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Long-time self-diffusion coefficients of suspensions
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We present a theory for calculation of the long-time self-diffusion coefficient of suspensions of in-

teracting colloidal particles without hydrodynamic interactions. The theory follows the idea put for-
ward in the preceding paper [Jan A. Leegwater and Grzegorz Szamel, Phys. Rev. A 46, 4999 {1992)]:
The self-friction coefficient is calculated approximately and the self-difFusion coefficient can be obtained
using the Einstein relation. To calculate the friction coefficient, we retain the part of the three-particle
dynamical correlations that can be expressed in terms of the two-particle dynamical correlations. In this

way we renormalize the two-particle dynamics. To get explicit results for hard spheres, we introduce a
decoupling approximation for the long-time contributions to the friction coefficient. For intermediate
densities the predictions of our theory agree very well with Brownian-dynamics simulation.

PACS number(s): 82.70.Dd, 05.40.+j, 47.15.Pn, 51.20.+d

I. INTRODUCTION

In the preceding paper [1], hereafter referred to as I,
we presented a microscopic theory for the dynamic prop-
erties of a model suspension without hydrodynamic in-
teractions. There are two reasons for studying this mod-
el: First, the results can be used to describe suspensions
of highly charged colloidal particles (see, however, [2)).
Second, a comparison (Ref. [3], Sec. V.I.5) of experimen-
tal data and Brownian-dynamics simulation results shows
that at least for not too low densities quite a reasonable
way to account for the hydrodynamic interactions is to
introduce an effective diffusion constant such that the
short time properties are reproduced (see also [4]). Hence
the present work can also be relevant for understanding
dynamic properties of suspensions of noncharged parti-
cles.

The main idea of our approach was to formulate a
theory that approximates the friction coefficient rather
than the diffusion coefFicient. The diffusion coefficient
can then be calculated using the Einstein relation.
Within this scheme we derived a very simple theory and
applied it to a hard-sphere suspension. The theory was
based on ideas of the Enskog kinetic theory [5] of a dense
hard-sphere fluid: to calculate approximately the friction
coefficients we dropped three-particle dynamical effects
but retained static correlations. The theory of I satisfies
the exact short-time limit for a hard-sphere suspension.
Also the long-time properties were reproduced reason-
ably well. In the case of the so-called long-time self-
friction coefficient the deviations between the predictions
of our theory and Brownian-dynamics results were rem-
iniscent of what is found for atomic fluids, where the En-
skog theory gives too high results for intermediate densi-
ties and too low results near the crystallization density
[6]. For atomic fluids it is known that the main source of
the deviations for intermediate densities is that in the
Enskog theory one completely neglects correlated col-
lisions.

Here we present a more advanced theory. The present

theory is based on ideas of an approximate hard-sphere
kinetic theory of Resibois and Lebowitz [7] that was pro-
posed to improve on the Enskog kinetic theory while
staying in the same spirit.

We follow I in that the friction coefficient is approxi-
mated rather than the diffusion coefficient. We propose a
closure approximation. Next, we make a decoupling ap-
proximation for a part of the rather complicated expres-
sion obtained from the closure. The main difference with
I is that the theory of this paper includes correlated "col-
lision" sequences in a certain approximate way. For in-
termediate densities the present theory reproduces very
well Brownian-dynamics results for the long-time self-
friction coefficient: for all volume fractions up to /=0. 4
the difference between the theory and simulation is less
than 5% ($=4~na /3, n is the density of colloidal parti-
cles, and a is particle radius). The results for the time-
integrated wave-vector-dependent self-friction kernel are
somewhat less accurate.

The theory is not restricted to the hard-sphere interac-
tion. We study hard spheres because we can use simple,
approximate formulas for the static correlation functions
that are known to reproduce the equilibrium properties
very well [6]. Furthermore, Brownian-dynamics simula-
tions have been performed for this model system [8,9]
and we can test our theoretical predictions against those
results. In this way we avoid the difficulties connected
with the additional approximations involved when com-
paring real colloidal suspensions to our calculations.
Also, for hard spheres it is much easier to arrive at
analytical expressions.

