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Macroscopic fluid motion can have dramatic consequences near the isotropic-nematic transition in
thermotropic liquid-crystalline fluids. We explore some of these consequences using both determinis-
tic and stochastic descriptions involving coupled hydrodynamic equations of motion for the nematic
order parameter and fluid velocity fields. By analyzing the deterministic equations of motion we

identify the locally stable states of homogeneous nematic order and strain rate, thus determining
the homogeneous nonequilibrium steady states which the fluid may adopt. By examining inhomo-

geneous steady states we construct the analog of a first-order phase boundary, i.e., a line in the
nonequilibrium phase d.iagram spanned by temperature and applied stress, at which nonequilibrium
states may coexist, and which terminates in a nonequilibrium analog of a critical point. From an
analysis of the nematic order-parameter discontinuity across the coexistence line, along with prop-
erties of the interface between homogeneous states, we extract the analog of classical equilibrium
critical behavior near the nonequilibrium critical point. We develop a theory of fluctuations about
biaxial nonequilibrium steady states by augmenting the deterministic description with noise terms,
to simulate the effect of thermal fluctuations. We use this description to discuss the scattering of
polarized light by order-parameter fluctuations near the nonequilibrium critical point and also in
weak shear flow near the equilibrium phase transition. We find that fluids of nematogens near an
appropriate temperature and strain rate exhibit the analog of critical opalescence, the intensity of
which is sensitive to the polarizations of the incident and scattered light, and to the precise form of
the critical mode.
PACS number(s): 64.70.Md, 05.70.Ln, 05.70.Fh, 05.70.Jk

I. INTRODUCTION AND OVERVIEW

Coherent macroscopic shear flow can dramatically in-

fluence the nature of phase transitions in a wide variety
of Huids, from simple binary mixtures (and simple fluids)

[1] to complex Huids such as nematic [2, 3] and smectic

[4] liquid crystals, and other lamellar phases [5]. One can
identify at least two distinct effects of shear flow on con-
densed matter, the relative importance of which depends
crucially on the nature of the system at hand. In sim-

ple systems, such as binary mixtures of simple fluids, the
primary effect of How is to advect, and thereby destroy,
long-lived fluctuations [1,6]. Physical consequences in-

clude the raising of the transition temperature and the
modi6cation of critical behavior. In complex fluids such
as fluids of thermotropic nematogenic (i.e., melts of rod-
like molecules that exhibit an equilibrium nematic phase
at sufficiently low temperatures) flow has the additional
primary effect of inducing order and, moreover, for suf-

Gciently strong flow this ordering effect can produce a
nonequilibrium critical point [2, 3, 7].

The purpose of this paper is to present a detailed de-
scription of the influence of shear flow on the isotropic-
nematic (I N) transition exhib-ited by thermotropic flu-

ids of nematogens [2, 3, 7, 8]. We have in mind an ex-

perimental situation in which a thermotropic fluid of ne-
matogens is maintained at constant temperature T and
in a state of steady planar shear flow by an externally
applied shear stress, as depicted in Fig. 1. Alternatively,
the Huid may be confined, e.g. , between rotating coax-
ial cylinders in a Couette cell, or in Poiseuille flow in a
capillary tube. (We have not yet addressed the many
interesting issues concerning spatial and spatio-temporal
instabilities [9] that such a driven system may undergo. )

Our specific aims are (i) to present a description of the
time evolution of the coupled nematic order-parameter
and Huid velocity fields; (ii) to identify the homoge-
neous nonequilibrium steady states which the fluid may
adopt; (iii) to examine inhomogeneous steady states and
use them to construct the analog of a first-order phase
boundary, i.e., a line in the nonequilibrium phase dia-
gram spanned by temperature and shear stress, at which
nonequilibrium states may coexist; (iv) to describe the
nonequilibrium analog of a critical point in which the co-
existence line terminates; (v) to extract the analog of
equilibrium critical properties (i.e., critical exponents)
near the nonequilibrium critical point, from an analysis of
the order-parameter discontinuity across the coexistence
line and the properties of the interface between homoge-
neous states; and (vi) to develop a theory of fluctuations
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FIG. 1. Coordinate system for planar Couette flovr, shovr-

ing the boundary plates and fluid velocity field for a homoge-

neous state.

about biaxial nonequilibrium steady states, and to dis-
cuss the scattering of polarized light by nematic order-
parameter fluctuations near the nonequilibrium critical
point and also in weak shear flow near the equilibrium
first-order I-N transition. As we shall see, fluids of ne-
matogens undergoing shear flow near a certain critical
strain rate and temperature exhibit the analog of critical
opalescence, with an intensity which is sensitive to the
polarizations of the incident and scattered light through
the precise form of the critical mode.

Our treatment of fluctuations is at a level analogous
to the Gaussian theory of equilibrium critical phenom-
ena [10], and has similarities with related work on binary
fluid [1],smectic [4], and other lamellar [5] systems. How-
ever, we find that the I Nsystem -exhibits qualitatively
new consequences of shear flow for fluctuations. In par-
ticular, in addition to aligning the nematogens and ad-
vecting large, long-lived fluctuations, flow makes possible
divergent fluctuations at a nonequilibrium critical point.
These fluctuations are analogous to critical fluctuations
at the equilibrium liquid-gas critical point.

Fluctuations near the nonequilibrium critical point
may be probed most readily through elastic light scat-
tering, which we discuss in detail. At the nonequilib-
rium critical point of the flowing nematogens there is a
single critical mode. This mode, however, differs from
that at a conventional Ising-like critical point, being a
superposition of orientation and amplitude modes of the
order parameter. For the flowing nematogens the criti-
cal mode may be selectively probed by choosing suitable
polarizations of incident and scattered light, whereas the
analogous critical opalescence in the liquid-gas system is
isotropic.

Throughout this work we shall mention certain con-
cepts and phenomena familiar from the equilibrium
liquid-gas system (which we henceforth refer to as LG;
see, e.g. , Ref. [11]). As we do this, it may be useful to
bear in mind that such remarks apply equally to phase-
separating binary fluids. In addition, it should be noted
that we shall refer to homogeneous nonequilibrium steady
states as phases.

In previous work [3,8, 12] we have (i) presented the rel-
evant coupled equations of motion for the order param-
eter and fluid velocity fields, valid for both uniaxial and

biaxial molecular alignment of small magnitude; (ii) con-
structed a nonequilibrium phase diagram from the homo-
geneous solutions to these equations of motion; (iii) out-
lined a scheme for locating coexistence between nonequi-
librium states; (iv) sketched a framework for analyz-
ing nonequilibrium fluctuations and light-scattering; and
(v) discussed analogies with equilibrium systems such as
the LG.

References [3,8, 12] were, however, all rather brief. We
will, therefore, in the course of this presentation, find
ourselves giving a detailed recapitulation of their con-
tents. As we do this, we would like to stress the follow-
ing two points which we have not previously emphasized.
First, the criterion for determining coexistence of states
within the two-state region is that the relevant states
have a common momentum flux density (which is closely
related to the boundary stress), as discussed in Sec. VI A.
To the best of our knowledge, this criterion has not been
explicitly addressed in the context of complex fluids, and
phase diagrams for flowing systems have generally been
constructed in terms of an imposed strain rate rather
than applied shear stress [2, 3, 7, 13]. Indeed, it should
be noted that while the stationary states themselves do
not depend on the choice of control parameter (stress or
strain rate) their stability is sensitive to this choice and,
consequently, so is the precise location of the nonequilib-
rium critical point. Second, the quantity which vanishes
as the critical point is approached along the coexistence
line, i.e., the proper order parameter for the continuous
transition, is constructed by an appropriate projection of
the nematic order-parameter discontinuity on to a cer-
tain critical mode; The necessity for such a projection
occurs because the principal axes of the nematic order-
parameter discontinuity rotate, as the critical point is
departed from along the coexistence line.

