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Recently a general phase equation has been derived from the boundary integral equation, and prelimi-

nary results on the Eckhaus instability were given [K. Brattkus and C. Misbah, Phys. Rev. Lett. 64, 1935
(1990)]. The first focus of the present study is devoted to an extensive analysis of both the derivation of
the phase equation and the computation of the Eckhaus boundaries from the low-velocity regime until

the planar-front restabilization. We pay a special attention to the experiments on liquid crystals [J. M.
Flesselles, A. J. Simon, and A. J. Libchaber, Adv. Phys. 40, 1 (1991)].The special shape of the Eckhaus
boundaries in the present situation provides a simple hint for experimental investigations. The second
line of this paper is motivated by a strong wish to go further towards the understanding of the diverse

variety of dynamical manifestations observed in experiments, such as oscillatory modes and "chaotic"
motions. The study of these phenomena is greatly facilitated by focusing on the large-velocity regime

where the front dynamics turns out to be described by a local equation. %'e outline here the derivation

of that equation appropriate for liquid-crystal experiments. A full study on this equation, going from or-

der to chaos, is presented elsewhere [K. Kassner, C. Misbah, and H. Miiller-Krumbhaar, Phys. Rev.
Lett. 67, 1551 (1991)]. Among other results presented here we show that the wavelength of the pattern A,

scales with the growth velocity V and the thermal gradient as A, —V 'f(G/V). At the fold singularity

for steady symmetric solutions, we find that A, —V ', which is in agreement with experiments on liquid

crystals. This scaling is to be contrasted to the one obtained in the small-Peclet-number limit

A. —V '~'f(G/V) [K. Kassner and C. Misbah, Phys. Rev. Lett. 66, 445 (1991)].

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

I. INTRODUCTION

When a dilute binary solid grows by directional
solidification at the expense of its melt, the planar liquid-
solid interface undergoes a morphological instability at a
critical growth speed and develops a cellular structure
[1]. The front instability was first analyzed by Mullins
and Sekerka [2]. They were the first to bring out the ki-
netic nature of the phenomenon. Since then, extensive
experimental and theoretical investigations have been de-
voted to pattern formation in directional solidification
[1].

We feel it worthwhile to emphasize the major
difference that exists between a system where mass
diffusion is one-sided, and a system where mass diffusion
is symmetric (or at least of comparable importance in
both phases). The first category includes metals and
some organic compounds [3] with diffusion coefficient in
the solid phase several orders of magnitude smaller than
in the liquid phase. In that category one often observes
the development of large-amplitude cells with accumula-
tion of solute in the groove. The creation of deep grooves
often causes the appearance of crystal defects, such as,
for instance, grain boundaries, which are rather secon-
dary for the understanding of interface dynamics. The
second category is mainly restricted to liquid-crystal sys-
tems where experiments were initiated by Oswald,
Bechhoefer, and Libchaber [4]. The quasisymmetric im-

purity diffusion with the quasiconstant miscibility gap
makes the dynamics much softer than in the first
category, in the sense that nonlinearities are less impor-
tant and that deep grooves never develop. Such systems
have allowed the exploration of a much larger region of
the parameter space than what usual materials had al-
lowed us so far, and have led to the discovery of a myriad
of dynamical phenomena.

A step in understanding interface shapes in the highly
nonlinear regime came from numerical solution of steady
periodic interfaces [5] and from a forward-time-
dependent calculation [6,7]. These calculations are per-
formed with finite sizes (often with one to two wave-
lengths) and therefore do not allow for the competition
between the active modes in the admissible continuum.
This restriction may be important since there is experi-
mental evidence for a variety of free boundary systems
that soft instabilities of phase type play an important role
in the process by which new patterns are selected [8].

Assume that go( qx ) represents a one-dimensional
steady-state periodic solution of the growth equation with
wavelength 2m/q, go(qx+ip) with qr a constant, is also a
solution for an extended system. For an infinitesimal
phase shift, p«1, one has go(qx +y) =go(qx)
+(tp/q)(Bgo/Bx), where Bgo/Bx is the Goldstone mode
which is a neutral mode of the linearized operator. It is
therefore natural to expect large-wavelength phase fluc-
tuations to be dangerous. Our first aim is to present an
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extensive study of the phase dynamics by adopting a non-
linear WKB method in the boundary integral formula-
tion. Although our analysis will work perfectly well in
any general situation, we will confine ourselves here to
the experimental setup of Simon, Bechhoefer, and Lib-
chaber [8]. Since it has been possible to explore experi-
mentally the whole bifurcation curve predicted by Mul-
lins and Sekerka [2], until the planar-front restabilization,
we will compute the boundaries of phase instability (Eck-
haus instability) in the whole range inside the tongue
where the planar front is unstable. As expected [9], we
find that the actual Eckhaus band is, even close to the
threshold for the planar-front instability, significantly
different from that obtained from the lowest-order ampli-
tude theory. It will emerge from our analysis that the
band of allowed states is significantly reduced but it is
still finite so that we are still faced with the longstanding
puzzle of wavelength selection. Another important result
to emerge here is that the Eckhaus tongue in the "wave-
number-velocity" plane is strongly tilted, so that it offers
a simple way for the experimental study of the Eckhaus
instability. Indeed, the experimental protocol naturally
suggested by this consists in sudden jumps in the pulling
speed.