The paper is organized as follows: In Sec. II we

present a closure approximation and derive an expression
for the time-integrated wave-vector-dependent friction
coefficient. In Sec. III we formulate a decoupling approx-
imation. In Sec. IV we present predictions of the theory
and compare them with Brownian-dynamics results. We
summarize the results in Sec. V. Some theoretical con-
siderations leading to the closure approximation are
relegated to the Appendix.
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II. APPROXIMATE CLOSURE

In the preceding paper we derived a formalism that en-
ables calculation of the self-friction kernel g, (k;z). Here
we use the same notation as in that paper. The formalism
can be briefly summarized as follows: First the difference

5n2 between the nonequilibrium pair distribution func-
tion and the local equilibrium pair distribution function
can be exactly expressed in terms of the tagged-particle
current density j, as the solution of the following evolu-
tion equation [Eq. (42) of I; hereafter equations of the
preceding paper are referred to as (I.42) and so on]:

rz ) tt [Vfg2 (r f2 ) 1 j,(rt't)+Do[ V i+ V2 (Vi V2) '&Fi2]5tt2(r»r2' )

2

+nV& g2 (r& z)f dr3PF&35n2(r&, r3 , t)

'Dog�—

V; fdry;35n3(1, rz 13 t) .

goj, (r„'t) fdrzF—,25n2(r, , r2, t) = —
ktt TV,n, (r, ;t ) .

(2)

Finally we get the self-friction kernel comparing the re-
sult with the following constitutive relation that can be
obtained from (I.23) and (I.25):

g, (k;z)j, (k;z) = ikks —Tn, (k;z) . (3)

Note that the left-hand side is the friction force acting on
the tagged particle and the right-hand side is the osmotic
(or entropic) force.

Equation (1) is not closed —to get any explicit result
we have to make some approximations for the three-
particle dynamical correlations 5n3. In I our aim was as
follows: first, to keep the two-particle dynamics only,

Then in order to arrive at the friction coefficient we sub-
stitute 5nz into relation (1.38) between the current density

jq, the dynamical correlations 5n2, and the gradient of
the tagged-particle density V, n, :

and, second, to take into account the enhanced probabili-
ty of binary encounters. Here we want to include that
part of the three-particle dynamical correlations 5n3 that
can be expressed in terms of the two-particle dynamical
correlations 5nz. In a sense we want to renormalize also
the two-particle dynamics by the static correlations. To
this end one has to separate 5n3 into two parts. The first
one will be expressed in terms of 5n2 and the second one,
to be neglected in the end, will be called the three-particle
irreducible dynamical correlations. The separation of
5n3 into two parts is a generalization of the separation
(I.35) of nz and n3 into local equilibrium parts that are
expressed in terms of the tagged-particle density n, and
the remaining parts describing the nonequilibrium
dynamical correlations. There are a number of ways to
arrive at the required separation. In the main text we
just present the result and give a brief physical interpreta-
tion. This point is discussed at some length in the Ap-
pendix.

We separate the three-particle dynamical correlations
in the following way:

5+3(rl rz r3' )=fdr4[tt'g3'(r&» 3)[5(r24)+5(r34)]+n [g4 ( f 2 3 4) g3 (Il r2 r3)g2 (F14)]I

5(r4s)
X dry

ng'q(r, )

—d(r&,'r4, r5) 5nz(r&, r5', t)+5n3 (r] rz r3 t) . (4)

Here function d(r, ;r2, r3) is defined as a solution of the
generalized Ornstein-Zernike equation (A13).

The physical interpretation of the separation (4) is as
follows: the first term in (4) describes the part of the
three-particle correlations in a nonequilibrium state that
has the same form as the equilibrium correlations in a
system in external two-particle potential, the potential
being chosen in such a way that the actual two-particle
density is recovered (for further discussion see the Ap-
pendix). As the two-particle potential can influence the
correlations very profoundly, we hope that the closure

5n 3"=0 retains a major part of the nonequilibrium corre-
lations.

