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Dynamical properties of hard-sphere suspensions
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We present an alternative approach to the calculation of long-time diffusion coefficients of dense sus-

pensions. The main idea is to approximate friction coefficients rather than the diffusion coefficients.
Within this scheme we derive a very simple yet accurate theory of dynamic properties of a hard-sphere
suspension: to calculate friction coefficients we keep only the two-particle dynamics while taking the
higher-density effects into account via a renormalization of the frequency of the binary encounters by the
contact value of the pair-correlation function. Using this theory we calculate the long-time self-friction
and self-diffusion coefficients, the time-dependent self-diffusion kernel, and the wave-number-dependent
long-time friction coefficients. The explicit results compare reasonably well with Brownian-dynamics
simulations.

PACS number(s): 82.70.Dd, 05.40.+j, 47.15.Pn, 51.20.+d

I. INTRODUCTION F,(k;t)-exp[ D, (—k)k t] . (3)

v.
R =a /Do,

where Do is the diffusion coefficient of a single colloidal
particle. The relaxation time separates two different re-
gimes: For times shorter than iR (but much longer than
characteristic decay time of the velocity of the rnacropar-
ticle), the tagged-particle-scattering function F,(k;t) is
given accurately by

F,(k;t)=exp( D, k t), — (2)

where D, is the short-time self-diffusion coefficient. For
times much longer than ~z, the situation is not clear.
The experimental results of Pusey and Tough [6] could
for long times be fitted by an exponential, which consti-
tutes a possible definition of a long-time k-dependent
self-diffusion coefficient D, ,

There has been considerable interest in recent years in
dynamic properties of suspensions of interacting colloidal
particles [1—5]. A remarkable development of experi-
mental techniques, including methods used to prepare
well-defined, stable dispersions and dynamical-light-
scattering (photon-correlation-spectroscopy) techniques,
made possible quite a detailed investigation of the dy-
narnics of fluctuations in equilibrium dispersions: the
basic quantities measured in the dynamical light scatter-
ing experiments —the intermediate light scattering func-
tion F(k;t) and the tagged-particle scattering function
F,(k; t) are rel—ated by the Fourier transform to the au-
tocorrelation functions of macroparticle density Auctua-
tions and tagged macroparticle (tracer) density fluctua-
tions, respectively.

Studies of these scattering functions revealed a very in-
teresting transition in the dynamic behavior of suspen-
sions. The crucial time is the structural-relaxation time
[5] rR, the time a Brownian particle needs in order to
diffuse over its radius a,

The more recent data of Taylor and Ackerson [7] seem to
be incompatible with a long-time exponential decay. In
the model considered here Eq. (2) always holds, but Eq.
(3) is not valid at long times, except in the hydrodynamic
limit k~O, t~ ~, keeping k t constant. Then the fitting
parameter in the exponent is the phenomenological self-
diffusion coefficient D, . A different way of analyzing the
tagged-particle-scattering function is in terms of time- or
frequency-dependent diffusion kernels, also called
memory functions. These will be defined below in Sec. II.
Diffusion kernels were the subjects of theoretical predic-
tions [1] and were derived from data of real [7] and com-
puter [8] experiments. Similar difFusion coefficients and
memory-function representations can be defined for the
intermediate scattering function F(k;t). Finding accu-
rate predictions of the tagged-particle-scattering function
and the intermediate scattering function is a major goal
in the theory of dynamic properties of suspensions.

The dynamics of suspensions of interacting macropar-
ticles is a very complicated problem. Not only the direct
interactions between the colloidal particles have to be
taken into account, but also so-called hydrodynamic in-
teractions [9] that result from the motion of the fiuid in
which the particles are dispersed. Including the direct in-
teractions already creates a difficult problem, and an ac-
curate treatment of interacting colloids with hydro-
dynamic interactions is even more complicated as hydro-
dynamic interactions are long ranged and not pairwise
additive. Both features create great difficulties in particu-
lar in combining them into a single theoretical descrip-
tion. Fortunately there exist systems in which the hydro-
dynamic interactions are much less pronounced: in sus-
pensions of highly charged colloidal particles the strong
screened Coulomb repulsion has usually much greater
range [10] than the physical radius of the particle, which
is the important parameter for determining the strength
of the hydrodynamic interactions. One then has to deal
with a real system that is dense from the direct-
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interactions point of view and dilute as far as the hydro-
dynamic interactions are concerned. For typical experi-
mental situations the relevant volume fractions differ by a
few orders of magnitude [11]: /=4(dna )/3 being of the
order of 0.1 —0.5 and Ph =4(mnah )/3 being of the order
of 10, where a and a& denote the range of the strong
screened Coulomb repulsion and the real radius of the
colloidal particle, respectively. To make a model system
for charged colloids one may therefore ignore the hydro-
dynamic interactions and keep only direct interactions.
This model has been studied before a number of times [1].
Various exact but low-density results were obtained
[1,12—14]. Also a number of approximate theories for
high densities have been proposed. These use various
mode-mode-coupling schemes [1],cluster-expansion tech-
niques [15],and kinetic-theory methods [16]. However, a
simple yet satisfactory theory is still needed.

An intriguing question is whether there is an analogy
between the dynamics of colloids and the dynamics of
atomic fluids, even though the time scales involved differ
by nine orders of magnitude. Recently de Schepper et al.
[17] proposed an analogy between the dynamics of hard-
sphere fluids and colloidal suspensions for long-time re-
laxation. They used it to obtain a simple and reasonably
accurate expression for the long-time diffusion coefficient,
but they did not present any derivation of it. Here we
will present a theory for the dynamics of a hard-sphere
suspension that is partly inspired by the hard-sphere En-
skog kinetic theory [18].

In this article we present a simple approach to the dy-
namic properties of a model suspension without hydro-
dynamic interactions. A main idea of our approach is to
formulate a theory that approximates the friction
coefficient rather than the diffusion coefficient [19].
Within this scheme we derive a simple theory and apply
it to a hard-sphere suspension. The theory is based on
ideas of the Enskog kinetic theory [18] of a dense hard-
sphere fluid: to calculate approximately the friction
coefficients we drop three particle dynamical effects but
retain static correlations. Our approximation satisfies the
exact short-time limit for a hard-sphere suspension. As
for short wavelengths the tagged-particle-scattering func-
tion decays very rapidly, also the short-wavelength limit
should be exact. The approximation made, and the way
to arrive at it, is related to one made in a recent paper on
the velocity autocorrelation function of the Lennard-
Jones Quid [20].