This paper is organized as follows. In Sec. II we give
a brief discussion of the effects of shear flow on various
mesophases of condensed matter. In Sec. III we sum-
marize some important facts about the equilibrium IN-
transition. In Sec. IV we present the equations of motion
used to obtain our. results. In Sec. V we review the ho-
mogeneous nonequilibrium steady states, presenting de-
tailed expressions for the alignment in weak flow near the
I Ntransition. I-n Sec. VI we consider inhomogeneous
nonequilibrium steady states and describe the interface
construction used to analyze selection between, and coex-
istence of, such states, and present the resulting nonequi-
librium phase diagram. From the interface construction
we extract information about the critical behavior of the
system which —not surprisingly, given our framework—
turns out to correspond to classical equilibrium critical
behavior. In Sec. VII we describe the dynamics of lin-
ear fluctuations about nonequilibrium steady states un-
der shear flow, and in Sec. VIII we conclude this paper
with a summary of our results and suggestions for future
directions.

II. SIMPLE AND COMPLEX FLUIDS
IN SHEAR FLOW

The paramount motivation for the study of fluids of
mesogens (i.e., molecules forming phases intermediate be-
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tween liquid and crystal), such as nematogens, in shear
flow stems from the observation that such flow can in-
fluence the state of order at the molecular level. This
fact suggests the possibility of flow-controlled transitions
between states which differ in the degree, and perhaps na-
ture, of their molecular alignment. Important additional
motivation stems from the fact that shear flow introduces
a new macroscopic time scale

through the strain rate D. Equilibrium fluctuations with
an intrinsic lifetime shorter than 7.0 should barely be af-
fected by the shear flow, while those with longer lifetimes
should be strongly influenced (i.e., severely distorted by
advection). Thus, one anticipates that the broad impact
of shear flow is to suppress fluctuations; that this is in-
deed the case has been shown both theoretically [1] and
experimentally [6] for the case of the near-critical binary
fluid. However, for more complex fluids the manner and
ramifications of the suppression of fluctuations depend
on the precise nature of the ordering and fluctuations
encountered in the equilibrium state.

A. Critical simple fluids under shear flow

The impact of shear flow on the binary fluid near

its critical point was first investigated by Qnuki and

Kawasaki [1],whom we henceforth refer to as OK. Now,

an equilibrium critical point is characterized, according

to the scaling hypothesis [10, 14], by a diverging cor-
relation length, which implies that fluctuations at the
critical point occur on all length scales from microscopic

to macroscopic. Furthermore, associated with a fluctu-

ation at a particular wave number k is a characteris-

tic time scale wi, over which this fluctuation relaxes in

equilibrium. This time scale should be compared with

7~, which is, roughly speaking, a measure of how long

it takes for a fluctuation to experience advection. If
7D ( 7I„the fluctuation would be destroyed by advec-

tion more rapidly than it would relax in equilibrium. As

longer wavelength fluctuations have longer characteristic
time scales 7g, the aflbcted fluctuations are the longer

wavelength ones, i.e., precisely those which are charac-

teristic of a system near equilibrium criticality. Hence,

fewer of the long-wavelength fluctuations contribute to
the critical behavior, as the strain rate is increased, and
one might expect to find classical rather than anomalous
critical behavior [10]. In addition, shear flow frustrates
the microscopic processes (i.e. , van der Waals attraction)
which induce the equilibrium LG critical point, lead-
ing to the suspicion that the critical temperature should
be educed in the presence of shear flow. These conse-
quences of shear flow were predicted theoretically by OK
using a renormalization-group (RG) strategy applied to a
Fokker-Planck description of the coarse-grained dynam-
ics, and verified experimentally, along with other predic-
tions, by Beysens and co-workers [6].

B. The driven diffusive lattice gas

Related to the LG in shear flow is the driven diffusive
lattice gas (DDLG) [15—17]. This model was proposed by

Katz, Lebowitz, and Spohn [15] as a simple example of a
nonequilibrium system whose behavior under an external
driving field might provide insight into the general sub-
ject of nonequilibrium phase transitions. The model con-
sists of a gas of particles, conserved in number, which are
free to hop on a lattice. An efFective external driving field
is simulated by imposing anisotropic jump rates, so that
jumps in a preferred direction are more probable than
others. In addition, periodic boundary conditions are
imposed, in order to accommodate flowing steady states.
In the absence of the driving Beld the phase diagram
is spanned by temperature and average particle density.
At half-filling, the system segregates into high- and low-
density regions at a critical point in the Ising universality
class. The properties of this continuous transition, in the
presence of a driving field, have been studied via numeri-
cal simulations [15], mean-field approximations [16], and
field-theoretic techniques [17]. It has been determined
that the transition remains continuous in the presence of
the driving field, and that the critical temperature in-
creases with increasing field, but that the universality
class, and hence the critical behavior, differs from that
of the equilibrium critical point. As with the LG [1],
the driving field causes the correlations to become highly
anisotropic, and classical critical behavior is found.

C. The isotropic-lamellar transition under shear flow

The isotropic-lamellar (I L) transiti-on occurs, e.g. ,
in microemulsions and diblock copolymers [18, 19], and
is a transition between an isotropic state and a one-
dimensionally ordered state, thus having a higher de-
gree of molecular organization than the LG. Such order
is characterized by a wave vector of magnitude ko but
arbitrary direction (neglecting boundary forces). The
mean-field equilibrium transition, as dictated by sym-
metry considerations, can be of either second order or
weakly first order. However, Brazovskii [20) has predicted
that strong fluctuations associated with the degeneracy
in the direction of the ordering wave vector ks should
induce a first-order transition.

The I Ltransition in-shear flow has been studied theo-
retically by Cates and Milner and by Marques and Cates
[5]. Having a higher degree of molecular organization
than the LG, the I Ltransition ex-hibits certain qualita-
tive features also exhibited by the I-N transition under
shear flow.

Inasmuch as fluctuations are suppressed, the effect of
shear flow on the I-L and LG transitions is similar, but
there are significant differences. Near both transitions,
shear flow destroys those fluctuations with suKciently
long lifetimes. However, a special role is played in the
I Lease by the lame-llar nature of the ordered phase [5]:
fluctuations which form with layers normal to the flow

direction are quickly eradicated in flow, while fluctua-
tions with layers parallel to the flow are more likely to
survive. Hence, shear flow not only suppresses lamellar
droplets larger than a given size, as with the LG, but
also regulates the class of fluctuations which occur, and
constrains the set of candidate low-temperature lamellar
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phases. In contrast with the LG, the I L-transition tem-
perature increases in the presence of shear flow, because
certain fluctuations which frustrate equilibrium ordering
are suppressed by the flow. The nature of the I L-tran-
sition in flow was predicted by Cates and Milner and by
Marques and Cates, to cross over to mean-field —type at
sufficiently high strain rates. Whereas equilibrium fluc-
tuations in the layer orientation (i.e., Brazovskii fluctu-
ations [20]) induce a first-order transition, shear flow is
predicted to restore a continuous mean-field transition,
at least in the limit of infinite strain rate [5].