Substituting form (4) of the three-particle dynamical
correlations into evolution equation (1) we obtain a rather
complicated evolution equation. This equation can be
simplified with use of the second and the third equations
of the equilibrium Yvon-Born-Green hierarchy [6]. The
explicit calculations are rather lengthy but relatively sim-
ple and need not be presented here. The final form of the
evolution equation reads
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a—5nz(r„rz;t) = —n [V1gz (r, z }) j,(r, ;t)
at

DpV1 fdr3[ng2 ( 12)5( z3}+ 'I g3 1 2 3 gz 12 gz 13))]

5(r34)
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ng2 (r13 }
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The evolution equation is not closed yet. The closure approximation of the theory presented here is to neglect the
three-particle irreducible correlations, 5n 3"=0. In this way we obtain from (5) a closed evolution equation that is the
starting point of the further analysis.

Note that closure 5n 3"=0 is exact at short times: for continuous potentials we reproduce exactly the second time
derivative of F, ( k; t). For the hard-sphere potential the dominant short-time term proportional to t ~ is reproduced
exactly (see I). Further analysis is needed to investigate whether also the term proportional to t is correctly retained in
this case.

Using the evolution equation (5) with closure 5n 3"=0 we can express the dynamical correlations 5nz in terms of the
tagged-particle current j,

1
5nz(r1 rz'z}= —n „„[V1g2(r12)) j,(rl

z —Q"" (6)

Here Qz'" denotes the renormalized two-particle Smoluchowski operator that acts on a function f(r1, rz ) in the follow-

ing way:

&2 "f(r1 rz}=DpV1 f«3[ngz (r» }5(r23)+n'[g3 (r»r»r3) —
gz (r» )gz (r» )))

5(r34)
X V, fdr4 —d(r, ;r3, r4) f(r, , r4)

ng2 (r, 3 )

5( r24 }
+DpVzng z (r, z ) Vz f dr4 ~ d(r1 , rz, r4—) f(r'1, r4) .

ng2 (r12 )

Substituting the expression (6) into the relation (2) between the tagged-particle gradient, the dynamical correlations, and
the tagged-particle current, Fourier transforming and comparing the formula with constitutive relation (3), we obtain
the approximate expression for the interaction part of the self-friction kernel:

g, t(k;z)= —fdr1 f drze '(k F,z), [k V,gzq(r1z )]e
z —Q2'"

(8)

Here V denotes the volume of the system (the thermodynamic limit is understood} and to get the expression (8) we used
the fact that the self-friction kernel is translationally invariant.

The expression for the wave-vector-dependent self-friction kernel g, t(k) can be rewritten in a more symmetric way.
Using the second equation of the Yvon-Born-Green hierarchy [6] and the Ornstein-Zernike-like equation (A 13), we can
write the expression (8}for z =0 in the following form:

n k~ T —i k.r&
ik.rl

g, t(k) = — fdr, f drze '[k.V1gz (r12 )](Qz'") [k V1gz (r1z ) ]e (9)

Here Qz'" is a symmetrized renormalized two-particle Smoluchowski operator:

&z'"f(r, , rz) =DpV, fdr3 [ ngz (r, z )5(rz3) +n [g 3 (r, , rz, r3) —gz (r, z )gz (r, 3 )])
.V,f(r, , r3)

+DpVzngz (r1z ) Vzf (r1,rz) . ( 10)
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III. DECOUPLING APPROXIMATION

To get explicit results from Eq. (9) one has to solve the
integro-differential equation

Q2 "f(rl r2}=k ~lg2 (r12 }e (11)

involving the triple distribution g3q. This is a rather com-
plicated task and requires a considerable computational
effort. Here we instead propose a simple approximation
that is based on the observation made in I that Enskog-
like theory reproduces the transport properties surpris-
ingly well.

Let us c(insider th self-friction coefficient. We start
with rewriti ing Eq. (9) n the following form:

—~s short time+ r;- s.short time }i~s, I bs, I
Here g"I'"" ' is the Enskog-like result of I:

(12)

short time
s,I

fdr, fdr2(k. F,2)(Q2) '(k F,2)g(r, 2),
B

(13)

I

Note that if the distance r &2 is much larger than the static
correlation length, renormalized two-particle operator
Q2'" reduces to the sum of two one-particle Smolu-

chowski operators.
The expression (9} is the main formal result of the

present paper. The only approximation that was made

up to now was the closure 5n 3"=0.

and superscript "short time" has been added to em-
phasize that (13) results from time-integrating of the ex-
pression (I.45) that is exact at short times for the hard-
sphere interaction (for continuous potentials it is essen-
tially a binary-interaction result and it should contain
most of the exact short-time contributions except at high
densities; this remark applies also to arguments that fol-
low below). In Eq. (13) Q2 denotes the two particle Smo-
luchowski operator, i.e., the low density limit of Qz'".
For the hard-sphere potential p,"I"'" '=2pgzq(2t2)$0.

