] Z&(t)—][D&(t,t', k)exp(iQt)

+D f (t, t', k)exp( —iQt)])

(C15)

As in the case of the first order of the expansion, one collects all the secular terms [proportional to exp(o pt )] of the rhs
of Eq. (C15) and obtains

d40 40(T)
[ A2p(k ) o'pp2p(a'p k } 'Y20(crp k ) 520(ap k )+ A ~A, ~

+ A
~

A, ] (a'p iQ) p]( cpriQ k )A ]
0 ap~

(op+—iQ)P) (o 0+iQ, k)k, , y)( r—c0iQ, k)A f —y f(op+iQ, k)A) 5)(op—i Q, k—)A,;
—5f(op+iQ, k)A, , ] . (C16)

Thus the Mullins-Sekerka growth rate crp is modified by the parametric forcing as o =cr0+fper 2 where cr2 is determined
as

10'2=
k [ A2p(k } crpP20(crp&k) yap(o'0~k ) 520(o'0~k )+ A A] + A t A~

0 ap~

—(crp —iQ)P, (op —iQ, k)A, ; (ap+iQ—)P;(o 0+iQ, k)I, y, (a 0,
—i Q, k)l—f

y f(ap+i Q—, k 9, 5,(op , —iQ, k )A—f —5f(crp+iQ, k }A,, ] . (C17)

APPENDIX D: COEFFICIENTS USED
FOR THE LINEAR STABILITY ANALYSIS

A (k)= — 1 —d k—1 1=2 ~
'

2.

(1+4k'+4q)'"0(q, k)= (D2)

yp(q, k)= —' 1+(2X—1} dpk +O 2v

a& 1
A, = — . (2—&1+4iQ)+

8i &1+4iQ

1

(1+4k +4q)'

8i

a&(1+2i Q) (2' —1)+ . (a, —1)
16' v

(D4)
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1 1 1 1 E
P, (q, k) = ——a, 2 1/2

—(a, —1)+a,
4i ' (1+4k +4q)' [1+4k +4(q+i Q)]'~ 4i v

(D5)

1 1
y, (q, k)= ——.a,

4i [1+4(k + )]'
2E —1

d k~+ 1 +1
2 2v 2

+ —.a&[[1+4(k +q)+4iQ]'~ [—1+4(k +q]'~~] 1 — dok~+

1 1 1 2E —1

[1+4(k +q)+4iQ] 2v 4i 2

a)A+
2

K dok+ +—+ . (2E —1) dok+ +11 1 1

2v 2, 8i 2v
L

(D6)

5~(q, k)= . (a& —1)fv 1+4iQ —[1+4iQ+4(k +9)]'~~],1

16vi

A zo
= pz+ la& l

—Im + Im&1+4i Q + la i l

—' ——'Re&1+4i Q —'R—e
2E —1 pQ 1 2 1

32v 8 V 1+4iQ 4 &1+4&Q

K 4E —3+ Q Ima +Rea'(a —1)
8v ' ' ' 32v

(K —1) . (2E —1) 11+4tQ-
16v 32v v'1+4iQ (D8)

E 1 1
qo(1 k)= —Re

8v [1+4(k +q)]' 8 [1+4(k +q)]' [1+4(k + )+4iQ]'

+—[1+4(k +q)]'~ —Re[1+4(k +q)+4iQ)]'~1

8

+Rea*, (a, —1)
K 1

[1+4(k +q)]'i

2K+4k —1 1

[1+4(k'+ )]'" '

1

[1+4(k +q)+4i Q]'~
(D9)

+la~I 1+2% dok + Im, +Im[1+4(k +q )+4iQ)]'~
[1+4(k +q) +4i Q]'~

+la I' I+(2&—1) d k'+ '
16 2v

1 1—Re
[1+4(k +q)]'~ [1 4+(k~ q+) 4+i ]Q'~

+ 3+(2E—3) dok +
16 2v

+ 0 Ima&
K 1

[1+4(k +q)]'

[[1+4(k~+q))' —Re[1+4(k +q) +4i Q]'~
]

(2' —1+4k )+Rea*, a, —1
1

[1+4(k +q)]'
1

[1+4(k +q)+4iQ]'

+ [1+4(k-'+q)]' —[1+4(k +q)+4iQ]'
16v

(D10)

8&o(q k ) = [ 1 —[1+4(k +q )]' ] + Rea& (a& —1)([1+4(k +q )+4iQ]' —[1+4iQ]' + 1
32v 32v

—[1+4(k +q)]' ) . (D1 1)
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