The paper is organized as follows. In Sec. II we prop-
erly define the model system studied, and define time and
wave-number-dependent diffusion and friction kernels.
In Sec. III we present our theory for the relaxation of the
tagged-particle-scattering function. First we give some
intuitive arguments leading to the approximate theory.
These are followed by a detailed derivation clarifying the
approximations made. The detailed presentation is espe-
cially important as we are going to use some methods of
kinetic theory. These are not particularly difficult in
themselves, but probably not well known. We want to
emphasize that, although we present explicit calculations
for a hard-sphere suspension, the general approach to ap-
proximate the friction coefficients rather than the

diffusion coefficient is valid for arbitrary interactions be-
tween the colloidal particles. In Sec. IV we present nu-
merical results and compare them with the Brownian-
dynamics-simulation data of Cichocki and Hinsen [8].
Taking the simplicity of the theory into account, the
agreement is quite satisfactory. Concluding remarks are
made in Sec. V. In Appendix A we present the corre-
sponding theory for the relaxation of the intermediate
scattering function. In Appendix B we summarize litera-
ture results for the low-density friction kernels.

II. FORMULATION OF THE PROBLEM

We consider a system of N identical colloidal particles
suspended in a fluid solvent. The single-particle diffusion
coefficient Do is determined by the solvent viscosity and
the radius of the hard core of the particle. On a time
scale large compared to the relaxation time of the
Brownian component of the macroparticle velocity the
state of the suspension can be described by the N-particle
probability distribution Pz(R„. . . , Rz, t). Here R,
denotes the position of particle i. The time evolution is
then given by the Smoluchowski equation

a P~(R„—. . . , R~;~) =QsP~(R„. . . , R~, r),
r)t

where Qz is the N-particle Smoluchowski operator

(4)

N

Qs DOE
i=1 i

N

BRi i (Wj)

Here F, is the force between particles i and j,
F~=(B/BR; )V(R; ), and P=l/k&T. Actually we are
going to consider mainly a hard-sphere suspension. Then
a no-flux boundary condition has to be imposed whenever
two particles are touching,

P~(R„. . . , R~, t) =0 whenever R,"=2a+ .a
BR;.

(6)

Here a is the radius of a hard sphere. However, as it has
been shown by Cichocki [22] the evolution equation Eq.
(4) still can be used for the hard-sphere suspension if we
take

PF, =R; 5(R; —2a), (7)

where R=R/R. The boundary conditions Eq. (6) are
then incorporated into the evolution equation and need
not be considered explicitly. To emphasize the fact that
the approach presented in Sec. III B of this paper is valid
for arbitrary interactions we will keep the force F in all
equations and only in explicit calculations we will use re-
lation (7).

In the theoretical analysis it is also useful to consider a
description of a suspension in terms of reduced distribu-
tion functions. To this end we define the k-particle re-
duced distribution as the average of the microscopic k-
particle density over the probability distribution P~( t).
For example, for k = 1,2 we have
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N

n, (r,;t)= g 5(r) —R;)
=1

=N fdR2 . dR~P~(r, , R2, . . . , R~;t),
N

n2(r„r2;t)= g 5(r, —R;)5(r2 —Ri)
i=1i'

=N(N —1)f dR3 dRtv

(8)

V(5(r, —R, )e 5(rp —R, ))=n, (r, ;t), (15)

where n, (r, ;t)= (5(r, —R, ) ), is the density of the tagged
particle calculated for the following nonequilibrium en-
semble:

equilibrium [as, for example, F,(k;t)] can be expressed in

terms of nonequilibrium reduced distributions with a
suitable initial condition. Namely, for the tagged-particle
density autocorrelation function we have

XP&(r„r2,R3, . . . , R~;t) . (9)

The time evolution of the reduced distributions is given
by an infinite hierarchy of equations that can be obtained
from the Smoluchowski equation (4). Again, for k =1,2
we have

n, (—r, ; t)=D oVfn, (r„t)—DpV, f dr2pF, ~n2(r„r2, t),at

(10)

—n2(r„r2', t)=Do[Vf+Vz —(V, —V2) pF&2]n2(r„r2;t)at
2

Dp g V; ' f dr3pF;3n3(1] I2 r3 t)

Here V; =8/Br, .
We assume that one of the particles, suppose the first

one, is tagged, and study the tagged-particle-scattering
function

nsrPz(R„. . . , Rtv, t)=e 5(rp —R, )VPz (R„.. . , Rz),
(16)

or, equivalently, n, (r„t) is the solution of the infinite
hierarchy of equations for the tagged-particle problem
with the initial condition that follows from the form of
the distribution Pz, Eq. (16) at t =0 (see Sec. III B).

We discuss everything in both the time domain, as this,
perhaps, yields a more microscopic picture, but also in
the frequency or Laplace domain as calculations then can
be more easily performed. The Laplace transform for a
quantity A is defined as

&(z)=f dt e "A(t) . (17)
0

Usually the tagged-particle-scattering function F, is in-

terpreted in terms of a (time-dependent) self-diffusion ker-
nel in the expectation that this will yield a simplified
description and a useful quantity for other cases as well.
The time Laplace transform of the self-diffusion kernel is
defined through

(12)

i.e., the Fourier transform of the tagged-particle density
autocorrelation function:

F,(k;t)= fdr, pe "V(5(r&—R&)e 5(ro —R&)) .

F,(k,z)= 1

z+D, (k, z)k

or equivalently in the time domain

F,(k, t)= —k2 f dt'D, (k—, t')F, (k, t t') . —
0

(18)

(19)

(13)

Here Vis the volume of the system (thermodynamic limit
is always understood), 5(r, —R, ) is the microscopic den-
sity of the tagged particle at point r&, and brackets ( )
without subscript t denote the equilibrium ensemble aver-
age. We take the convention that the equilibrium distri-
bution PP- exp[ —g,.~ V( r,, ) Iktt T] is formally
represented by the ket vector . ). Note that in Eqs.
(12) and (13) the evolution operator Qs acts on every-
thing to its right, also on the equilibrium distribution PN,
which is relevant since the operator is not equal to its ad-
joint operator. We will also present results concerning
the intermediate scattering function

—ik R,. Ost ik.R.F(k t)= —ge 'e ge
i=1 j=1

(14)

In the main text we only consider the tagged-particle
problem, the calculations for nontagged particles are
relegated to Appendix A.