As the first term at the right-hand side of Eq. (12)
correctly takes the short-time processes into account, the
rest should correspond to long-time processes. Then it is
plausible that the dominant contribution to the difference
at the right-hand side of Eq. (12}comes from the process-
es in which particles are well separated. Therefore we ex-
pect that a calculation of the terms in parentheses at the
right-hand side of Eq. (12) in the decoupling approxima-
tion should give quite reasonable results. The additional
justification is one of simplicity: we know that the first
term is the dominant one. Then even if we make an error
in estimating the terms in parentheses we are going to
make a much smaller relative error in the sum.

To get the decoupling approximation we replace the
renormalized two-particle Smoluchowski operator and
the two-particle Smoluchowski operator in the terms in
parentheses at the right-hand side of Eq. (12) by the sum
of two one-particle Smoluchowski operators:

nk T
(ks, I Ps I }decoupling Is fdrl fdr2[k ~lg2 (r12 }l(Q2 } [k ~lg2 (r12 }l

fdr, fdr2(k F,2}(Q2") '(k.F,2)g(r, 2),
B

(14)

and Q2" is given by the relation

f(rl r2)=D0[&1+&2]f(rl r2) ~ (15)

gzq(2t2}. Hence for hard-sphere suspensions the Enskog-
like theory and decoupling approximation (14} give to-
gether the following result:

We would like to point out that the first term at the
right-hand side of Eq. (14) is the result obtained by
Medina-Noyola [4] using a mode-coupling-like theory,

[k,h(k)]
( ks, I }decoupling 40f (16)

(2m. } 2k

Here h (k) = [1—S(k)]/n with S(k) being the static
structure factor [6].

The approach presented above can be easily general-
ized to calculation of wave-number-dependent self-
friction kernel g, I(k).

IV. RESULTS AND DISCUSSION

For the hard-sphere potential the second term at the
right-hand side of Eq. (14}can be easily calculated. It is
equal to the low-density mode-coupling result 4/3+'0
"renormalized" by the pair distribution at contact

C,I Og2 (2~40+(C, I)d o li (17)

In Fig. 1 we compare simple expression (17) with the
Brownian-dynamics simulation results of Cichocki and
Hinsen [9,10]. The accuracy is very satisfactory: for all
volume fractions up to /=0. 4 the difference between the
theory and simulation is less than 5%. For a comparison
we also plotted the results of simple Enskog-like theory
of I. For not too high volume fractions, up to /=0. 4 the
present theory represents a significant improvement in
comparison to the Enskog-like theory. This could have
been expected as the decoupling approximation includes
correlated "collision" sequences; it is reminiscent of the
ring approximation of the kinetic theory of atomic fluids.

We also made a comparison with predictions of the
mode-coupling-like calculation of Ref. [4] and results of a
mode-coupling theory along the lines of Ref. [10]. In the
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FIG. 1. The interaction contribution to the self-friction
coefficient g, I normalized by the solvent (zeroth order in densi-

ty) friction gp as a function of the volume fraction P =4m na'/3
Solid line: present theory; circles: simulation data of Cichocki
and Hinsen [9]; long-dashed line: Enskog-like theory of Ref.
[1]; dot-dashed line: mode-coupling theory of Hess and Klein
[10] with short-time "propagators"; dashed line: mode-
coupling-like theory of Medina-Noyola [4].

latter case we used expression (10.11) of [10] and adopted
a short-time form of the "propagators. " The results of
both calculations deviate substantially from the simula-
tion results. One can argue that a self-consistent mode-
coupling theory may give better results. Such a theory is,
however, much more complicated from the calculational
point of view than the rather simple approach presented
here. Furthermore, even within the self-consistent
mode-coupling approach one decouples also the short-
time contributions to the self-friction coefficient, which is
a rather crude approximation.