D. The nematic —to—smectic-A. transition
under shear flow

The nematic —to—smectic-A (N—Sm-A) transition un-
der shear flow has been studied experimentally by
Safinya, Sirota, and Piano [21],and theoretically by Bru-
insma and Safinya [4]. The transition between nematic
and smectic states is similar to the I-L transition, in
that a one-dimensional density wave develops. This den-
sity wave may be crudely envisaged as comprising stacked
layers of nematically aligned rodlike molecules. The ef-
fects of flow are similar to those on the I Ltransit-ion:
advection suppresses long-wavelength fluctuations, and
the layering direction is prescribed by the flow. Hence,
the transition temperature should increase in flow and
the behavior should be mean-field-like.

However, the N—Sm-A transition in shear flow has an
additional complication due to the nematic order present
in both N and Sm-A phases. Flow prescribes a direction
for nematic ordering [22, 23], somewhat reminiscent of
the alignment by a magnetic field of a ferromagnet below
its Curie temperature. However, a nematic state in shear
flow cannot undergo a transition to the smectic state in
the same way that it does in equilibrium, with the smec-
tic layer normal parallel to the orientation specified by
the nematic alignment. The reason for this is that shear
flow orients the mesogen molecules roughly parallel to the
flow, whereas (as we have seen in the discussion of the
I-L transition [5]) layers with normals parallel to the flow

wjQ be destroyed by advection: stable smectic layering
can only occur in layers which do not cut across stream-
lines. Thus, there will be a crossover in the preferred rod
orientation, e.g. , as the temperature is reduced at fixed

strain rate, from alignment roughly parallel to the flow in

the nematic state, to alignment normal to the shear plane
in the smectic state [4, 24]. Consequently, the phase di-

agram acquires much structure as shear stress is applied
to the fluid [21]. Interesting additional predictions con-

cerning the renormalization of the anisotropic viscosities

(i.e. , Leslie coefficients) [4, 24] have been made for the
N—Sm-A fluid under shear flow.

E. The isotropic-nematic transition under shear flow

The isotropic-nematic (I N) transition in she-ar flow

has been studied by several researchers, beginning with
Hess [2] and followed by Olmsted and Goldbart [3] and

See, Doi, and Larson [7]. In addition, Thirumalai [25],
Lee [26], and Wang and Gelbart [13] have studied the re-
lated problem of phase transitions in systems of rodlike
molecules in uniaxial elongational flow. As noted first by
Hess, the propensity of nematogens to align in shear flow
causes the transition under flow to occur at a tempera-
ture higher than the equilibrium transition temperature.
At sufficiently high strain rates a transition no longer oc-
curs, and the state of the system evolves smoothly as the
temperature is lowered.

The equilibrium transition, which is first order and oc-
curs at a temperature T, „,is a symmetry-breaking tran-
sition from an isotropic state to a uniaxial nematic state
[27], with Goldstone modes of director fluctuation accom-
panying the spontaneously broken symmetry [28]. Shear
flow has two significant effects on the state of molecular
alignment. First, it induces alignment in the nematogens
and selects a particular orientation for this ordering. This
should be contrasted with N—Sm-A and I Ltran-sitions,
for which flow directly affects the layering orientation
but not, primarily, the magnitude of the molecular or-
der. Second, planar shear flow has a biaxial symmetry,
and hence both the high- and low-temperature states of
nematogens in shear flow are, to some extent, biaxial,
which renders the transition in flow a non-symmetry-
breaking transition, reminiscent of the LG transition. In
contrast, the symmetry-breaking nature of the I L, N-
Sm-A, and LG transitions are unaffected by the flow, at
least with regard to static correlations. By analogy with
other non-symmetry-breaking phase transitions, such as
the LG transition, it is reasonable to anticipate that, as
the applied shear stress is increased, a nonequilibrium
analog of the discontinuous equilibrium I Ntransition-
should terminate in a critical point (although, in princi-
ple, multicritical phenomena are possible). Furthermore,
because flow suppresses the fluctuations which frustrate
ordering of the system, the transition temperature should
increase with increasing strain rate, as with the I Land-
N —Sm-A transitions.

There are several important distinctions between the
systems we have briefly examined, and it is worthwhile to
review them. The LG has no long-range internal struc-
ture, and the advective action of flow on the fluctua-
tions induces classical critical behavior. The N—Sm-A
and I-L transitions are both transitions to states with
long-range density structure, namely a one-dimensional
density wave. For these, the effects of shear flow are
twofold: (i) long-lived fluctuations are advected by flow
and (ii) the orientation of the density wave vector is
constrained to lie normal to the flow direction, result-
ing in an increase in the transition temperature. The
symmetry-breaking nature of these transitions (i.e., from
translational invariance to one-dimensional density wave)
is preserved under shear flow. The nematic system also
has long-range internal structure, but which couples di-
rectly to the flow gradient. Flow therefore affects both
the magnitude and the orientation of the molecular or-
dering, as well as altering the symmetry-breaking nature
of the transition. As we shall see, its effect is to raise the
transition temperature, and to introduce a critical point
into the nonequilibrium phase diagram.



4970 PETER D. OLMSTED AND PAUL M. GOLDBART 46

III. EQUILIBRIUM NEMATIC FLUIDS

A. Nematic order parameter

To describe the local state of molecular alignment in a
fluid of N nematogens we adopt the conventional nematic
order parameter Q~p(r, t) [29], defined by

p(r ~) Q p(r &)

a=1

Q~p = zsi(n~np —sb'~p)+ 2S2(tn rnp —I tp),

(3.2)

where the orthogonal directors n, m, and l are the prin-
cipal axes of Q~p. The director n indicates the primary
direction of alignment; the subdirector m indicates the
secondary direction of alignment; and / = n x m. The
biaxial state is thus specified by five parameters: the uni-

axial scalar amplitude Si, the biaxial scalar amplitude
S2, two angles to specify the orientation of the director
n, and a third angle to specify the rotation angle of m
about n. The uniaxial state, in which S2 ——0, is spec-
ified by only three parameters: the magnitude Sq, and
two angles to orient the director. Sq and S2 may also be
interpreted in terms of moments of the molecular orien-
tation distribution function @(v),

Si = (cos 8 —si) = (v, —3),

Sq = (sin 8 cos 2P) = (v —v„),

(3.3a)

(3.3b)

where 8 and P are the conventional spherical polar coor-
dinates, the z axis is taken to be parallel to ri, and ()
here denotes an average over @(v).

where r&' is the position of the ath rodlike molecule,
v& & is the unit vector representing the orientation of the
ath molecule, having Cartesian components v" (with
o, = 1, 2, 3), and the angle brackets denote an appropri-
ate ensemble average. We shall assume that the molecule
(number) density, p(r, t) =—P, i (b(r —r&'(t))), is spa-
tially uniform (i.e. , homogeneous) and temporally con-
stant. The subtraction of (one-third of) the identity in
Eq. (3.1) ensures that the order parameter Q p vanishes
for an isotropic state. The order parameter Q p(r, t) is
thus a traceless and symmetric second-rank tensor field,
having five kinematically independent internal degrees of
freedom.

While states with isotropic or uniaxial distributions of
molecular orientation are the most common equilibrium
states for nematogens, the molecular orientation distribu-
tion function may have biaxial symmetry, either (i) spon-
taneously (which is rare) or (ii) due to a biaxial external
field (such as shear flow), or, e.g. , (iii) due to a magnetic
field (when the magnetic susceptibility is negative). For
a biaxial state, the order parameter takes the form

B. Landau —de Gennes theory
of the isotropic-nematic transition

J'F = a~i (~~Q») + x~2 (~~Q~P) ~ (3.5)

where I i and Lz are elastic moduli. This is not the
most general expression: we have ignored surface terms,
terms of the same order in gradients but higher order in

Q p, and higher-order gradient terms. However, for bulk
properties of systems near T, N, for which Q p is small,
this form is adequate [29].