To proceed with the theoretical analysis it is useful to
note that the time-dependent correlation functions in

To zeroth order in density the diffusion is entirely deter-
mined by the solvent and we have

D, (k, t) =D,5(t —0+ )+O(n) . (20)

Equation (1) follows from the observation that this is also
the exact short-time diffusion kernel.

We separate the self-diffusion kernel into a solvent part
and an interaction part

D, (k, t) =Do5(t —0+ )+D, J(k, t) . (21)

n, (k, t) = ik.j,(k—, t), —d
(22)

and the driving force for self-diffusion is the osmotic

Obviously, it is the interaction part we are after. For a
hard-sphere suspension the interaction part has a t
contribution for short times (Sec. IIIA); there are no 5
functions in it.

A starting point different from the diffusion coefficient
picture just described is to consider forces and fluxes.
The Fourier transform of the flux density j, is defined
through



5002 JAN A. LEEGWATER AND GRZEGORZ SZAMEL 46

pressure resulting from a tagged-particle density gra-
dient, or the external force:

f, (k, t) = i—kks Tn, (k, t)+ F'""n,(k, t) (23)

(for the tagged particle the derivative of the tagged-
particle osmotic pressure with respect to the density of
that particle gives kz T). In itself considering a nonequili-
brium fiuid as is done in Eqs. (22) and (23) is entirely
different from the equilibrium fluctuation approach on
which the definition of the diffusion kernel is based. By
making the Onsager assumption that equilibrium Auctua-
tions decay in the same way as a nonequilibrium state we
can relate the two. Taking the initial condition
n, (k, t =0)=1 we find that the fiux is related to the force
density as

is the definition of the self-friction kernel. For a very
heavy particle in a sea of light particles Kirkwood [19]al-
ready derived an expression for the friction coefficient.
Unfortunately, when the mass ratio is finite there are no
workable expressions, only expressions with projected dy-
namics; see Ref. [21] and also Sec. III B.

In the Fourier-Laplace domain the relation between
the friction and diffusion kernels is

D, (k, z) =
, (k, z)

(27)

Note that the same relation holds for the solvent contri-
butions: Do=k~ T/go. In the time domain we have the
following relation between the interaction part of the
diffusion and friction kernels:

j,(k, t) = j dt'D, (k, t') f, (k, t —t')
k~T 0

(24)

g, (k, r) =(,5(r —0+ )+g, ,(k, r), (26)

and define the long-wavelength, long-time
self-friction coefficients: g, = lim, olimk og, (k;z),
g, z=lim, olimk og, z(k;z). In the following we will

mainly discuss the friction coefficients. It will turn out
that the self-friction coefficient is a much nicer quantity
to approximate as the collision-induced friction has the
same sign as the solvent or back-ground friction. We ex-
pect that at high densities D, is close to zero, hence
D y

— Dp whereas at high densities g, ~ is only expect-
ed to be large. Making a small mistake for D, ~ wi11 yield
a poor approximation for D„which does not hold for

Approximations for gs i are expected then to yield
better results. We would like to emphasize that Eq. (25)

with the same self-diffusion kernel D, appearing in Eq.
(18). In the long-wavelength, long-time limit we obtain
from (23) and (24) the familiar phenomenological
relation with the self-diffusion coefficient
D, =lim, olirnk OD, (k;z). This can again be decom-
posed into the solvent part D„and the interaction part
D„=lim, ,lim„~„(k;z).

We would like to point out a particularly transparent
approach towards deriving the self-diffusion coefficient of
a suspension as given by Lekkerkerker and Dhont [14]:
Assume that we apply a constant force on the tagged par-
ticle. The local surrounding of the particles will then
change since particles will pile up in front of the tagged
particles, thus reducing the average current (velocity) of
the tagged particle. Our theory as written below can be
used to perform the calculations needed for this interpre-
tation. We give an expression for the two-particle distri-
bution function as a function of the tagged-particle Aux.
We do not pursue this approach here any further than
these comments.

We define the self-friction kernel as the inverse of Eq.
(24), the relation between the force given the fiux

ff (k, r) =j dr'g, (k, r')j, (k, r t') . — (25)
0

Again, we can separate the solvent and the interaction
part of the self-friction kernel:

D, i(k, t) = Dog, i—(k, t)/go

—j dt'D, ~(k, t t')g, . i(—k, t')/go, (28)

as can be verified by substitution of Eq. (25) into (27).

III. APPROXIMATION

A. Intuitive derivation

One way of formulating the basic idea of the paper is
to state that we insist on binary collisions throughout.
This in order to keep the problems tractable; to fully
treat three or more particle dynamics is both technically
unattractive and yields a rather opaque microscopic mod-
el. Our aim is to find out what can be understood in
terms of binary collisions. Obviously this picture is going
to fail at a certain density. In particular we do not expect
to get reasonable results for the glass transition. Never-
theless, quite useful results are obtained by wisely apply-
ing binary collisions.

In this subsection we will consider hard spheres ex-
clusively, the derivation as presented in Sec. III B can be
applied for arbitrary interactions. For low densities
everything is clear. We only need to solve the two-
particle Smoluchowski equation for F, (k, t), and extract
the interaction part of the friction function. In the con-
text of suspensions the first calculations have been done
by Ackerson and Fleishman [12]. For tagged particles
the result is

g, i(k, t)= jdr, jdrze '(k F&z)e
k~ TV

X(k F, )e '+O(n ) . (29)

In Eq. (29) V is the volume of the system (again, thermo-
dynamic limit is understood), operator 02 is the two-

particle Smoluchowski operator

02 Do[Vi+72 (7i ——V2) pF&z] . (30)

In Appendix B there are some explicit formulas for the
interaction friction kernel g, ~, and also its extension to
nontagged particles. A peculiarity of colloids is that al-
ready the two-particle interaction is time dependent. The
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physical origin is that whenever two particles are close at
t =0 they will be close for some time after, and may
recollide a number of times before diffusing out to
infinity.