It is worth noting that our final result [(12) and (14)] is
somewhat similar to the expression proposed by Cichocki
and Hinsen [8]. Their expression involves memory func-
tions in a self-consistent way and hence numerical evalua-
tion requires a large computational effort. The other
point is that our Enskog-like theory is the dominant con-
tribution in (12) whereas their Enskog-like approximation
gives the low-density result 2$(o for the interaction part
of the self-friction coefficient.

For very high volume fractions P & 0.4 the present
theory, i.e., Eq. (9) teith the decoupling approximation
(14), does not reproduce Brownian-dynamics simulation
results. It is possible that the agreement can be improved
by solving Eq. (11) instead of resorting to the decoupling
approximation. However, to get satisfactory results for
the highest densities one needs to include collective
"cage" effects. It is not clear whether they are taken into
account in Eq. (9). If not, a more refined closure approxi-
mation may work.

Finally we compare the results for wave-number-
dependent self-friction kernel g, I(k). One should expect
that the agreement with Brownian-dynamics simulation
results is not that good in this case since finite k corre-
sponds to small distances and then the decoupling ap-
proximation cannot be expected to hold. In Fig. 2 we
show that this is indeed the case: the agreement between

FIG. 2. The interaction contribution to the self-friction ker-
nel integrated over time g, ,(k) divided by the solvent friction gp

as a function of wave vector in units a ' for volume fraction

P =0.3. Solid line: present theory; circles: simulations of
Cichocki and Hinsen [9]; dashed line: Enskog-like theory of
Ref. [1].

wave-number-dependent self-friction kernel g, t(k) and
Brownian-dynamic data of Ref. [8] is somewhat less satis-
factory. In particular, one may expect the Enskog-like
theory to give essentially exact results in the high-k limit
[it is exact for short times and only short times are ex-
pected to contribute to g, t(k) in the high-k limit], and
there is a systematic difference between the present
theory and Enskog-like result of I. Clearly the decou-
pling approximation should be refined to get more satis-
factory results for large wave numbers.

V. SUMMARY

We considered the motion of a test particle in a model
suspension without hydrodynamic interactions; the actu-
al calculations were done for the hard-sphere suspension.
We followed the idea of our previous investigation: we
derived a theory that approximates the self-friction
coefficient and the self-diffusion coefficient can be ob-
tained using the Einstein relation. To calculate the self-
friction coefficient we closed the hierarchy of equations
describing the time dependence of the reduced distribu-
tion functions on the level of the second hierarchy equa-
tion. However, we kept the part of the three-particle
dynamical correlations that can be expressed in terms of
the two-particle ones. In this way we renormalized the
two-particle dynamics. To reduce the amount of compu-
tational effort required to get explicit results we intro-
duced a decoupling approximation for the difference be-
tween the Enskog-like result and the full expression. In
this way we took care of the dominant short-time contri-
butions that cannot be adequately described within the
decoupling approximation. For intermediate densities
the predictions of our theory for the self-friction
coefficient agree very we11 with the Brownian-dynamics
simulation results. For very high densities, P&0.4, the
theory underestimates the self-friction coefficient. For
the wave-vector-dependent self-friction kernel we got
somewhat less satisfactory agreement. We argued that in
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this case the decoupling approximation may be expected
to be much less accurate.

The present theory can with less difficulty be general-
ized to the collective diffusion problem. However, it is
more difficult to obtain explicit results in this case be-
cause even within a decoupling approximation one needs
the equilibrium triple distribution.

A different direction is to study systems with more
realistic potentials, i.e., a screened Coulomb potential.
This is now the subject of the authors' research.

It can be interpreted in the following way: distribution
(A2) is a product of the equilibrium distribution of N —1

untagged particles in the external field of the tagged par-
ticle

P~ )(Rp, . . . , R~~V(Ri;))
N N

-exp —P g V(R&;)+ g V(R;1)

Pz(R|, . . . , Rz, t =0)=5(r0—R, ) VPP(R&, . . . , Rz) .