Of course the phase instability is not the only impor-
tant dynamical manifestation. Recently directional
solidification of liquid crystals and other one-dimensional
pattern-forming systems have exhibited a variety of
symmetry-breaking instabilities. A particularly interest-
ing mode is the so-called solitary asymmetric mode that
travels sideways and seems to play a wavelength-selector
role [10]. This phenomenon is common to other one-
dimensional systems such as lamellar eutectics [11] and
fiuid-fluid systems in the printer geometry [12]. It has
now been well established phenomenologically [13] and
by solving the "microscopic" equations [14] that this
dynamical manifestation results from a secondary bifur-
cation of the underlying symmetric state. Another com-
mon mode is the optical mode where the cell width oscil-
lates in phase opposition with its neighbors [10]. When
the system is driven far away from the point where these
structures take place, the interface seems to develop an
"erratic" motion that was tentatively called "chaos" [10].
In general, dealing with these complex dynamics would
mean solving the full boundary integral equation. This
equation involves nonlocal and retarded interactions
which prove difficult to elucidate in both analytical and
numerical investigations.

By realizing that in the Simon, Bechhoefer, and Lib-
chaber [S] experiment most of the above-mentioned
dynamical manifestations occur in a regime where the
wavelength of the pattern is much larger than the
diffusion length, we could expect the dynamics to be
quasilocal. By using a singular expansion first devised by
Sivashinsky [15] and adopted by Brattkus and Davis [16]
for the one-sided model, we derive here from the full
growth equations the only part that is relevant to the
front dynamics for liquid crystals in the regime of in-
terest. This is a nonlinear partial differential equation
which is much more tractable than the integral equation
and, despite its simplicity, exhibits a large variety of

II. BASIC EQUATIONS

We consider the following situation: an impure nemat-
ic crystal is grown in the z direction at the expense of its
isotropic phase by translating the sample at a constant
velocity V across a thermal gradient 6 established via a
"hot" and a "cold" contact (Fig. 1). The concentration
of impurities far ahead of the advancing interface is
denoted by c„.The diffusion coefficient of impurities in
the crystalline phase is of the same order of magnitude as
in the isotropic phase. We will assume here that this
diffusion is symmetric. Let u =(c —c„)/bcdenote the
dimensionless concentration field in both phases, where
hc =c„(1—k)/k is the equilibrium concentration gap
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FIG. 1. A schematic plot of the directional-solidification set-
Up.

dynamical patterns going from order to chaos [17]. The
discovery of vacillating-breathing mode (or optical mode)
and a generic route to the transition into chaos were
presented recently [17]. Our main objective here is to
give the derivation of the local equation and to emphasize
the great progress offered by this equation in understand-
ing the various complex dynamics. We will also discuss
some other aspects related to the scaling of the wave-
length of the pattern in this regime and compare our re-
sults to experimental findings.

This paper is organized as follows. In Sec. II we write
down the basic equations of growth which are relevant to
liquid-crystal experiments. We then convert them into a
boundary integral equation. In Sec. III we take the in-
tegral equation as a starting point, we extract from it only
that part which is relevant to phase motion, and we
evaluate it analytically in the vicinity of the Mullins-
Sekerka instability. Section IV is devoted to the general
calculation of the phase equation at an arbitrary distance
from the threshold. This involves a numerical solution
of the steady-interface profile and the adjoint function to
the deviation from the steady profile. Section V contains
the results for the phase instability and their discussion.
In Sec. VI we give a derivation of the local equation that
is valid at large enough growth speeds and discuss some
aspects of the results. Some concluding remarks are
presented in Sec. VII.
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T

(3)

where the subscripts l and s refer to the liquid and the
crystalline phase, respectively, 8/Bn stands for the nor-
mal derivative,

M mac
mlLhc '

lG
(4)

are the reduced capillary length and the thermal length,
respectively, where y is the surface tension, TM the melt-
ing temperature of the pure substance, m the absolute
value of the liquidus slope, L the latent heat of fusion per
unit volume, and G the applied thermal gradient. Finally
~ is the curvature taken to be positive for a convex crys-
tal

and k the partition coefficient. We consider one-
dimensional deformations only and assume that the sys-
tem is infinite in the x direction (on the scale of all wave-
lengths of interest). Mass conservation in the bulk, ex-
pressed in the laboratory frame, takes the form

2
~& +~2

at az

where lengths and time are measured in l =2D/V and
1 /D units, respectively. I is the diffusion length, and D
the diffusion constant. At the liquid-crystal interface, the
continuity and the Gibbs-Thomson conditions read, re-
spectively,

( 1 +g2 )3/2

Note that in writing Eq. (2) we have made use of the rela-
tion c, =kc&. In terms of our dimensionless quantities,
this equation transforms into

Q = Ic ( EEi 1 ) .