As g, t and D, z are proportional to the density, for low
densities the interaction term is small. At higher densi-
ties this term will be more important. One thing that is

going to happen if we go to higher density is that parti-
cles will be compressed against each other, and the in-
teraction contribution will be larger than just proportion-
al to P. The idea, due to Enskog in the end, is to use the
first term on the right-hand side of Eq. (29), where we in-
sert an additional prefactor y. Considering results for
short times supports the idea that a good choice is to take
y=g (2a): An exact statement at all densities is that for
short times

Dp
g, t(k, t) =4gg (2a)gp' 2~a2t

' 1/2

(31)

whereas Eq. (29) gives the same result except for the pre-
factor g (2a) (see Appendix B). We can arrive at Eq. (31)
by the following argument. For short times we have

D, t. T—aking the second time derivative of
F,(k, t) we find a two-particle contribution and a three-
particle contribution. The three-particle contribution is a
regular, smooth function of time and starts out as a con-
stant. The two-particle contribution for hard spheres is a
recollision probability, as is obviously the case in the
low-density limit. For short times, third particles do not
significantly change the dynamics. When considering
higher density the only thing that is left to note is that as
particles are compressed onto each other the number of
particles initially close is enhanced by an additional fac-
tor of g (2a). Using the explicit result Eq. (B3) we arrive
at Eq. (31).

Let us compare this approximation to the correspond-
ing approximation in the case of Enskog kinetic theory,
where we study the Liouville equation, particles moving
ballistically with hard-sphere collisions. In the Enskog
theory collisions are instantaneous; two hard spheres can
only collide once, third particles are needed in order to
have recollisions. In a suspension the solvent causes
recollisions to take place. In our simple theory only
recollisions of the tagged particle with the same, non-
tagged particle are kept. Therefore in both approaches
three and more particle dynamics is entirely ignored.

Another main point of difference is that of time scales.
In a suspension there is a universal time scale that is
relevant until the density gets too high: the time a parti-
cle needs to diffuse over a hard-sphere radius tp a /Dp.
At higher density the motion will be "interaction dom-
inated" and a different time scale is needed. The interac-
tion contribution to the diffusion will decay on this time
scale. For kinetic particles there is no density indepen-
dent time for which the velocity autocorrelation function
will decay, for hard spheres the mean free time is propor-
tional to 1/Pg(2a). The reason for this distinction is that
kinetic particles only change their velocity when collid-
ing, a diffusing particle changes its velocity all the time.
For kinetic particles interactions are "everything. "

However, the techniques that are used to derive closed
kinetic equations can be used with some modifications to
suspensions. Mainly the interpretation has to be recon-
sidered.

B. Formal derivation

(33)

In this section n2(r], rz, t) and n3(r„r2, r3, t) denote the
joint distribution function of the tagged particle at r, and
of nontagged particles at r2, and r2 and r3, respectively.
The initial conditions for the tagged-particle hierarchy
follow from the distribution (16),

n, (r, ;t =0)=5(r, —rp),

n2(r„r2; t =0)=5(r, —rp)ngz~(r]2),

n, (r„r2, r3', t =0)=5(r, —rp)n g3 (r„r~, r3) .

(34)

Here n is the density of nontagged particles and g2
and g3 denote the equilibrium pair and triple distribu-
tion, respectively g~z(r]2)=n2 (r„r2)/n, g3 (r] 12 r3)
=n3 (r„r2, r3)/n .

The traditional approach of kinetic theory is to
somehow close Eq. (33) and then to solve the resulting
equation with initial condition Eq. (34) and the boundary
condition lim„„n2(r], r2;t)=n (see Ref. [14] for a

12

low-density calculation along these lines). In this way
one calculates the diffusion coefficient directly. However,
as was indicated in Sec. II, this approach is very sensitive
to the quality of the approximations made and it is better
to approximate first the friction coefficient and then to
calculate the diffusion coefficient using the Einstein rela-
tion [23].

To calculate the friction coefficient we rewrite the
hierarchy (32) and (33). First, we separate nz and n3 into
the local-equilibrium contributions, i.e., contributions of
the form of Eq. (34), and the remaining parts that can be
called nonequilibrium dynamical correlations:

n3(r], r2;t)=n, (r], t)ng2 (r]2)+5n2(r], r~;t),
(35)

n3(r], r2 r3, t)=n, (r], t)n g3 (r r]r3) 3+n53(1] 13 r3 t)

Comparing the continuity equation

The starting point of the formal derivation are the first
two equations of the hierarchy for the tagged-particle
problem:

a
n, (—r, ;t)=DpV n], (r„t) DpV]' f dr213F]znz(r„r2', t),at

(32)

a
&

n2(r„r„t)=Dp[V]+ V2
—(V, —V2) PF]2]n2(r„r2;t)

dt

2

Dp y—v, f dr3pF, 3n3(r] r2 r3 t) .
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—n, (r, ;t)= —V, j,.(r, ;t) (36) gpj, (r, ; I)—fdrzF, z5nz(r„rz, t) = —
kzi TV, n, (r„' I) .

(38)
with the first hierarchy Eq. (32) we express the current
density in terms of the reduced distributions

j,(r, ;t)= D—pV, n, (r„t)+'PDp f drzF, z5nz(r, , rz, t} .

(37)

Note that due to the symmetry properties of the equilibri-
um pair distribution gzq, the local equilibrium contribu-
tion n, (r„t)ngzq does not contribute to the current.

The relation Eq. (37) can rewritten in the following
way:

The right-hand side is the osmotic (or entropic) force. If
we now are able to express 5nz in terms of the current
density then by a comparison with the definition Eq. (25}
we can extract the friction kernel. Note that the first
term on the left-hand side of Eq. (38) represents the fric-
tion due to the solvent and the second term is the interac-
tion contribution to the friction.

To obtain the equation relating dynamical correlations
5n2 and 5n3 and the tagged-particle current density J we
substitute Eq. (35) into the second hierarchy Eq. (33):

ngz~(r, z)
~

n, (ri,'I)+
~

5nz(r„rz;t) =Dp[V, +Vz —(V, —Vz) PF,z][n,. (r„t)ngz" (r,z)+5nz(r„rz;t)]

2

Dp g —V, f dr3/3F;3[n, (r„t)ng3 (r„rz, r, )+5n3(Ii Iz 13 t)] (39)

Equation (39) can be simplified with help of the second equation of the Yvon-Born-Green hierarchy [24]:
—V&gz" (riz)+PFizgz (r&z)+n f dr3F&3g3 (1i Iz 13)=0 .