(A2)
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APPENDIX: REDUCIBLE THREE-PARTICLE
CORRELATIONS

Here we discuss the separation (4) of the three-particle
dynamical correlations 5n3 into a reducible part that can
be expressed in terms of the two-particle dynamical
correlations 5n z and the rest that is called the irreducible
three-particle dynamical correlations 5n3". Our presen-
tation draws heavily upon Refs. [7] and [11]. For
different approaches to this problem see Ref. [12] and
references cited therein.

Our starting point is the N-particle nonequilibrium dis-
tribution (I.16) describing exactly the state of the system:

ns'P~(R„. . . , R~;t) =e 5(r0 —R, ) VPg(R „.. . , Rtt ) .

Here Qz is the N-particle Smoluchowski operator (I.5}.
At t =0 distribution (Al) reduces to

and of a distribution of the tagged particle

P, (R,;t=0)=5(R,—ra} . (A4)

Note that distribution (A3) is a conditional distribution
of the untagged particles under the condition that the
tagged particle is at R&. Hence the product of (A3} and
(A4) is a well-defined joint distribution for a composite
system of 1 tagged particle and N —1 untagged ones.

The dynamical evolution will change the distribution
(A2). Our aim here is to find approximate forms of the
nonequilibrium distributions at later times. Consider a
certain time t. Let the distribution of the tagged particle
be n, (r, ;t), and the joint two- and three-particle densities
be n2(r, , r2, t} and n3(r„r2, r3, t}, respectively. Let us try
to find approximate forms for the nonequilibrium distri-
bution (A2} at time t in such a way that the following are
true.

(1) Successive approximations reproduce correctly suc-
cessive many-particle densities.

(2} All the approximations stick as closely as possible
to the equilibrium distribution in an external field for
N —1 untagged particles.

As a first approximation let us try to keep form (A3) of
the distribution of the untagged particles and to modify
only the distribution of the tagged particle (A4) such that
the actual distribution n, (r„t) is recovered. In this way
we obtain the following approximate form for the non-
equilibrium distribution:

P~(R„.. . , R~; t) =P~(R„.. . , R~; t) =n, (R, ;t)Pp, (R2, . . . , R~ I V(R „)) . (A5)

n2(r„r2, t)=n, (r, ;t)ngz (r,2),
n3(r„r2, r3; t}=n,(r„' t )n g3 (r] l2 r3)

(A6)

For untagged particles distribution (A5) is the equilibri-
um distribution in the external field, or local equilibrium
distribution. Hence we called the first approximations
(I.35) for the joint two- and three-particle densities that
are obtained from (A5)

the local equilibrium contributions to the joint densities.
At t =0 distribution (A5) reproduces nonequilibrium

distribution (Al). However, for t )0 it misses a very im-
portant face: as the tagged particle is moving, its local
surrounding will change since particles will pile up in
front of the tagged particles. In other words, there are
new dynamical correlations between the tagged particle
and the untagged ones that are not taken into account by
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local equilibrium distribution (A5). These correlations
cause the self-friction coe%cient to grow up from its t =0
low-density value. With the second approximation we
try to include the dynamical correlations on the two-
particle level exactly. This will generate an approximate
form of the three-particle dynamical correlations.

As the second approximation let us try the following

distribution:

P]v(R], . . . , R]v;t)

=P~(R]». . . » R]v; t) +P]v( R]&. . . , R]v», t), (A7)

where Pz is given by Eq. (A5) and Pz has the following
form:

P~(R„. . . , RN;t)=n, (R];t}P]v ](Rz». . .R]v~R];t),
N N

P]v ](Rz». . . , RNIR];t)=Pp ](Rz» . . &RNIV(R„)) —pg Vz(R], R;;t)+ pg Vz(R], R;;t) ]v
l=2 l =2

(A8)

(A9)

In Eq. (A9} brackets ( )]v ] denote the average over N 1 pa—rticle local equilibrium distribution (A3) and time-
dependent potential Vz(R, , Rz, t) is assumed to be chosen in such a way that joint two-particle density nz calculated
with distribution (A7) coincides with actual two-particle density nz(r], rz; t).