It is interesting to note that translational and rota-
tional degrees of freedom are uncoupled when the mod-
ulus L2 vanishes. In this case, the free energy is invari-

ant under independent global rotations of the molecular
center-of-mass locations and the molecular orientations,
i.e., the symmetry group is then O(3) O(3), rather than
its diagonal subgroup O(3). Thus, with the approxima-
tion Lq ——0 we expect certain properties associated with
spatial gradients to be isotropic, so that calculations are
extensively simplified, while —it is hoped —retaining
much of the physics. We will employ this approximation,
the so-called "one-constant approximation, " in our anal-

ysis of steady-state correlations in shear flow (Sec. VII)
[33]. (See Ref. [34] for one example of a situation in which

adopting the one-constant approximation would be too
drastic a simplification. )

Using the Landau —de Gennes and distortion contribu-
tions to the free-energy density, one may calculate the
equilibrium correlations between certain thermally Buc-

tuating quantities. For simplicity, we temporarily con-

sider the one-constant approximation, L2 ——0. At tem-
peratures slightly higher than T, ~ the system is isotropic

Typically, equilibrium I N-transitions are found exper-
imentally to be rather weak first-order transitions (com-
monly Si 0.3 [30]), so that a satisfactory qualitative
description of them may be obtained by asserting that
homogeneous equilibrium states (i.e. , phases) minimize
the Landau —de Gennes free-energy density [ll, 31],

~L= 2A(T) Q PQP + sBQ PQW@ +4~C(Q PQP ) .

(3 4)

(Implicit throughout this paper will be a summation
from 1 to 3 over repeated greek subscripts representing
Cartesian components. ) The cubic term, allowed because
Q p ~ —Q p is not a symmetry, ensures that the mean-
field transition can be first-order [11]; a negative value
for B gives the conventional uniaxial nematic state. The
important temperature dependence is taken to reside in
A(T):—a(T T), w—hile the variation of B and C with
temperature T is assumed to be weak and will be ne-
glected. The I Ntransi-tion occurs with a discontinuity
ASi —— 2B/—9C at a transition temperature T, „,given
by A(T, „)= B /27C [30].

In addition to the Landau —de Gennes homogeneous
free-energy density, we must also account for the free
energy cost of spatial distortions [32]. For temperatures
near T, „,where variations in amplitude occur relatively
easily, the distortion (or Frank) free energy may be taken
to be
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Li(()= (T T) (3.7)

which grows as the transition is approached from above.
The fluctuations are isotropic, and would diverge as k ~
0 and as T -+ T from above. However, this divergence
is preempted by the first-order transition at T, ~ )T

IV. DYNAMICS OF FLUIDS OF NEMATOGENS

The equations of motion for flowing nematogens at
temperatures near the equilibrium I-N transition tem-
perature have been introduced previously by Hess [2],
and subsequently in Ref. [3]. They are coupled equa
tions of motion for the fluid velocity v(r, t) and the en-
tire order parameter Q p(r, t), and may be regarded as
generalizations of the Navier-Stokes and Leslie-Ericksen
equations [22], enlarged to admit variations in the am-
p/itude degrees of freedom of the order parameter, and
hence biaxiality. Their derivation is presented in Refs. [2]
and [3], and follows the standard strategy of nonequilib-
rium thermodynamics [35, 36]: (i) calculate the entropy
production, starting from the assumption of local equi-
librium, in accordance with the conservation of mass, en-

ergy, and linear and angular momentum; and (ii) make a
linear Onsager expansion of the dissipative fluxes (i.e, the
dissipative symmetric stress tensor, and the motion of the
order parameter relative to the rotation of the fluid) in
terms of the conjugate forces. For the sake of simplic-
ity, we assume (i) that temperature gradients are neg-
ligible (i.e., that the thermal difFusivity is large), and
(ii) that the fluid is incompressible, V v = 0. Thus,
we are restricting our attention to thermotropic liquid
crystals. The description of lyotropic liquid crystals (i.e.,
solutions of rodlike molecules that exhibit nematic phases
at sufficiently high concentrations) would necessarily be
somewhat more elaborate, requiring the incorporation of
concentration variations.

The coupled equations of motion for the fluid velocity
and the order parameter are

but, because of the weakness of the first-order transi-
tion, there are small, although significant, nematic fluc-
tuations. As the fluctuations in the order parameter
are small in this regime, it is adequate to truncate the
Landau —de Gennes free energy after the quadratic term.
The equilibrium fluctuations in the Fourier modes of the
order parameter Q p(k) are then given by the equiparti-
tion theorem, i.e.,

(Q p(~)Q~p( —k))
kgT/2

, (6a~6pp + 6ap6p~ —
s 6ap4p)

(3.6)

Here (0)—:Z i f 17QGexp( F/kg—T), where 17Q is
the measure for functional integration over all indepen-
dent configurations of the order parameter, and Z —=

f VQ exp( F/kpT—) is the partition function. From this
Ornstein-Zernicke form we identify a fluctuation correla-
tion length

p(Bi+v V)v =B~cr ~, (4.1a)

(Bi+ v V) Q p = Ii, ~ ]Q~p —Q ~r, p

+Pire p+ —H p .[s] 1 [s]

2
(4.1b)

The total stress tensor o p includes an irreversible (i.e. ,

dissipative) symmetric part 0''[p], an irreversible anti-

symmetric part (i.e., a torque) cr' p, a reversible distor-
tion part o~p, and an isotropic pressure part —p6 p, and
is given by

o'ap = o p + 0 p + cr p
—p 6ap,

i[s] i[a]

0 p
——Psrc p

—PiH p,
i[s] [s] [s]

i[a] [s) [s]a'
p

——Ha~ Q~p —Qa~ H„p,
6F

6B Q)p

(4.2a)

(4.2b)

(4.2c)

(4.2d)

T8=ZapH pycr ply p,
S 4 8 S

in which the flux Z p is defined by

Z p
= (Bi+v V) Q p

—(Ii, Q„p—Q ~~ p),

(4 3)

(4 4)

together with the linear Onsager expansion of the fluxes

(Z p and 0'[p]) in terms of their conjugate forces (ii 'p

and H'p):

Zap = Pili, p + Pz H p,
[s] -1 [s]

o p
——Ps', p

—PiH p.i[s] [s]

(4.5a)

(4.5b)

Using the resulting equations of motion, Eqs. (4.1a) and
(4.1b), the local entropy production density may be ex-
pressed as

T8 = Ps' ply, p+ —H pH p.[s] [s] 1 [s] [s]

2
(4.6)

The distortion stress tensor 0."& can be calculated from
Eq. (4.2d) using the distortion free energy, Eq. (3.5),
which yields

d0'ap = Ll BaQpv BpQ&v —L2 BpQap BvQvp (4 7)

(While this form of the distortion stress tensor is gen-
erally not symmetric, it becomes symmetric in the one-
constant approximation. ) The molecular field H p can

Here, Hap =— 6F/6Qa—p is the molecular field, Pi is a
dimensionless kinetic coefficient, Ps and Ps are positive
viscosities, and the minus sign in Eq. (4.2b) conforms
with Onsager reciprocity [35,36]. The tensor field iiap =—

Bavp(r, t) is the velocity gradient tensor, and we use the
notation Tap and T p to denote the symmetric-traceless[a]

and antisymmetric portions of any tensor Tap.
The equations of motion, Eqs. (4.1a) and (4.1b), fol-

low from the local entropy production density (i.e., the
dissipation) 8, which is given by
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Pi = 3Si A/2,

Pz = 2»/(9Si)
Ps =2'.