Note also that Eq. (3) assumes that there is no dissipation
at the interface and that the thermal profile is constant
throughout the sample. This is justified provided that the
heat diffusion plays no role and that the thermal proper-
ties of both phases are identical. The latter situation can
be achieved by using highly conducting plates so that the
heat diffuses essentially through them rather than
through the sample itself, while the first assumption is
usually satisfied because the temperature profile is adia-
batically slaved to the concentration profile. Finally,
since c& is maintained at a constant value at distances
much larger than the diffusion length, the condition on u&

far ahead of the front amounts for all practical purposes
to

(z~ ~ }=0

Equations (1)—(3) and (7) completely describe the dynam-
ics of solidification. For the experimental setup of Simon,
Bechhoefer, and Libchaber [8] k =0.9. In what follows
we will assume a constant miscibility gap, namely, k =1.
This will substantially simplify the algebra. It is possible,
by using the Green's-function techniques to convert this
set of equations into a closed integral equation for the
front profile. The method is standard, we simply give the
result [18]

1 —doi~ — =f dt' f dx'(2+()Q(x, g(x, t), tax', g(x', t'), t'),
—ooT oo

(8)

where

e(b, t) hx '+ b,g'+(b, (+2b, t }2

4~At 4ht
(9)

III. DERIVATION
OF THE PHASE-DIFFUSION EQUATION

Although our derivation can be made more general
than presented here, as can be recognized in our treat-
ment below, we will consider the quasistationary approxi-
mation. This approximation correctly identifies the Eck-
haus boundaries, and since our purpose is to determine
these boundaries, then this is largely sufficient. The

is the diffusion propagator, 8 is the Heaviside step func-
tion, and bx =x —x', bt =t t', bg=g(x, —t) g(x', t'). —
Equation (8) constitutes our starting point for the deriva-
tion of the phase-diffusion equation.

1 —dpX—
l~ f dx'(2+/) exp( —b,g)

XEO((b,g +Ex )' ), (10)

where Kp is the modified Bessel function of order zero.
To derive the phase equation, we adopt a nonlinear

WKB method such as that used by Kramer et al. [19] in
the framework of reaction-diffusion equations. This
method is popular in the nonlinear oscillator community
[20]. The first step of the method consists in seeking
solutions which are 2' periodic in a certain phase y(x, t)

quasistationary assumption means that we can replace in
the kernel of the integral equation g(x', t') by g(x', t}.
Therefore the only dependence on t' that remains in the
integrand comes from At. We can thus perform the in-

tegration over t', so that Eq. (8) becomes
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to be defined below. In a completely homogeneous sys-
tem q =qpx, qp being a constant wave number character-
izing the periodic structure. In the presence of wave-
length fluctuations, however, the wave number is no
longer constant but varies in space and eventually in
time. Since we are interested in slowly varying modula-
tions, the local wave number is a slow function of x and t.
The demand that the wave number q is a slow function of
space is satisfied by requiring that q&(x, t) scales as
y-@(X,t)/e, where e is an auxiliary small parameter
measuring the strength of the modulation, and P a slow
function of space as explicitly expressed by the introduc-
tion of the slow variable X—=ex. On the other hand, be-
cause we are interested in a diffusion process, we may ex-
pect the characteristic time scale of motion of interest to
be of order e . We therefore introduce the slow time
variable ~=e t and write the rapid phase as

P(X,r)

displaying its arguments:

hg=g(qr, X,r) g—(y', X', r') . (17)

We then replace g by its expansion [Eq. (13}]:

5g=g(y, X,r) go—(y', X', r')

+e[g, (p, X,r) g—,(q2', X', r')]+O(e ) . (18)

Since g& multiplies e, the slow arguments X' and r' in g&

can be set equal to X and ~, respectively, since their varia-
tions induce higher-order contributions in e. For the gp
terms, we expand go(tp', X', r') about X'=X for the space
modulations, while the temporal ones are of order e and
can be ignored. In other words,

whenever we differentiate g with respect to x and to t, re-
spectively; q =a//aX is the local wave number. Now the
scheme is to expand g in power series of e:

gp(lp X 7 ) +Eg)(p, X, 'r) + (13}

If our Eq. (10) were local, we could then have to insert
Eqs. (12) and (13) into that equation and deduce in a sys-
tematic way successively higher-order contributions in e.
The present situation is, however, less trivial than with
ordinary partial differential equations. Here, in addition
to the systematic multiscale analysis to be used for the
differential operators, one has to express too the slow
modulations in the kernel of the integral equation. This
situation is similar in principle to that used, for example,
in superconductivity when one performs the Landau-
Ginzburg limit from the BCS theory [21].

Using the fact that the differential of the integration
variable x' is related to the phase g' by dx'=dp'/q(y')
and expanding q (y') about p'=qr, we obtain to order e

We then write formally g(x, t) =g(p, X,r) as if it were de-

pending separately on the rapid variable y and the slow
variables X and ~. We are therefore to understand that
we must make the substitutions

a a a a ap a+2a

0o(q'»' r') =Co(q', X,r)

a (oy, X, r)

+e + +O(e ) (19)
q (p) aX

Inserting Eq. (19) into Eq. (18) and taking into account
the above-mentioned remarks, we obtain

b g= go(gr, X,r) gp(p', X,r)— (~ ~) agp(q&, X, r)

ax

+e[g,(y,X,r) g, (q2', X,—r)]+O(e ) . (20}

A. Order e0

To this order we obtain

From now on, since all the dependences on the slow vari-
ables contain X and r (and not X' and r'), we will omit
these arguments. Having this in mind, we will now plug
Eqs. (16) and (20) into Eq. (10) and classify the contribu-
tions order by order.

q(q ) q2(q ) ax

and in a similar way

ax=~ ~ +e ~
2q3 aX

The time derivative g that appears in Eq. (10) reads

ago(q X} ayg=e
Bf 87

(14)

(15}

(16)

p 1
1 —

domo
— = 1p' exp( —leap)Kp(pp),

lz- mq

where the curvature Kp is given by

, a'0o
q

Blp
'2 3/2

1+
Blp

(21)

(22)

We still need to write b,g in Eq. (10) in terms of the vari-
ables y, y', X and r. To do so, we first write b, g by

~0o=4o(f') 0o(V' ) po= [(~Vq)'+~Co]' ' —~q'—=q
—q'

and Kp is the modified Bessel function of order zero.
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Equation (21) represents the steady version of the full in-
tegral equation (10) parametrized by the local wave num-
ber q(X, r).