Namely, using Eq. (40) we obtain from Eq. (39) the following equation:

(40)

ng z(r, z)
&

n, (r„I}+—'5nz(r„rz', t}=nV, [g z( rt)z'DpV, n, (r„t)]+Dp[V +iV I (V] Vz)'/3Fiz]5nz(r„rz, 't)

—D, y v, fdr3pF 35n3(r, rz'r3t)

Finally we eliminate the density of the tagged particle using the continuity Eq. (36) and the relation Eq. (38). In this
way we obtain the required relation between the dynamical correlations and the tagged-particle current:

—5nz(r„rz,'t)= n[Vigz (r,z)] j,—(r„t)+Dp[Vi+Vz —(Vi —Vz) PFiz]5nz(r& rz t)
Bt

2

+nV& gz (r&z) f dr3pF»5nz(r, , r3;t) Dp g V; f—dr3pF;35n3(r„rzr3', t) . (42)

=n[g'"(r, )V,/3V' (r, )] j,(r, ;t}, (43)

Note that up to now we did not make any approxima-
tions. Moreover, Eq. (42) is valid for arbitrary interac-
tions between the colloidal particles.

The evolution Eq. (42) for the dynamical correlations
5n2 can be interpreted in the following way: At t=0
there are no dynamical correlations, 6n2=0. However,
the local-equilibrium form n, (r &, t )ng zq of n z is not
preserved by the dynamical evolution and new nonequili-
brium correlations are created. The source of these
correlations is the average motion of the tagged-particle
represented in Eq. (42) by the current density j, . This
motion disturbs the state of the nontagged particles. The
tagged particle acts on them with the mean force [24]:
The first term at the right-hand side of Eq. (42), i.e., the
source term, can be rewritten as

—n[V,gz (r,z)].j,(r, ;t)

where V' is the potential of the effective mean force,
PV' (r iz ) = —lngzq(rtz). The last three terms at the
right-hand side of Eq. (42) describe decay of the dynami-
cal correlations. This evolution is different from the evo-
lution given by the hierarchy (32) and (33). The
difference in the evolution corresponds to the fact that
the Green-Kubo expression for the self-friction coefficient
contains the projected evolution operator [21]. Note that
the Eq. (42) has to be solved with the boundary condition
lim„5nz(r, , rz;t) =0.

12

Equation (42) is not closed —to get any explicit result
we have to make some approximations. As it was stated
in Sec. III A we want here, first, to keep the two-particle
dynamics only, and, second, to take into account the
enhanced probability of binary encounters. With this end
in view we neglect the three-particle dynamical correla-
tions 6n3 completely, omit the third term at the right-
hand side, and replace the potential of the effective mean
force V' in the source term Eq. (43) by its low-density
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limit V. There are some arguments to why these steps
should be taken all at the same time. This we will discuss
in a future publication [25].

We obtain the following evolution equation:

5.0

4.0

3.0

+Do[Vi+V2 —(V, —V2) pFi2]

X5nz(r„r2', t) .

The continuity Eq. (36); the relation Eq. (38) between the
current density, the dynamical correlations, and the
tagged-particle density gradient; and the evolution Eq.
(44} constitute a closed system of equations. Using them
we can calculate the self-friction coefficient, the self-
diffusion coefficient, and the whole time evolution of the
tagged-particle scattering function. For the interaction
contribution to the self-friction kernel we find

g, r(k, t)= f dr, f drze
' '(k Fi2)

B
Qgw lk iiXe (k Fiz)e g(r12)

(45)

where Vis the volume of the system (thermodynamic lim-

it is understood). In the hard sphere limit this becomes
identical to Eq. (29), except for a prefactor g (2a), which
is what we wanted.

IV. RESULTS

To get explicit results from Eq. (45) we have to solve
the two-particle Smoluchowski equation. For hard
spheres this can be done analytically. Actually, it has al-
ready been done many times and we simply resume the
results taken from the literature in Appendix B. Below
we use these expressions to derive the results of our
theory.

Using Eq. (Bl) in the limits k ~0 and z —+0 we obtain
for the interaction part of the self-friction coefficient

2.0

1.0

0.0
0.00 0.10 0.20 0.30 0.40 0.50

FIG. 1. The interaction contribution to the self-friction
coefficient g, r normalized by the solvent (zeroth order in densi-

ty) friction go as a function of the volume fraction $ =4m no'/3.
Solid line, present theory; circles, simulation data of Cichocki
and Hinsen [8]; dashed line, mode-mode-coupling theory of
Medina-Noyola [26].

and the interaction contribution cancel to a large extent.
The time dependence of the self-diffusion kernel at

k =0 can be calculated using the formulas of Sec. II and
Appendix B. Before presenting the numerical results we
make some analytical predictions. We consider the
characteristic time of interaction as defined by Cichocki
and Hinsen (see Fig. 2). In our notation this time r is
defined as

f dt tD, ,(t)
00 (48)

f dt D, r(t)
0

The time r can be expressed through the Laplace trans-
form of the self-diffusion kernel as

d
lnD, r(z) .

Z

1.0
k, ,r =2''(2&)ko (46)

In Fig. 1 we compare this simple expression with the
Brownian-dynamics-simulation results of Cichocki and
Hinsen [8]. The accuracy is quite satisfactory, better
than the mode-coupling-like calculation of Medina-
Noyola [26]; the deviations are reminiscent of what is
found for atomic Auids, where the Enskog theory also
gives too-high results for intermediate densities and too-
low results near the crystallization density [24].

Having calculated the self-friction coefficient we can
immediately get the long-time self-diffusion coefficient us-
ing the Einstein relation

0.8

0.6

0.4

Do
D, =

1+2' (2a)
(47)

0.0
0.00

I I I

0.10 0.20 0.30 0.40 0.50

As it was anticipated in the Introduction for high densi-
ties, the self-diffusion is very small (at /=0. 5 we find
D, =0. 14DO)—the single-particle (solvent) contribution

FIG. 2. The characteristic time of interaction as defined by
Cichocki and Hinsen [8] normalized by its low-density limit
wR

=a /Do as a function of the volume fraction P.
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P = 0.3

10'
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X
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10'

1.5

1.0

0.5

io
10' 10 10

'
10

0.0
0.0 2.0 4.0

ka
6.0 8.0

FIG. 3. The interaction contribution to the long-wavelength
self-diffusion kernel D, ,(k =—0; t) divided by 2y)Do as a func-
tion of time in units w& =a /Do, y=g(2a). Dash-dotted line,
low-density limit /=0; dotted line, volume fraction /=0. 14,
which corresponds to yg=0. 2; dashed line, /=0. 3, which cor-
responds to yII=0. 75; solid line, /=0. 5, which corresponds to
X0=3.

a l

Do I+2$g(2a)
(51)

FIG. 5. The interaction contribution to the friction kernel in-
tegrated over time g&(k;z =0) divided by the solvent friction (o
as a function of wave number in units a ' for volume fraction
/=0. 3. Solid line, theory; circles, simulations of Cichocki and
Hinsen [8].