(4.9a)
(4.9b)
(4.9c)

Here, the parameters of LE theory (A, », vqj are, re-
spectively, a ratio of rotational viscosities, a rotational
viscosity, and the standard shear viscosity of the Navier-
Stokes equation; see Ref. [27]. Notice that while the LE
theory has five transport coefficients, only three appear
in Eqs. (4.9a)—(4.9c). This discrepancy arises because
the equations of motion (4.la) and (4.lb) follow from an
expansion in powers of Q~p, retention of higher orders
in Q p would introduce additional transport coefficients.
Consequently, it may be anticipated that our results are
quantitatively self-consistent only when Q~ p is small, e.g. ,
not far from the equilibrium I Ntransit-ion temperature.
We also note that conventional LE theory is appropri-
ate when the molecular field enforcing uniaxial order of
fixed magnitude dominates the biaxial and ordering ef-
fects of flow (e.g. , at sufficiently low temperatures and
strain rates).

Related equations of motion have been derived from
a microscopic model based on the rotational diffusion
equation for the molecular orientation distribution func-
tion [7]. The resulting description depends on the fol-
lowing phenomenological parameters: (i) the rotational
diffusion constant and (ii) a Maier-Saupe —like excluded-
volume parameter. This description is, at present, lim-

ited to homogeneous states, although it may, in principle,
be extended to inhomogeneous states by incorporating
translational difFusion [38].

V. HOMOGENEOUS STATES

A variational (i.e., "effective free energy") approach
to the description of the nonequilibrium states of fluids
of nematogens in shear flow does not exist. We have
therefore chosen to identify the candidate nonequilib-
rium phases by determining the stable stationary homo-
geneous states of the system in the absence of noise. This
procedure is a nonequilibrium analog of the mean-field
description of an equilibrium system, and should give us
a qualitatively accurate description of the nonequilibrium
phase diagram. Due to the absence of some analog of a
thermodynamic potential, however. we shall have to re-
sort to other means in order to select between candidate
phases at locations in the nonequilibrium phase diagram

be calculated from the Landau —de Gennes and distortion
free-energy densities, Eqs. (3.4) and (3.5), yielding

~(T)Q.& ~Q..Q.& ~Q.&Q.,Q.,
—I i 7' Q~p —L2B~BpQpp. (4.8)

It may be shown that under the constraint of uniaxial
order, homogeneous in amplitude (i.e. , Sz = 0, and Si a
spatially and temporally nonzero constant) the equations
of motion (4.la) and (4.1b) reduce, as they should, to the
Leslie-Ericksen equations for director dynamics [37], pro-
vided the following correspondences between transport
coefficients are made:

where more than one such state exists. A discussion of
the issue of state selection, and the consequent issue of
coexistence, is postponed until Sec. VI; the subject of
noise and fluctuations is postponed until Sec. VII.

A. Stationarity conditions for homogeneous states

We take stationary homogeneous states to be those

states in which the thermodynamic fluxes Z~p and o'
&

are stationary and homogeneous, i.e., independent of
time and position. As a consequence of the Onsager ex-

pansion, Eqs. (4.5a) and (4.5b), their conjugate forces

z
&

and H
&

are also stationary and homogeneous. From[s] [s]

Eq. (4.8) we see that the stationarity and homogeneity

of B['&~ implies the stationarity and homogeneity of Q~p.
Then, from the definition of Z~p, Eq. (4.4), we find the

stationarity and homogeneity of z['&.
We now turn to the coupled nonlinear partial difFer-

ential equations for the velocity and order-parameter
fields, Eqs. (4.1a) and (4.1b). As we have seen, station-
ary, homogeneous states satisfy BtQ~p = 0, B~z~p = 0,
B~Q p = 0, and B~r p = 0. As we are focusing on
bulk properties, we adopt periodic boundary conditions
for Q p in all three directions, z, y, and z. Similarly,
we adopt periodic boundary conditions for v in the x
and z directions. However, in the y direction we impose
"no-slip" boundary conditions, so that the fluid and the
boundary plates move at the same velocity, which is di-

rected in the x direction. Then, the homogeneity and sta-
tionarity of the velocity gradient, together with the con-

stancy (in time) of the plate velocities and the boundary
conditions on v, require that v& and v, are zero through-
out the fluid, and that v~ varies linearly with y but is
independent of z and z. Thus v(r) = Dyx, in which

D is the stationary and homogeneous strain rate. Under
these conditions, the equations of motion become nonlin-
ear algebraic equations, coupling the strain rate D and
nematic order parameter Q p.

We wish to find solutions of these equations as func-
tions of the temperature and either the shear stress ap-
plied to the fluid or (its nonequilibrium conjugate) the
strain rate of the flowing fluid (and for appropriate phys-
ical choices of material parameters such as the Landau-
de Gennes and Leslie coefficients). For ease of calculation
we choose the latter option. Then, to find the stationary
order-parameter configurations we need only consider the
equation of motion for the order parameter, Eq. (4.1b).
The velocity-field equation of motion, Eq. (4.la), is au-
tomatically satisfied, because for the homogeneous states
which we are considering the momentum flux density ten-
sor Bp(0 p

—pv vp) vanishes. Thus, we find numerically
the stationary value (or values) of Q p, and then com-
pute the value of the shear stress necessary to maintain
these states. By doing this, we construct two-dimensional
surfaces of stationary states, in the space spanned by
temperature, strain rate, nematic order parameter, and
applied stress. As we shall see below, when we discuss
inhomogeneous states, pairs of phases —if they do so—coexist at common values of their temperature and
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stress, and not at common temperature and strain rate
Thus, for considering coexistence it is appropriate to an-
alyze the states as functions of temperature and stress.
However, for the intermediate purpose of considering the
existence of homogeneous states it is simpler to consider
the temperature and strain rate to be fixed. We remind
the reader that the stress, strain rate, and nematic order
parameter are related by Eq. (4.2b).

Let us then examine the stationarity condition for Q~p,
in the presence of the planar shear flow v(r) = Dy x.
The director n lies in the shear plane at an angle 8 with
respect to the flow, and the subdirector m may also be
taken to lie in the shear plane, as depicted in Fig. 2.
(We will see, below, that this includes all locally stable
homogeneous steady states. ) Inserting the parametriza-
tion (3.2) in Eq. (4.1b), we find the following stationarity
conditions:

Pi/3zD sln28 = Si A(T) + z (3Si + Sz)

(5.1a)

PiPzD sin28 =
z (Si —Sz) A(T) + &

C (3Si + Sz)
——,'z B(Sz —6SiSz —3Si), (5.1b)

2 Pi cos28 = 3Si + Sz . (5.1c)

B. Stationary states

These three conditions determine the magnitude of the
two amplitudes Si and Sz, and the orientation of n in the
shear plane with respect to v, as a function of the strain
rate D and the temperature T, which enters through
A(T). The alignment condition (5.1c) is independent of
strain rate, and is a generalization of the Leslie-Ericksen
alignment condition cos 28 = A i [22, 23].

molecular-weight thermotropic nematogens, as a function
of the dimensionless strain rate 6 and the dimensionless
temperature r. We define these dimensionless parame-
ters, along with the dimensionless applied shear stress s,
through

7. —:A(T)/C,
b—:DPz/C,
s —= CT2;il/C.