One can arrive at the form (A9) by the following reasoning: we need the distrbution that reproduces the difference
n2 —n, ng2q between the actual two-particle density and the local equilibrium approximation and we want this distribu-
tion to be as similar to the local equilibrium distribution as possible. The easiest way to do that is to adopt the distribu-
tion of the form (A5) but with an N —1 particle distribution in a time-dependent external field V(R „)+Vz(R], R;;t):

N

P]v ](Rz, . . . , R]v~R];t)-exP —P g [V(R„)+Vz(R„R,;t)]+ g V(R, ) (A10)
1=2 ling =2

Actually since we want to reproduce only the difference nz n, ng z, —we take the difference between distribution (A10)
and the local equilibrium distribution (A3). Moreover, since the N —1 particle system is close to the local equilibrium
state (we have essentially linear displacement from local equilibrium) we keep only the terms linear in Vz(R], R;;t). In
this way we obtain expression (A9).

Using distribution (A7) we reproduce exactly the two-particle dynamical correlations

5nz(r], rz;t) =nz(r], rz;t) —n, (r„'t )ngz (r]2)

ng2 (&12 )[ tt (1'],'t)pV2(I'] r2 }]+n 1 dr3[g 3 (r] r2 r3} g2 (&12 }g2 (&13 )][ tt, «] t)pV2«] r3' )]

(A11)

and obtain an approximation for the three-particle dynamical correlations

5n3(r], rz, r3, t) =n3(r], rz, r3,'t) —n, (r], t)ng3 (I] Iz 13)

=n g3 (r] rz r3)[ —n, (ri t)pV2(r] rz t) —n. (r] t)pVz(r»r3 t)]

+n dr4 g4 ri 2 3 4 g3 i 2 3 g2 ri4 ". i't ~2 i r4t (A12)

Approximate expression (A12) for the three-particle correlations can be rewritten in terms of the two-particle ones.
To this end one has to invert relation (All) and express time-dependent potential Vz(r], rz, t) in terms 5nz. Let us

define a three-particle direct correlation function d(r„r4, r3) as a solution of the following integral equation:

g3 ( 1 2 3} g2 ( 12)g2 ( 13}

g2 (&12 }g2 ( ]3)rd(rl r2 r3)+ng2 (r]3)f dr4[g3 (r] r2 r4) g2 (112)g2 (&14)]d(r],r4, r3) . (A13)

As was argued in Ref. [7] Eq. (A13) is essentially an Ornstein-Zernike equation in the external field of the tagged parti-
cle In .the limit r]2~ oo the integral equation (A13) reduces to the usual Ornstein-Zernike equation and the direct
correlation function in the external field of the tagged particle d(r, ;rz, r3) tends to the two-particle, or Ornstein-Zernike

direct correlation function c (r23). With the help of the direct correlation function we can construct the inverse of rela-

tion (A11). Namely, a straightforward calculation shows that Ornstein-Zernike-like equation (A13) is equivalent to the
following equation:

5(r„)
dr3{ngz (r]2)5(r23)+n [g3 (r] Iz r3) —gz (r]2)gz (r»)]] .

ngzq(r]3)
—d(r, ;r3, r4) =5(r]4} (A14}

Using integral equation (A14) we can invert relation (Al 1} and express time-dependent potential Vz(r], rz', t) in terms

5n2:
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5n, (r, , rz;t)—n, (R„t)pVz(r|, rz', t)= —f dr3d(r& , r'z, r3)5nz(r&, r3 t) .
ngz'(riz}

(A15)

Then substituting relation (A15) into Eq. (A12) we obtain the following expression for the three-particle dynamical
correlations:

5n3(r„rz, r3', t) =f dr4I n g3 (I~ Iz r3)[5(rz4)+5(134)]

5(r4s)
+n [g4 (r„rz, rz, r4) —

g3 (r„rz, r3)gz (r,~)]]fdrs —d(r, ;r4, rs) 5nz(r„r, ;t) .
ng2 (r14 }

(A16)

The part of three-particle dynamical correlations described by (A16}we call the reducible part. The rest is called the ir
reducible three-particle correlations.

It is worth emphasizing at this moment that with second approximation (A7) we can reproduce exact two-particle
dynamical correlations at any single t. However, the three- and higher-order dynamical correlations are included only
in an approximate way. Hence if we use formula (A16} to close the second hierarchy equation the time derivatives of
two-particle dynamical correlations are not in general exact.
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