Lki=do '"a ' a

B. Order e

d+— exp —6 o
7T —oo q

To this order we obtain an inhomogeneous equation
for g„ X Xo(po)+

~Co
&1(po) ~01

Po
(24)

Lki=f (23)

where L is the Frechet derivative of the integral equation
with respect to g, evaluated at go. It is given by

where E, is the modified Bessel function of order one,
and 2)o:—(1+q 8 go/BqP) '. The homogeneous part in
Eq. (23) which arises from phase modulations takes the
form

1 BP f dt's'b, y exp( —b,go)
mq BX

~Co 1 aq ' ~Co
Ko(Po)+ 3

+ b,go
Po

(25)

In writing this expression we have made use of the fact
that go depends on the slow variable X only via q(X, r)
and that therefore we can write Bgo/BX=(Bq/BX)Bgo/Bq
=(8 PIBX )Bgo/Bq. It is easily shown that the linear
operator L has the translational solution B(o/Btp. It fol-
lows from the Fredholm alternative theorem that the ad-
joint operator L has a nontrivial null space and that g,
exists only if the inhomogeneous term is orthogonal to
the null space. This solvability condition leads to the
sought after phase-diffusion equation. For this purpose
we first rewrite Eq. (23) by using the definition of the
linear operator L in Eq. (24) as

doq' o
' '

g, — + f dq'A(q, q')&g~=f,
T

(26)
where we have introduced the abbreviation A(y, p') for
the kernel which is defined by

~Co
A(q&, p') = Eo(po)+ K, (po) exp( —b go), (27)

m.q Po

which depends on the zeroth-order solution only. The
procedure now consists of multiplying Eq. (26) by the ad-
joint function g, (q2) which is taken to be 2nperiodic, a.nd
integrating over one period

2 cg —3/2
oq

&
o

+g f dy f dq)'A(y, p'+2vrm)[g, (p) g, (q')]g, (—p)= f deaf(q )g)(q ), (28)

where we have restricted the integration over y' in the
original integral term in the interval (0,2') for reasons
that will become clear below. The operator that appears
in the integrand of the first integral is self-adjoint (this is
the Liouville operator); we can therefore interchange g&

and g, . In the second integral, we split it in two parts,
one containing g&(p)g, (y) and the other containing

g, (y')g, (p). We are to understand here that since A
contains a Cauchy singularity, each of the two parts

should be taken in the Cauchy principal value sense. The
part that contains g, (p)g, (g) is obviously self-adjoint,
while this is not the case for the part containing

g, (g')g&(tp), since the kernel A is not symmetric under

the permutation of y and y'. Since the integration vari-
ables y and tp' are dummy variables and each of them is
confined to the same interval, we can interchange y and
y'. After all these manipulations we obtain
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t
f"dq doq'

' (&o'"&~i)— '
Ci(q)

+f dV'g, (V ) g,(f )Pf A(q', q')dq' P—f A(q', 0 )g, (q')dq' =f d%kf, (29)

where P stands for Cauchy principal value.
To define the adjoint homogeneous problem, we consider the homogeneous problem (f =0). Then the equations

should be satisfied for arbitrary but small deviations g, about go. This entails that the adjoint function g, should satisfy

t
Ltgt=d, q' (g) ' 'gt) — +g,Pf A(y, y')dq' Pf—A(y', q )g, (y')dq =0 . (30)

Having defined the adjoint problem in this way, we immediately obtain from Eq. (29} the solvability condition

Jo dye gif=0 which results in the sought after phase-diffusion equation

ay a'y
BX

where A(q) is the phase-diffusion coefficient defined by

(31)

f d%' f "q' e"p( ~00)&o(poli(t}

o
+' aqaq aq

'
aq g~2 aq

1 2n. ag,+ f dye' f dp b,y exp( —b,go)
Bq

hqo2 ~ o

2q

&i(Po)

Po
(32)

go —-vv 1— —(q —q, )
V

cosip, (33)

where Po= —,'8 co/Bq ~, with co the Mullins-Sekerka
C

growth rate, q, the critical wave number, and v a small
parameter measuring the distance from threshold and
defined in such a way that e =po(q —q, } is, to lowest or-
der, the neutral curve. To leading order in v, it is easy to
see that the kernel A(q&, y'} defined by Eq. (27) is sym-
metric in y and y' since Ego-—0 and po is symmetric.
This means that the linear operator is self-adjoint in this
limit. It then follows that L gt=0 is solved by the Gold-
stone mode

0 (34)
Bg

up to an arbitrary multiplicative constant. Substituting

-sing

Equation (31) constitutes a general phase-diffusion equa-
tion which is valid at arbitrary distance above the
Mullins-Sekerka threshold. The evaluation of the phase-
diffusion coefficient A(q) requires the determination of
both the steady-state solution go(qr) which satisfies Eq.
(21), and the adjoint function g, (q) which obeys Eq. (30).
Far away from the threshold, these quantities can only be
determined numerically. Close to the threshold, howev-
er, an analytic evaluation is possible by means of an am-
plitude expansion. To leading order in a standard ampli-
tude expansion, the stationary profile go can be written as

1/2

/q
—

q, /
&

3 o
(36)

are unstable against long-wavelength phase fluctuations.
Since the neutral curve is defined by ~q

—
q, ~

=(v/po)'
Eq. (36) shows that the phase instability reduces the band
of linearly unstable modes by a factor &3. We are there-
fore left with a finite stable band.