(5.2a)

(5.2b)

(5.2c)

Now, in dimensionless form the stationarity conditions
become

0= k „Q„p—Q „k„p+Pizp b —~Q p
[a] - (al - tsj

B B—
CQ Q —Q Q Q — 6 Q Q

(5.3)

where k~p
—= mop/D is the dimensionless strain-rate ten-

sor. In this form it is evident that the nature of the states
is determined by only two material parameters: (i) the
kinetic coefficient Pi (which, by correspondence with LE
theory, is a ratio of rotational viscosities [27]); and (ii) the
ratio of Landau —de Gennes parameters B/C (which is a
measure of the weakness of the first-order transition; re-
call that ESi = 2B/9C).—From a typical value of the
order-parameter discontinuity at the equilibrium transi-
tion, b,Si ~ 0.3 [30], we have chosen B/C = —1.2. We
have used Pi ——0.9, which follows from the correspon-
dence with LE theory, Eq. (4.9a), along with the reason-
able value A 2.0 [27].

Figure 3 depicts stationary states through their values
of Si, i.e., the largest eigenvalue of Q p, as a function
of dimensionless temperature ~, for a particular value
of the dimensionless strain rate b. Dashed (solid) lines
correspond to states which are unstable (stable) at fixed

In Ref. [3] we computed the stationary states for a
fixed set of material parameters chosen to exemplify low-

0.5--

0.4
Q

03 "

0.2

0.1

a

0.02 0.06
Reduced Temperature 7.

0.1

FIG. 2. Parametrization of homogeneous stationary
states of nematic alignment in terms of the rotation of the
director n with respect to the How direction.

FIG. 3. Uniaxial order parameter Sq, as a function of re-
duced temperature 7, for branches containing the stable roots
Q~p, for a range of values of the (dimensionless) strain rate
and for material parameters B = —1.2C and Pi = 0.9: (a)
6 = 0; (b) ~6( & 6„;~,(c) (6( = 6„;;and (d) (6( ) 6„;.
Dashed (solid) lines correspond to states which are unstable
(stable) at fixed strain rate (but not necessarily at fixed stress;
see Sec. V D). The inset shows all stationary values of Sz for
a dimensionless strain rate 6 = 0.005.
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strain rate (but not necessarily at fixed stress; see below
in Sec. VD). The stable order-parameter configurations
have two principal axes (director and subdirector) in the
shear plane, and the third orthogonal to it. (The shear
plane is defined to be the plane containing both the fluid
velocity and the gradient of the fluid speed; in the present
case it is the xy plane. ) At high temperatures there is
a single stable state Q+& available to the system, which
is weakly ordered and has a relatively high degree of bi-
axiality. In fact, one may readily solve the stationarity
conditions, Eqs. (5.1a)—(5.lc), in the limit of weak shear
flow, ]D[«A(T) P2, to find that for the state Q+&

~(D, T) = ——p2 ~ 1

4 4A(T) 4 4r

Si(»T) = Sz(»—T) = PiP~ A
2A(T) 2r

(5.4a)

(5.4b)

We have adopted the notation Q+& to signify the more

(less) weakly ordered of two locally stable states, which is
continuously connected to the high- (low-) temperature
branch. As the temperature is reduced, a second state (as
well as additional unstable states) becomes available to
the system, and at still lower temperatures this new state
becomes the only stable state. This new state Q &

is well
ordered and nearly uniaxial, reflecting the dominance, at
lower temperatures, of the thermodynamic forces (i.e. ,

the molecular field). In the limit of small strain rate,
[D~ &&A(T) P2, the corrections to the order parameter in
the state Q &

due to the flow are given by

critical strain rate the system undergoes a continuous but
singular transition from the high- to the low-temperature
state. This phenomenology will survive the transforma-
tion from fixed strain rate to fixed shear stress. However,
the precise quantitative location of the critical point will
undergo a slight modification.

C. Stability conditions

We have constructed the two dimensional surface of
stationary states in the space spanned by temperature,
strain rate, nematic order parameter, and shear stress,
as a function of temperature and strain rate. That the
surface is two dimensional is a reflection of the fact that
there are two control parameters. It is a straightforward
matter to use Eq. (4.2b) to convert the result of this pro-
cedure so as to provide the surface of strain rate and
order parameter as a function of temperature and stress.
It will be particularly profitable to have made this trans-
formation in the following section, when we discuss state
selection and coexistence. The transformation is eKected
simply by regarding the surface of states in the space
spanned by temperature, strain rate, order parameter,
and stress as a surface of strain rate and order parame-
ter as a function of temperature and stress.

We now address the issue of the local stability of the
various stationary states with respect to homogeneous
fluctuations at fixed temperature and stress. We do
this by considering the dynamics of infinitesimal homo-
geneous variations in the nernatic order parameter

Si(D, T) Sp(T) + r D~,

S2(D, T) —[8 + 6Sp(T)C] r[D[/28,

where

/4P,' —9S,(T)~

8g Sp (T) (8 + 6Sp (T) C)
'

Sp(T)—: 8/6C + /2A—(T)/3C.

(5.5a)

(5.5b)

(5.5c)

(5.5d)

(5.6)

about the locally stable homogeneous steady states Q &
.(o)

We parametrize such fluctuations via the five amplitudes
(('(t)), i of the expansion of bQ~p(t) in terms of a con-
venient complete orthonormal set of five traceless sym-
metric tensors (e'&), i, i.e. ,

Notice the tendency, as Sp(T) increases, for r to become
imaginary, signaling the onset of temporally oscillatory
states [39]. Here Sp(T) is the equilibrium (i.e. , D = 0)
value of the order parameter [30], and the alignment an-
gle is given by the stationarity condition (5.1c). Thus, we
see that the primary role of shear flow at low ternpera-
tures is to dictate the orientation of molecular alignment.

In the intermediate regime of temperatures, and for
strain rates not too large, there are two locally stable
homogeneous states. The issue of which, if either, of
these two states is physically selected is taken up again in
Sec. VI. As the strain rate is increased, we find the fam-
ily of curves depicted in Fig. 3. For low strain rates the
curves indicate a high-temperature weakly ordered phase
which gives way to a two-state region at lower temper-
atures, and to a single well-ordered phase at still lower
temperatures. However, for higher strain rates we And
qualitatively diferent behavior. For dimensionless strain
rates larger than a critical value the state of the sys-
tem varies smoothly with temperature, and there is no
transition. Finally. when the temperature is varied at the

(5.7)

(= —M (+0(( ), (5.8)

and collect these amplitudes in a five-component vec-
tor (; details of this parametrization are given in Ap-
pendix A. (Note that a summation will not be im-
plied over repeated latin superscripts. ) One should en-
visage these homogeneous fluctuations as vectors (' in the
five-dimensional order-parameter space, with coordinates
(('). We focus on the dynamics of the fluctuations ob-
tained by linearizing Eq. (4.1b) in the fluctuation bQ ii.
In order to maintain constant homogeneous stress there
is an accompanying variation in the strain rate, which is
determined using Eqs. (4.2b) and (4.2c). Thus, we elim-
inate the strain-rate dependence in the nematic order-
parameter fluctuation equation of motion, derived from
Eq. (4.1b), in favor of dependence on the order parame-
ter and the stress. Then, using the orthonormality of the
basis, the fluctuation dynamics at constant temperature
and stress becomes
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is the appropriate fiuctuation matrix. Thus,
when subjected to infinitesimal homogeneous variations,
the normal-mode components of the locally stable states
relax with rates determined by the eigenvalues of M. We

do not consider this linear stability analysis to be com-

plete. Rather, one should undertake a systematic analy-

sis of stability, by considering the dynamics of inhomoge-

nmus variations in Q p(r, t) and v(r, t), subject to appro-

priate boundary conditions which include the condition

that the boundary velocity may vary so as to maintain

constant applied stress.