Using the Laplace transform of Eq. (28) we find the fol-
lowing exact relation between the interaction time ~ and
the corresponding interaction time ~I for the friction ker-
nel:

(50)

In our theory ~& is independent of density. Using Eq.
(B1) we find rI =ra =a /Do. For the diffusion interac-
tion time we then find

We do not compare this expression with the Brownian-
dynamics-simulation results as there is no reliable data
available [27]. In Fig. 3 we present the numerical results
for the interaction part of the self-diffusion kernel. Note
that for short times the kernel diverges as t ', the
coefBcient of the dominant term agrees with the exact
short-time result, and for long times there is an algebraic
tail decaying as t

Additional information can be obtained from the
wave-number-dependent self-friction kernel integrated

0.0

2.0 —0.5

1.5—
= 0.3 —1.0

A „—1.5

1.0 '

0.5

—2.5

—3.0
0.00 0.20 0.40 0.60

0.0
0.0

I

2.0
l

4.0
ka

I

6.0 B.O

FIG. 4. The interaction contribution to the self-friction ker-
nel integrated over time g, i(k;z =0) divided by the solvent
friction go as a function of wave number in units a for volume
fraction P =0.3. Solid line, theory; circles, simulations of
Cichocki and Hinsen [8].

FIG. 6. Solid line, the tagged-particle scattering function

F,(k;t) calculated using the present theory as a function of time

in units rR =a /Do for volume fraction /=0. 3, which corre-
sponds to yg=0. 75 and wave number ka =3; the dotted line is

an extrapolation of the initial slope, the dashed line is an ex-

ponential with the "long-time" self-friction coefficient

g, I(k;z =0) for ka =3.
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0.0

—0.5

—1.0
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—2.0

—2.5
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I
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I ' I
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tj~

R

I
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FIG. 7. Solid line, the tagged-particle scattering function

F,(k; t) calculated using the present theory as a function of time
in units rz =a /Do for volume fraction )=0.5, which corre-
sponds to yP=3 and wave number ka =6; the dotted line is an

extrapolation of the initial slope, .the dashed line is an exponen-
tial with the "long-time" self-friction coefficient g, l(k;z =0)
for ka =6.

over time, i.e., g, I(k;z =0), and from the friction kernel

for the non-tagged-particle problem, i.e., gl(k;z =0).
These are graphed for a typical intermediate volume frac-
tion /=0. 3 in Figs. 4 and 5. We find that the present
theory overestimates the interaction part, in particular
for ka &m, but reproduces the general structure quite
well. Actually, as we anticipated in the Introduction, for
high wave numbers we have very good agreement with
the simulation results.

We have also calculated the intermediate scattering
function F(k, t) for some volume fractions. In Fig. 6 we

graphed F(k, t) calculated using our theory for density
/=0. 3 for which g(2a)=y=2. 48 (y$=0.75), for a
wave number for which the theory, according to Fig. 3,
is reasonably accurate. Notice that the change from
short- to long-time regime is quite rapid, but definitely
noticeable. More structure is found by going to very high
volume fractions, P =0.5 for which g (2a) =6 and gP =3.
A typical wave number is graphed in Fig. 7. At this
volume our theory is not really expected to be accurate
though, We notice that since our friction kernel decays
algebraically at 1ong times, also the self-intermediate
scattering function decays algebraically. This can easily
be shown by considering the Laplace transform F(k,z).

V. CONCLUDING REMARKS

We presented an alternative approach to the dynamical
phenomena of suspensions of interacting colloidal parti-
cles. The model suspension without hydrodynamic in-
teractions was considered, the actual calculations were
done for the hard-sphere interaction potential. The main
idea was to approximate the friction coefficients and then
to obtain the diffusion coefficients using the Einstein rela-

tion. To this end we rewrote the hierarchy of equations
describing the time dependence of the reduced distribu-
tion functions. We obtained the evolution equation for
the dynamical correlations. These were created due to
the average motion of the tagged particle, i.e., the source
term was essentially the current. Within this scheme we

derived a very simple theory of dynamical behavior of a
hard-sphere suspension. To calculate the friction
coefficients only the two-particle dynamics was kept.
However, the renormalization of the frequency of the
binary encounters due to the static correlations was re-
tained. Thus this simple theory is very similar to the En-
skog kinetic theory that describes quite well the dynami-
cal behavior of the hard-sphere Quid. However, it is
much more advanced than the mode-mode —coupling
theories. For the tagged-particle problem an infinite
number of recollisions of the tagged particle with the
same, nontagged particle is effectively summed whereas
in the mode-coupling theories only one recollision is kept.
In this way overlapping configurations are avoided here
that are admitted by the mode-mode —coupling theories.
As earlier studies of the pair dynamics [28] or depolar-
ized light scattering [29] shows this is very relevant for
obtaining satisfactory quantitative results.

Using our very simple theory we calculated the self-
friction coefficient, the self-diffusion coefficient, the time-
dependent self-diffusion kernel, and the wave-number-
dependent friction kernels. The theoretical predictions
were compared against the Brownian-dynamics-
simulation results. We get quite reasonable agreement,
especially taking the simplicity of the theory into ac-
count. In particular we got very satisfactory agreement
for the wave-number-dependent friction kernels for high
wave numbers.

We would like to point out that our simple theory gives
by no means the final answer, even for a simple model
suspension without hydrodynamic interactions. Its
deficiencies are similar to those of the Enskog kinetic
theory of dense hard-sphere fiuid [30]. First, the simple
theory does not take into account correlated encounters
and slightly overestimates the friction coefficients for in-
termediate densities. Moreover, it does not include col-
lective "cage" effects and therefore fails to predict slow-

ing down of structural relaxation for very high densities,
P)0.45. While the first deficiency is relatively easy to
cure (we will return to this problem in a future publica-
tion [31]),tackling the second one seems to be more com-
plicated. Finally, one should always keep in mind that in
order to describe really concentrated suspensions also hy-
drodynamic interactions between colloidal particles have
to be included. This problem is left for future study.