The phase band given by the Eckhaus result has been
studied in Rayleigh-Benard convection and seems to
represent well the phase instability boundaries even far
enough from the threshold. While the amplitude theory
describes well the Eckhaus instability in Rayleigh-Benard
convection, this is not the case, however, for the Taylor-
Couette system [23], where a significant deviation from

Eqs. (33) and (34) into . (32), we obtain to leading or-
der in an expansion in v and (q —q, ) that the phase-
diffusion constant is given by

1 —3Po(q —q, ) /v
A(q) = (35)

1 —Po(q —
q, ) /v

This expresses the well-known Eckhaus result [22], which
is quite general close to the threshold, since there the
front dynamics is always described by the complex
Landau-Ginzburg equation. This equation is universal in
the sense that its form does not depend on the physical
details but on symmetry properties only. Equation (35)
indicates that modes with wave numbers q such that

' 1/2
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the full calculation was found. Also there was a strong
suspicion for the directional-solidification systems that
the result (35) should not be accurate even very close to
the threshold. The reason is the mixing of two disparate
length scales, the diffusion length (usually of the order of
100 pm) and the capillary length (of the atomic scale).
The result is a broad spectrum of marginal modes near
the threshold that causes a vigorous mode mixing which
usually escapes standard perturbative techniques. One
therefore naturally expects the lowest-order expansions
to be inadequate. That was the major motive for the
derivation of a general phase equation. As we demon-
strated in a previous Letter [9], and we shall see below,
there is, as expected, a strong deviation of the actual Eck-
haus boundary from that expressed by Eq. (35).

IV. NUMERICAL METHOD

In order to determine the Eckhaus boundaries at an ar-
bitrary distance from the Mullins-Sekerka threshold we
have evaluated the diffusion constant numerically. As
can be seen from Eq. (32), this evaluation requires the
determination of both the stationary profile go, which
obeys Eq. (21), and the adjoint function g, which belongs
to the kernel of the adjoint operator I. [see Eq. (30)].
The method for solving for go is by now standard and we
will therefore keep the discussion brief and merely em-
phasize the strategy. An extensive discussion of the
method has been given recently in the context of eutectic
growth [24]. Our method of discretization of the inter-
face is the boundary element method [25], which has been
used by Saito, Golbeck-Wood and Muller-Krumbhaar
[26] in the context of free dendritic growth. We find it
convenient to represent the interface by its intrinsic coor-
dinates rather than by Cartesian coordinates. That is, we
take the angle 8(s) between the normal to the interface
and the growth axis as a function of the curvilinear coor-
dinate s as the unknown. We consider symmetric and
periodic solutions so that the integration interval can be
taken to be (0,A, /2 ). If N is the number of discretization
points over this interval, we have N —1 angles 8; (we take
all the points to be equidistant). An intrinsic representa-
tion has, by its very nature, an arbitrary origin. The
translational invariance tells us that the x coordinate of
that origin can be taken anywhere (here we choose it at
x =0). However, because of the existence of an external
thermal gradient, the z coordinate of that origin is not ar-
bitrary but should be fixed self-consistently. Let this un-

known be denoted by zo. We then have N variables in to-
tal (0, , . . . , O~, ,zo). We have N equations in turn.
Indeed we impose the integral equation [Eq. (21)] every-
where except at the end points of the integration domain,
which means that we solve that equation for N —2
points. At the two end points (0 and A, /2) we impose the
smoothness condition instead. That is, we impose that
g'(0) =0 and g(A, /2) =0. The total number of equations
is N also, and the problem is well posed. After discretiza-
tion we obtain N nonlinear algebraic equations for the N
unknowns. These equations are solved by means of a
standard Newton-Raphson scheme. There is, however,
one complication: we cannot prevent the Newton-

BXt=0, (37)

where the matrix B depends on the zeroth-order solution

go, and X is a column vector representing g, . If Eq. (37)
is to have a nontrivial solution, the matrix 8 should be
singular. The problem amounts then to searching for
those nonzero X elements which satisfy Eq. (37). To find

the null space of 8 we have made use of the singular-
value decomposition method [27]. The method consists
in decomposing B as

B =UMV (38)

where U and V are orthogonal matrices (UU =1 and

0.2

o 0-

-0.2 '

02 0 0.2 0.4 0.6
X

FIG. 2. A typical front profile.

Raphson method from converging to the planar-front
solution, which exists everywhere in the parameter space.
We can circumvent this difKiculty by using the following
trick. We force temporarily the interface position at
x =0 to a prescribed value zo. By doing so we cannot in
general satisfy the smoothness condition at x =0, unless
we miraculously choose the exact value for zo. This
means that in general the interface shape will exhibit
cusps at x =0. We will then progressively vary zo until
the condition g(0)=0 is met. This happens for isolated
values of zo (but A, is arbitrary inside the neutral curve).
Once a nonplanar and physical solution is found, we can
vary progressively the parameters (e.g. , A, , V, . ..) in a cer-
tain desired direction and follow the evolution of the
front profile.