D. Summary of locally stable stationary
homogeneous states

When the surface of states that are stable with respect
to homogeneous fiuctuations at fixed temperature and

stress is projected on to the stress-temperature plane the
result is a phase diagram spanned by stress and tempera-
ture, shown later in Fig. 9, which is qualitatively similar
to the strain-rate-temperature phase diagram of Ref. [3].
At each point in the shaded region we find two locally sta-
ble homogeneous states, as shown in Fig. 4. At a cusp at
the point with dimensionless temperature w" and dimen-
sionless stress s' [69] on the boundary of the two-state
region there is a nonequilibrium critical point.

There are several reasons why it is reasonable to re-
fer to this point as a critical point. The first is topo-
logical. Consider a point in the two-state region of the
temperature-stress phase diagram. This point has two
distinct images in the surface of stable stationary states.
Now transport this point in the phase diagram around a
closed path. If the path encloses the critical point then
one image is transported into the other. If the path does
not enclose the critical point then the image is trans-
ported into itself. The second reason follows from the
first: because the surface of states is continuous the crit-
ical point in the phase diagram can be circumnavigated
by an arbitrarily short path. However, the inclusion or
omission of such a short path from a longer path, passing
near the critical point and ending in the two-state region,

C

&Is'

II i

hc

q-+p (~*~ &)

Temperature T

FIG. 4. Order parameter vs temperature for fixed applied
stress. The branches labeled Q+&(a „,T) and q & (cr „,T) are
locally stable states. The shaded region is the two-state re-
gion, and the dotted line identifies the coexistence temper-
ature as computed using the interface method described in
Sec. VI). Due to the resolution of the plot, the turning points
at the limits of stability do not appear.

leads to states which differ by a finite amount. Thus the
dependence of the state on the temperature and stress
is singular at this point. More physically, the depen-
dence on temperature and stress of the strain rate, order
parameter, and other quantities such as the effective vis-
cosity, is singular in the vicinity of this point. Third,
if state selection occurs on a certain coexistence line in
the two-state region —and we shall find evidence that it
does —then such a line would terminate at the critical
point, thus providing the nonequilibrium analog of a line
of first-order equilibrium phase transitions terminating
in an equilibrium critical point. Fourth, at the critical
point there is one particular mode of fiuctuation, which
is not a Goldstone mode, but which does not experience
a linear restoring force and thus exhibits greater sensi-
tivity to thermal noise. In the neighborhood of the crit-
ical point this mode undergoes anomalously large ther-
mal fluctuations, and causes a nonequilibriurn analog of
(polarization-dependent) critical opalescence. All these
features have their counterparts in equilibrium critical
phenomena; it would be very useful to address the issues
of nonlinear couplings between fiuctuations, scaling, and
criticality near this nonequilibrium critical point, and to
explore the attendant issue of universality.

Using parameters reasonable for low-molecular-weight
nematic fiuids (such as MBBA [70]), i.e. , A
50 kJm K, B = —360 kJm, C = 300 kJm
Pi =0.9, and Pz =0.1 kgm s, we find a critical value
of the strain rate D' 2 x 10s s, and a temperature
shift T' T, „=0.3—K. While the magnitudeof this strain
rate is near the current limit of experimental feasibility,
thus making observation of the critical point challenging,
systems with a larger viscosity Pz would have a more
readily accessible critical strain rate. One example of
such a system is the tobacco mosaic virus (TMV) in solu-
tion [40], which has rotational diffusion times one to two
orders of magnitude larger than MBBA. As the TMV is
a lyotropic system, a slightly more elaborate theoretical
treatment, incorporating the presence of the solvent, is
necessary. Alternatively, application of a magnetic field
could help to bring the nonequilibrium critical point into
a more readily accessible experimental regime.

We have discussed the construction of the phase dia-
gram spanned by temperature and applied shear stress
at some length. The reason for this is that coexistence,
if it occurs, does so between states of fixed temperature
and stress, as we shall discuss in Sec. VI. For a given
stress o „,we have found that there exist temperatures
T+(0») and T (0») between which the weakly ordered
state (i.e., Q+ ) and the strongly ordered state (i.e., Q &)
are both locally stable homogeneous states of the system.
Thus, we must face the issues of state selection between,
and coexistence of, nonequilibrium states.

Now, to choose which of two locally stable homoge-
neous equilibrium states is selected, e.g. , near the first-
order LG transition, one considers states with common
values of temperature and pressure, and compares their
chemical potentials. The state with the lower chemical
potential is selected as the globally stable homogeneous
equilibrium state. To locate where in the equilibrium
phase diagram heterogeneous equilibrium may prevail,
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i.e., where locally stable homogeneous states may coex-
ist, one constructs the locus of points at which the chem-
ical potentials of the homogeneous states are equal. This
criterion follows from the equilibrium variational princi-
ple that the appropriate free energy be minimized, and
allows one to identify the coexistence line [41]. It can
be met in mean-field theory by Maxwell's "equal-area"
construction.

It is natural, then, to enquire whether for our nonequi-
librium system there is an intermediate temperature
T, „(oz), satisfying T (o „)& T, N(o „)& T+(rr „)
such that for temperatures T ) T, N(o,„)the more
weakly ordered state would be globally selected and for
T & && N(o») 'the more strongly ordered state would
be globally selected, whereas at the temperature T =
T, „(o»)the two states could coexist. Such a tempera-
ture T, „(o„)would play the same role out of equilib-
rium that a first-order transition temperature plays in
equilibrium: it would provide the analog of a coexistence
line, and the shaded region in Fig. 3 would then corre-
spond to a region of metastability.

Although we postpone paying detailed attention to the
question of global state selection until Sec. VI, what we
can already say is that provided the steady homogeneous
states that we have found are stable with respect to states
that we have not yet considered, such as inhomogeneous
(e.g. , spatially modulated) steady states, and provided
the system is not intrinsically hysteretic, with the ulti-
mately selected state depending on the history of the sys-
tem, then we can be certain that at some specific point
within the two-state region (or possibly at its boundaries)
the system makes a discontinuous transition between the
homogeneous states available to it. If this is the case,
then we may say that the system exhibits the nonequi-
librium analog of a first-order phase transition.

Imagine attempting to increase the stress at fixed
temperature across the nonequilibrium coexistence line.
Then it is reasonable to conjecture that, on reaching the
coexistence line, the steady state changes from the con-
tinuation of the homogeneous high-temperature phase,
flowing with a low strain rate, to a phase-separated het-
erogeneous state in which high- and low-temperature
(i.e. , low- and high-strain-rate) states coexist. The rel-
ative fractions of the exhibited phases (and hence the
location in real space of the interface between coexisting
nonequilibrium states) are not determined by the control
parameters, temperature and stress, alone; instead the
net strain rate should be additionally specified. An anal-

ogous situation occurs at the LG transition, for which
specification of a net volume is sufBcient to determine
the relative fractions of coexisting equilibrium liquid and
gas phases. Upon attempting to increase the stress, the
stress would in fact remain constant but the net strain
rate would increase, as a progressively larger fraction of
the system is converted into the continuation of the low-

temperature phase. When the interface has swept across
the system and the state has been entirely converted into
the continuation of the low-temperature phase, the stress
then increases and the system departs from the coexis-
tence line. Of course, the kinetics —including analogs
of metastability, nucleation, and spinodally controlled

growth —of processes in such a nonequilibrium phase
separation is an issue which must ultimately be consid-
ered, as must be the true singular nature of the physical
properties in the vicinity of the critical point in which
the nonequilibrium coexistence line terminates.