Rote added in proof. Our attention has been drawn to
the paper of Sonnenburg et al. [Mol. Phys. 72, 873
(1991)], who have also approximated the friction
coefficient rather than the diffusion coefficient. They use
a completely different closure based on the direct correla-
tion force idea. While superficially their Eq. (75) resem-
bles our Eq. (47), their result is exact but formal and re-
quires an approximation for g,b, for which they use a
nonequilibrium version of the Percus-Yevick equation.
In contrast our Eq. (47) is approximate but explicit.
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Their figure for the long-time zero-wave-number self-
diffusion coeScient is different from our result.
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APPENDIX A: COLLECTIVE CASE

In this Appendix we derive the approximate evolution
equation for the intermediate scattering function. The
derivation presented here is entirely analogous to that
given in Sec. III 8, but quite a lot more complicated. For
clarity we have written out the derivation in considerable
detail.

First, we express the intermediate scattering function
in terms of nonequilibrium reduced distributions with a
suitable initial condition. To this end we start with
rewriting the definition (14)

i=1 j=l

= fdr, oe
" g 5(r, —R;)e ' g [5(ro—R, ) n]— (Al)

Then we note that the density correlation function n, (r„'t =0)=n5(r, —ro)+n [g2q(r, 2) —1],
n2(r„rl, t =0)=[5(r&—ro)+5(r2 —ro)]n g2q(r, 2)

+n [g3 (r] 12 13) g2 (1 'j2)]

n3(I] r3 13 t =0)

(A4)

is equal to the one-particle density for a particular non-
equilibrium ensemble:

(
N ~ N

g 5(r, —R;)e ' g [5(ro —R, ) —n] =n, (r;;t),
i=1 j=l

(A2)

where n&(r, ;t)=(g+,5(r, —R;)), is the one-particle
density calculated for the nonequilibrium ensemble

P~(R „.. . , R~; t)

= [5(r,—ro)+5(r3 —ro)+5(r, —ro) ]n 'g', q(r„r2, r3)

+n [g4 (r„r2, r3 14} g3 (If r2 r3)]

Here n is the density of colloidal particles and g2, g3,
and g4 denote the equilibrium pair, triple, and quadru-
pule distribution, respectively: gl (r, l)=n2 (r„r2)/n,
g3 (ri r»r3)=n3 (r»r2 r3}/n', and g4 (r~, rl, r3, r4)
=n4 (r„r rIr34)/n . For further analysis it is con-
venient to express the initial conditions for the two- and
three-particle density as a functional of the initial condi-
tion for the one-particle density:

n2(r„r2;t =0)=fdr, Q, (r, , r, r, )n, (r3 t 0),
(A5)

n, t ~
=e ' g [5(ro—R, ) n]Ptvq(R„. . . , R~) .—

j=l
(A3)

n3(r„r2, r3, t =0)= f dr3Q3(r„r„r3~r4)n, (r4, t =0) .

The kernels Qz and Q3 are defined as

Equivalently, n, (r, ;t) is the solution of the infinite hierar-

chy of equations for the reduced distributions with the in-

itial conditions that follow from the form of distribution
(A3). We will need the first two equations of this hierar-
chy, namely Eqs. (10) and (11) and the initial conditions
for the first three reduced distributions:

5n 3(r],r2)

5n r3

5n 3 ( I' ), 1'2, 1'3 )

Q3(1] I2 13~r4)=
5n r4

(A6)

These derivatives can be defined by introducing an exter-
nal potential [32]. Explicitly the Q kernels are given by

Q2(r„r2lr3)= fdr4[[5(r, —r4)+5(rz —r4)]n g (r2, )+3n [g3 (r&, r2, r4) —gzq(r&2)]] [n '5(r4 —r3) c ( 3r)4]

Q3(1] I2 13~I4)=fdry[[5(r, —r3)+5(r2 —r3)+5(r3 —r3)]n g3 (1] 13 13}
(A7)

+n [g4 (r, , rz, r3, r&)
—

g3 (r&, rz, r3)]] [n '5(r& r4}—c(r54)] —.
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n, (—r„'t)= V, j(r—„'t) (A9)

with the first hierarchy equation Eq. (10), we express the
current density in terms of the reduced distributions

j (r„t)= —DoV, n(r„t)

+go ' fdrzF, zf dr3Qz(r, rzlr3)n, (r3;t)

+go ' fdrzF1z5nz(r&, rz', t) . (A 10)

The relation Eq. (A10) can be rewritten in the following
way:

koj(r»'t) f drzF, z5nz(r„rz, t)

= —ks TV1n1(r1, t)

ko f drzF, zf dr zQ(zr, , r lzr )1n, (r3 t) . (Al 1)

In Eqs. (A7) c(r1z) denotes the Ornstein-Zernike direct
correlation function [24].

To calculate the generalized friction coefficient for the
intermediate scattering function we rewrite the hierarchy
Eqs. (10) and (11). First, we separate nz and n3 into the
local-equilibrium contributions, i.e., contributions of the
form of Eq. (A5), and the remaining parts that represent
nonequilibrium dynamical correlations

nz(r1, rz', t)= f dr 3Q z(r 1,
r zlr&)n, (r 3', t) +5n z(r 1, r z;t),

(AS)
n&(r„rz, r3,'t)= f dr&Q3(r1, rz, r&lr4)n, (r4, t)

+5n3(r1 rz r3 t) .

This is the proper generalization of Eq. (35), as is clear
from the definition of the Q kernels Eq. (A6). Comparing
the continuity equation

The second term on the right-hand side of Eq. (Al 1) can
be simplified using the second equation of the Yvon-
Born-Green hierarchy Eq. (40) and the Ornstein-Zernike
equation [24]:

gz~(r, z) —1 =c(r,z)+n fdr3c(r]3)[gz (r3z) —1] .

(A12)

Namely, using Eqs. (40) and (A12) we can rewrite the re-
lation Eq. (Al 1) in the following form:

goj (r„t) fdr—zF,z5nz(r„rz, t)

= —k&Tf drz[5(r1 rz)—nc—(r1z)]Vzn1(rz,'t) .