Figure 2 shows a typical front profile. We should re-
mark, in accord with what we mentioned in the introduc-
tion, that the interface never develops deep grooves; the
front deformation is of the order of the wavelength. The
reason for this behavior is twofold. (i) The partition
coeScient in the liquid-crystal system is close to one. As
a consequence the band of unstable modes is significantly
smaller [7] than the one met in ordinary systems (e.g. ,
succinonitrile). (ii) The impurity diffusion is quasisym-
metric. There exists now in the crystalline phase a short
circuit of the mass current that operates on the scale of
the wavelength, which thereby strongly reduces the de-
velopment of the front deformation.

The next step of our investigation consists in solving
for the adjoint function gt, which satisfies the equation
Xt(, =0. This equation is linear and nonlocal. The
method of discretization is similar to the one used above
for the steady-state problem. The logarithmic and the
algebraic singularities arising from the Bessel functions
Ko and E, are extracted analytically. The equation for
g~& can be formally written in a matrix form
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FIG. 3. A typical form of the adjoint function.

VV = 1) and M is a diagonal matrix whose (non-
negative} elements co; are called the singular values of B
Equation (38) can be thought of as a generalization of the
diagonalization theorem to an arbitrary matrix. If B is a
singular matrix, this means that the (diagonal) matrix M
has at least one singular value which is zero. The number
of the zero singular values defines the nullity of B. The
nontrivial elements Xt are given by the column vectors of
V whose same numbered elements co; are zero. It goes
without saying that the computed singular values can be
expected at best to be as precise as the computed solution

go (approximately 10 }. Very close to the Mullins-
Sekerka threshold ( ((1%) we find two singular values of
size 10 and 10 while the others are significantly
larger ()0. 1). One of the singular eigenfunctions is the
antisymmetric translational solution and the other is a
symmetric shadow of the linearized cell. Slightly above
the threshold only the singular value of the antisym-
metric solution remains small and the corresponding
eigenfunction quickly deviates from the translational
mode. Figure 3 shows a typical eigenfunction.

V. THE RESULTS

Having determined the stationary profile go and the ad-
joint function g„weare in a position to determine the
Eckhaus boundaries. These are determined by the condi-
tion that the diffusion coefficient A(q) vanishes. Close to
the Mullins-Sekerka threshold we use the result which
follows from the amplitude theory to guess both the
profile go and the Eckhaus boundary. Once a point on
the Eckhaus boundary is determined, we use successive
extrapolations to determine the guess for next points and
so on. The overall picture of our results is summarized in
Figs. 4 and 5. There we have chosen our units so that the
impurity diffusion constant D and the physical thermal
length are both equal to one. In these units we have tak-
en do=10, which is a typical value in liquid-crystal
systems [10]. Figure 4 shows our results close to the
Mullins-Sekerka threshold, and their comparison to the
usual amplitude theory. The full line represents the neu-
tral curve, the dashed line the Eckhaus boundaries ob-
tained from the amplitude equation, the symbols the Eck-
haus boundaries determined from the full calculation,
and the dotted curve the linearly most dangerous mode.

FIG. 4. The full line represents the neutral curve, the dashed
line the Eckhaus boundaries computed from the lowest-order
amplitude equation, the symbols the actual Eckhaus boundaries,
the dotted line the linearly most dangerous mode. These results
are computed close to the Mullins-Sekerka threshold.
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FIG. 5. Same as in Fig. 4, but the results are computed over
the tongue, that is, until the planar-front restabilization (units
are chosen in such a way that D = IT = 1).

The deviation of our result from those which follow from
the amplitude theory is dramatic. This result clearly in-
dicates that, despite the moderate deformation of the in-
terface, the front dynamics strongly escape the standard
amplitude description even very close to the threshold.
Nate also that the curve representing the most dangerous
mode (the dotted curve} leaves very quickly the stable
band obtained from the amplitude equation, but remains
permanently inside the stable band of the full calculation.
It is worth pointing out that the Eckhaus stable band fits
inside the band of nonlinearly allowed states found from
steady calculations [5].

Figure 5 shows our results over the tongue, that is, un-
til the planar-front restabilization (the restabilization is
reached because the diffusion length becomes of the order
of the capillary length).

An important feature of the calculated Eckhaus tongue
is that it is strongly tilted. This tilt offers a simple experi-
mental protocol to have access to the phase instability.
Indeed a sudden jump of the growth speed should tem-
porarily force the system in the unstable regime. The
phase instability should then manifest itself by a large-
scale modulation of the interface periodicity leading ulti-
mately to a destruction, or a creation of a new cell, ac-



A. GHAZALI AND C. MISBAH

~ 0.6-

V

0e 0.4
O

0
th 02
O

0
16 18 20

Wave number
22

FIG. 6. A typical behavior of the phase-diffusion coeScient
as a function of the wave number q (units are chosen in such a
way that D =1&=1).

cording to whether the imposed wavelength is too small
or too large.

It is worth pointing out, however, that the velocity
jump should be sudden enough such that between the ini-
tial and final velocity the phase of the pattern does not
practically evolve. In other words the phase-diffusion
process should be slow enough. Figure 6 shows the
phase-diffusion coefficient as a function of the wave num-
ber q for a typical velocity ( V =40). One observes in this
figure that the diffusion constant is maximum close to the
wave number that provides the fastest growing mode.
The average value of the diffusion constant in the stable
band is of the order of 1. If one goes back to physical
units this means that the phase motion should evolve on a
time scale comparable to that of the relaxation of the
diffusion field. This time is of the order of D/V, which
is typically in the range of a second. This makes a rather
serious constraint on the velocity jump.