(A13)

The right-hand side of Eq. (A13) is the osmotic pressure
gradient, suitably generalized to the nonuniform state. If
we now express 5n2 in terms of the current density and
substitute into Eq. (A13), then by a comparison with the
definition Eq. (25) we can extract the friction kernel (now
the derivative of the osmotic pressure of the colloidal
particles with respect to their density is, in general,
different than k&T). Again, the first term on the left-
hand side of Eq. (A13) represents the friction due to the
solvent and the second term is the interaction contribu-
tion.

To obtain the equation relating dynamical correlations
5nz and 5n3 and the current density j we substitute Eq.
(AS) into the second hierarchy Eq. (11):

f dr3Qz(r„rzlr&)
&

n1(r&, t)+—5nz(r1, rz,'t)
dt dt

r

=Do[V1+Vz —(V1 —Vz).PF&zl f«zQz(r, r, lr, )n, (r„.t)+5n, (r, , r,;t)
2—Do g V; fdry;z f dr3Q3(r, , rz, r3lr4)n1(r4;t)+5n3(r1 Iz r3 t) (A14)

Again Eq (A14) can be greatly simplified with help of Eq. (40), the Ornsteln-Zernike equation (A12), and the third
equation of the Yvon-Born-Green hierarchy [24]:

—V,g3 (r„rz, r3)+pF, zg3 (r, , rz, r3)+pF, 3g3 (r„rz,r3)+n fdr„F,~4 (r„rz,r, r„)=0 .

Namely, using Eqs. (40), (A12), and (A15), we obtain from Eq. (A.14)

a . afdr3Qz(r„rzlr3) n1(r3;t)+ ——5nz(r1, rz, t )
at ' at

(A15)

T

=n V, . gz (r1z)fdr, [5(r, —r3) —nc(r, 3)]DoV3n, (r3;t) +n Vz. gz (r,z)fdr3[5(rz rz) nc(rz—3)]Do—V3n, (r3

2

+Do[V, +Vz —(V1—Vz} PF,z]5nz(r„rz, t) —Do g V; f dr3PF, 35n3(r1 Izr3 t}. . (A16)

Finally we eliminate the one-particle density using the continuity equation Eq. (A9) and the relation Eq. (A13). In this
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way we obtain the required relation between the dynamical correlations and the current density:

a—5nz(r I, r~;t)= —n[V„g2 (r]2)1 [j(r,;t) —j(rz, t)]at

+n fdr3[g(r„r2~r3) —n[5(r, —r3)+5(r2 —r3)]gzq(r&2)]V3. j(r3;t)

+Dp[V, +V2 (V—, —Vz) PF,2]5n2(r, , r2, t)+n V, g2 (r,2)f dr3PF, 35n2(r„r3;t)

2

+nV2 g2q(r, 2)f dr3pF235n2(r2, r3;t) Dp —g V; f dr3pF;35n 3(r„r2r3, t) '. (A17)

Note that up to now we did not make any approxima-
tions. Moreover, Eq. (A17) is valid for arbitrary interac-
tions between the colloidal particles. It can be interpret-
ed in a way similar to the corresponding equation for the
tagged-particle problem.

Again, the evolution equation Eq. (A17) is not closed
and we still have to make some approximations. As it
was stated in Sec. III A we want here, first, to keep the
two particle dynamics only and, second, to take into ac-
count the enhanced probability of binary encounters.
With this end in view we neglect the three-particle
dynamical correlations 5n3 completely, omit the forth
and fifth terms on the right-hand side, and replace the
source term by its low-density limit. We keep the equilib-
rium pair distribution gzq in the source term. In this way
we obtain the following evolution equation:

a—5n, (r„rz, t)
at

= —ngzq(rid)pFI2 [j(rl', t) —j(r2', t)]

+Dp[VI+V2 —(V, —V, } pF, 215n2(rl

(A18)

Again, the continuity equation Eq. (A9); the relation Eq.
(A13) between the current density, the dynamical correla-
tions, and the osmotic pressure gradient; and the evolu-
tion equation Eq. (A18) constitute the closed system of
equations. Using them we can calculate the friction
coefficient, the diffusion coefficient, and the whole time
evolution of the intermediate scattering function.

For the friction kernel we get the following expression:

(t(k, t)= fdr, f drze '(k. F,z)e '(k F,2)
k~ TV

(A19)

where V is the volume of the system (thermodynamic lim-
it is understood). For hard spheres the low-density result
is recovered, up to a prefactor g (2a). The low-density in-

teraction friction gt is given explicitly in Appendix B.
Then using the continuity equation Eq. (A9) and the rela-
tion Eq. (A13) between the current density and the
osmotic pressure gradient we find the diffusion kernel

k~T
D(k, z) =

S(k)[g'p+gt(k, z)]
(A20)

Since for k~O the low-density friction kernel vanishes
(see Appendix B), in the long-wavelength limit we recover
the exact result Dp/S(k). Using the expression Eq. (A20)
and the initial condition F(k;t =0)=S(k) we get the
final formula for the intermediate scattering function:

F(k z)
S(k}

z+k D(k, z)
(A21)

APPENDIX B: EXPLICIT EXPRESSION FOR CI

D0 —/ k f/2
g, t(k, t) =12/(p e

a

oo D0t
X g (21+ l)[jt'(ka)] H&, (B2)

1=0 a
—Dok t /2

where the e ' originates from the center of mass
motion, and the solution of the relative Smoluchowski
equation enters through the function 01,

1
—tc s/2

H, (s)= — d~
a. [[nt'(~)] +[j,'(a. )] j

(B3)

where j1 and n1 are spherical Bessel functions. The col-
lective version of (B2) is arrived at in the same way as
above.

Here we give a summary of literature results for the in-
teraction parts of the friction kernel. The results quoted
here are arrived at by solving the two particle Smolu-
chowski equation, and inserting appropriate prefactors
[12]. In the frequency domain we have

Qo jt'(ka ) k, (pa )

g, t(k, z) =12+'p g (21+1), (Bl)
1=0 —yak, '(pa)

where j1 and k1 are spherical Bessel functions and
modified spherical Bessel functions, primes denote
derivative with respect to argument, and
1J, =(k +2z/Dp)' . For the collective friction function
the sum has to be taken over even I only, and the prefac-
tor 12 has to be replaced by 24.

In the time domain we find
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