VI. LOCAL DYNAMICS

Since the discovery of the so-called "solitary modes"
by Simon, Bechhoefer, and I.ibchaber [8] during direc-
tional growth of a nematic phase at the expense of its iso-
tropic phase, interfacial instabilities have gained a
renewed interest. Soon after that discovery it became
clear that this mode of growth is a robust feature of vari-
ous one-dimensional systems [8,11,12,28,29]. Many of
these systems have revealed other instabilities, such as
"optical modes" (or vacillating-breathing modes). Under
some circumstances [12,30—32] the dynamics become ap-
parently irregular, an irregularity which has been tenta-
tively called "chaos." These rich dynamics clearly indi-

cate that the Eckhaus instability is not the only relevant
one. Therefore in the hope to achieve a deeper under-
standing of pattern formation one should perform a fu11

linear stability analysis, and ultimate1y integrate the full
integral equation to study the nonlinear evolution of the
instabilities.

In general the equation [e.g. , Eq. (8)] that governs the
front dynamics involves nonlocal and retarded interac-
tions, which cause difficulties for both analytical and nu-
merical investigations. In particular, it is not a priori leg-
itimate to make use of the (very useful) quasistationary
approximation, if one is interested in Hopf bifurcations.
It is therefore strongly desirable to have at our disposal a

co+2=2(1 —lr ' —doq )( I+q +a))'~ (39)

The bifurcation is defined by co =0 and Boo/Bq =0. Using
(39), we obtain the critical condition for the onset of the
planar-front instability

' 1/3

1 —I '=3
T 4 p (40)

and the critical wave number

1

4dp

1/3

(41)

Equation (41) is meaningful only if do ~
—,'. In the limit

dp —,', q, 0. The limit dp- —,
' is the limit of large

speeds where the physical capillary length becomes of the
order of the diffusion length (recall that the lengths are
reduced by the diffusion length l =2D/V). We will con-
centrate on the asymptotic limit where q, ~0 (that is,
when the Peclet number is large). For that purpose we
introduce a small auxiliary parameter e defined to be the
distance from the "extreme" limit,

e= —' —dp .
2

(42)

It follows then from Eq. (41) that

q, = 4@+0(F. ) .

Using Eq. (40) we obtain that lr ' scales as

(43)

1 2~2

Equation (43) shows that the front dynamics is governed
in the regime of interest by 1ong-wavelength Auctuations.
This means in real space that the front profile is a slowly

varying quantity which varies on the scale of e

Similarly, we can show from Eq. (39) that co scales as
co-e. In other words, co-q„which means that the use

of the quasisteady approximation [which amounts to
neglecting co in the square root in Eq. (39)] is not legiti-

mate, as cou1d be expected. Now we are in a position to
develop the usual multiscale method. That is, we intro-

(44)

more tractable system. We realized that most of the
above-mentioned dynamics occur for liquid crystals [32]
in a regime where the wavelength of the pattern is
significantly larger than the diffusion length; typically
A, /I =10. We could then expect the front dynamics to be
quasilocal. By using a method first devised by Sivashin-
sky [15] and used by Brattkus and Davis [16] for the
one-sided model, we have derived a similar equation ap-
propriate for liquid-crystal systems. We will present
below the main lines of the derivation and discuss some
of the results. This equation, despite its apparent simpli-
city, reveals a rich dynamics going from order to chaos,
for which we have already given a brief report [17].

The starting point of the derivation of the evolution
equation is the determination of the characteristic tern-
poral and spatial scales of the dynamics. This can be
done by first performing the linear-stability analysis of
the planar front. If one considers fluctuations of the form
e''i"+ ' and uses either Eqs. (1)—(3), (6), or equivalently
Eq. (8), we obtain the following dispersion relation:
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duce slow space and time variables

X=x~e, T=eT, Z =z . (45)

H(—X, T)=Ho(X, T)+eH, (X, T)+ (46)

It can be shown that the scale for the front profile is e,
that is, the calculation to be developed below is valid for
order one deformations. We set

B. Order e

De
—2Z Zp

—2Z Z )Hp
Q

(51)

Expanding Eqs. (1)—(3) and (6) up to order e and using
the previous-order results we obtain for the bulk

Similarly, we write the difFusion field as

U(X, T,z}=uo+eu&+ (47
where

ui =C, Z (Hp, (52)

Finally, according to (44} we rescale the thermal length as 2HOF= 2[2H—ox+Hoxx Hor —]e (53)
lr '=e lr (48)

where lz ' is a length of order one. Now the scheme is to
insert (45) together with (42) and (46)—(48) into the
governing equations (1)—(3) and (6) to deduce successively
higher-order contributions in power series of e. The cal-
culation is somewhat lengthy but straightforward.

A. Order e

To this order we find

C=, D = +[2H)+C]eHpx~ FHp

2
'

2
(54)

and where D and C are integration factors depending on
the slow variables. Using the interface boundary condi-
tions we obtain

—2(Z —Hp) Z &Hp
Qp= '

0, Z &Hp,

where Hp is undetermined at this order.

(49)

(50}

At this order neither Hp nor H& are determined. The
really interesting result appears in the next order, where
the compatibility condition becomes a constraint for Hp,
which is nothing but the evolution equation that we want
to determine. The algebra is lengthy, we will simply give
the result

3Hoxxxx 4Hoxxr+H—orr+8Hoxx+8lr Ho=4HoxHoxr+2HoxxHor 4(Hox)xx —2(Hox}x+2Hoxx . (55}

Note that this equation is of second order in time. This is
a consequence of the nonquasistationary character of the
interactions. Indeed the difFusion field evolves on a time
scale comparable to that of the interface motion and
therefore acts as a feedback on it. As a consequence a
"propagative"-type term appears in Eq. (55). Stated in
another way the front motion incorporates retardation
effects due to the fact that the diffusion does not respond
instantaneously; the second time derivative can be
thought of as the first expansion of a retardation diffusion
kernel.

We note also that the only parameter that remains in
Eq. (55) is lr, which is the inverse of the driving force
(lr '-G/V; recall that G is the applied thermal gra-
dient).

We have recently shown [17] that Eq. (55) exhibits a
rich dynamics: symmetric steady solutions, parity-
broken traveling states, vacillating breathing, and chaos.
We are planning to report extensively along this line in
the near future. Let us here simply point out some sim-
ple properties of Eq. (55).

First, by integrating Eq. (55) over a period we obtain

that the mean front position obeys for a periodic solution
the following inequality:

& Ho &
= —,& H oxx & & 0 .l

4l
(56)

1 Gf—
V V

(57)

This result follows simply from the fact that in Eq. (55}
the lengths are reduced by I and that lz —G/V. This is
a purely dimensional analysis. This result contrasts with

This result is to be contrasted to the one obtained for the
one-sided model where & Ho ) =0. In the symmetric mod-
el we are considering, the forward advance of the mean
position is attributed to the existence of a short circuit of
the mass current in the crystalline phase (i.e., the nematic
phase). The advance is necessary to guarantee the mass
conservation on the global scale.

Another interesting result in this "large"-speed regime
is that the physical wavelength of the pattern A, scales
with the growth velocity and with the thermal gradient as
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the pattern scales on a much shorter length, A, -e
[see Eq. (43)]. In other words, 1T ))A, and therefore the
interface can be viewed as evolving in a quasi-isothermal
environment. The effect of the thermal gradient is theo
expected to be very weak.

VII. CONCLUSION

0.200--

0.000
0.000 0.500 1,000 1.500 2.000

FIG. 7. The full line represents the neutral curve, the sym-

bols delimit the domain of existence of steady-state and sym-

metric solutions with a fundamental wave number q. At the
"vertical" line, represented by triangles to the left, the q family
runs into a fold singularity and merges with solutions having 2q
as a basic wave number.

the one derived in the small-Peclet-number limit [33]
where A. -l/&Vf(G/V). We have computed [34] the
domain of existence of steady-state and symmetric solu-
tions inside the neutral curve. Figure 7 shows the results.
There exists a continuous family of these solutions delim-
ited by the triangles. For large wave numbers the family
extends up to the neutral curve, while for small wave
numbers it runs into a fold singularity and merges with
solutions having 2q as a basic wave number. This event
occurs when the 2q mode becomes quasineutral, as can
easily be checked in Fig. 7 with the help of a rule. A re-
markable point is that the wave number q (which is the
reduced one) is approximately constant along the fold
singularity line, which means that the scaling function in
Eq. (57) f=const. This entails that the physical wave-

length should approximately follow the scaling

k- I/V . (58)

This result is consistent with the observations made in
the large-Peclet-number limit where the selected wave-

length follows the same scaling [10]. The reason why

f =const is easy to understand. First we should indicate
that this result means that the effect of the thermal gra-
dient on the wavelength of the pattern is extremely weak.
This is traced back to the fact that the thermal length
scales as IT —e [see Eq. (44)] while the wavelength of

We briefly sum up the main lines treated in this paper.
(i) We have given an extensive derivation of the phase-

diffusion equation from the front integral equation by
making use of a nonlinear WKB method. Our derivation
is general and can be extended to the one-sided model, or
to situations where diffusion is asymmetric.

(ii) We have confined ourselves to the experimental set-

up relative to liquid-crystal systems, where the front dy-
namics is appropriately described by the symmetric mod-
el with a constant miscibility gap. Since the regime of the
planar-front restabilization has become by now accessible
to standard experiments [10,29], we have computed the
Eckhaus boundaries inside the tongue where the planar
front is unstable. We find that even very close to the
Mullins-Sekerka threshold, the actual Eckhaus boun-
daries strongly deviate from those obtained from the
lowest-order Landau-Ginzburg expansion. A remarkable
result is that the actual Eckhaus tongue is strongly tilted
and inspires a simple experimental protocol for its experi-
mental investigation.

(iii) With the aim to study other types of instabilities,
including parity breaking, vacillating breathing, and
chaos, we have brought out a simple local equation ap-
propriate for experiments on liquid crystals. This equa-
tion has indeed proven to retain many interesting features
of interface dynamics. The discovery of a quasiperiodic
route into chaos [17] is one of the richnesses of this equa-
tion. We are investigating other features of interface dy-
namics exhibited by this equation, and in particular the
transition to spatiotemporal chaos. The preliminary re-
sults are promising and we are planning to communicate
them in the future.
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