While there are many similarities between the stressed
fluid of nematogens and the LG, we must bear in mind
the significant difFerences, aside from the presence or ab-
sence of thermal equilibrium. In particular, the critical
point in the flowing fluid of nematogens is a consequence
of the suppression by flow of certain configurations in the
five-dimensional nematic order-parameter space, while
the LG critical point involves a scalar order parameter,
namely the fluid density.

VI. INHOMOGENEOUS STATES:
NONEQUILIBRIUM PHASE DIAGRAM, STATE

SELECTION, COEXISTENCE,
AND CRITICAL BEHAVIOR

A. State selection and coexistence away from
equilibrium

Our identification of locally stable states has followed
a mean-field approach: we have used deterministic equa-
tions of motion, and considered fluctuations only with re-
gard to local stability. Next, we face the issue of choosing
between a pair of locally stable steady states, i.e. , the is-
sue of global stability. In equilibrium this issue is resolved
by comparing the chemical potentials of the relevant ho-
mogeneous states at common temperature and pressure:
the state with the lower chemical potential is selected as
the globally stable homogeneous equilibrium state, and
the locus of points at which the chemical potentials are
equal identifies the coexistence line. A corresponding
variational principle has not been discovered for nonequi-
librium thermodynamics, and in contrast with the equi-
librium case we are unable to determine state selection
and coexistence from an analysis of homogeneous states.
While certain flows, such as uniaxial elongational flow,
do admit a potential description [13, 25, 26, 42], general
flows, and specifically the planar shear flows considered
here, do not [43,44].

As we cannot appeal to a variational principle to deter-
mine which, if any, of a family of locally stable nonequi-
librium states is globally and uniquely selected, we will
take a more pragmatic approach. At applied stresses
less than the critical value there is a range of temper-
atures for which there exist two locally stable homoge-
neous states; see Fig. 4. We wish to find which state, if
either, is uniquely preferred at a particular temperature
within this interval, and whether there is a temperature
at which two phases may coexist. To address this issue
we pick a fixed temperature and stress, and search for sta-
tionary stable inhomogeneous solutions of the equations
of motion that interpolate between configurations which
correspond to locally stable homogeneous phases. By us-

ing this "brute-force" method, we determine not only a
coexistence line which, we conjecture, is a nonequilibrium
analog of a line of equilibrium first-order transitions, but
also information about the mean-field critical behavior
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as the nonequilibrium critical point is approached [8].
In Ref. [3] we chose, as hss commonly been done [7,

13, 26], to examine the nonequilibrium phase diagram
with strain rate and temperature as independent vari-
ables. This procedure is adequate for identifying homo-

geneous phases but not, as we now discuss, for analyzing
inhomogeneous states and issues of coexistence and crit-
icality.

Recall that for an equilibrium isotropic fluid the pres-
sures of coexisting phases must be equal in order to main-
tain a stationary interface; more generally, in the absence
of any bulk forces (such as gravity) the pressure through-
out any inhomogeneous state must be constant, so as to
avoid macroscopic acceleration. In the nonequilibrium
domain (and temporarily ignoring issues of stability) the
condition analogous to equilibrium is that of stationar-
ity (i.e., steadiness). In the present context of flowing

nematogens, stationarity means that neither the veloc-

ity nor the order parameter may vary with time, i.e.,

ctiv(r, t) = 0 and BqQ p(r, t) = 0. To maintain station-
arity —in particular, for inhomogeneous states —it is

necessary for the momentum flux density tensor to be
homogeneous: 8~(o ~

—pv v~) = 0 [45].
In order to address the issues of state selection and

two-phase coexistence we have chosen to examine the
next most general family of states beyond the homo-
geneous states. These are the states in which there is

spatial variation only in the direction perpendicular to
the boundary plates at which shear stress is applied,
i.e., in the y direction. Thus, Q p(r, t) = Q~p(y) and

v(r, t) = v(y). The form of the velocity field may be
further restricted by invoking incompressibility, which
here reduces to B„v„(y)= 0. Then the boundary con-
dition that the fluid not pass through the plates per-
pendicular to the y direction yields u„(y)= 0. The ad-
ditional boundary condition due to envisaged impene-
trable boundary plates perpendicular to the z direction
yields u, (y) = 0. Thus, the velocity field remains di-
rected along the x direction, the direction in which shear
stress is applied, and we have v(r, t) = x fz" dy'D(y'),
with e (y) continuous. In the presence of these velocity
and order-parameter fields the homogeneity of the mo-
mentum flux density tensor reduces to cr», cr», and o»
all spatially uniform, the values of the constants being
determined by the forces applied at the boundary plates.
Thus (i) o» is adjusted to maintain the volume of the
fluid; (ii) cr,„=0, because the shear stress is applied
only in the x direction; and (iii) 0.» is the equal and
opposite force per unit area applied in the x direction
to the boundary plates perpendicular to the y direction,
as shown in Fig. 1. The stress o» and the temperature
T are the independent variables over which we envisage
having experimental control, uniquely determining (ex-
cept at coexistence) the state of the system. We will use
the homogeneity of o~& to determine the order-parameter
profile of inhomogeneous steady states.

Three remarks are in order here. First, we assume that
the velocity of the boundary plates at which stress is ap-
plied is equal to the local velocity of the fluid. This "no-
slip" boundary condition allows the computation of an
effective macroscopic viscosity from the strain rate that

results from a given applied shear stress. Second, we note
that the precise steady-state condition associated with
the temperature field is that the heat flux (rather than
the temperature itself) be spatially and temporally con-
stant, which permits variation in the temperature. How-

ever, for the sake of simplicity we have assumed that
the thermal diffusivity is sufficiently large that the tem-
perature variation is negligible. Third, if we were to ig-
nore the structure of the interface between two homoge-
neous phases, and regard heterogeneous steady states as
comprising a pair of homogeneous phases in contact at
a planar interface perpendicular to the y axis, then the
condition for thermal and mechanical equilibrium (nec-
essary but not sufficient for coexistence) would be equal-
ity between the phases of their values of T, cr „,o»,
and o». This condition for equilibrium is the analog for
anisotropic fluids of the equality of temperature and pres-
sure, necessary (but not sufBcient) for the coexistence of
isotropic fluids. In equilibrium, state selection and coex-
istence are then determined by the chemical potentials of
the states in question; out of equilibrium we shall deter-
mine these issues by using a numerical experiment.

B. Interface method for determining coexistence

& = min dV(imps + i A/4 —hP+ i~&$~2),
v 2 (6.1)

where m = m~(T T,) and the re—al scalar field P rep-
resents an average of the magnetization over a length
scale large compared with the lattice spacing but small
compared with the system size. With periodic boundary
conditions and in zero Geld the candidate mean-field equi-
librium states are P+ = +(—m/A) ~z as they minimize F
For a small positive field h & 0, two local minima exist, at
P+ (h), but the state P+(h) has the lower free energy and
is therefore the globally stable equilibrium state. As the
field is reduced, a first-order transition occurs at h, = 0,
where the free energies of the states P+(h = 0) are equal.

We now discuss an alternative method, generalizable

To see if phase separation and coexistence do indeed
occur in our system of nematogens in shear flow we im-
pose boundary conditions on the order parameter in the

y direction such that at one of the boundary plates it has
the value found in one of the homogeneous stable states
(associated with the given T and cr»), while at the other
boundary plate it has the value found in the other ho-

mogeneous stable state. With the order parameter so
constrained at the boundaries, we search for locally sta-
ble inhomogeneous states in which the order parameter
and strain rate smoothly interpolate between the plates.
From the nature of these interpolating states we infer the
presence of a coexistence line, and locate its position in
the nonequilibrium state diagram.

To illustrate this idea we first discuss a familiar equilib-
rium problem using this approach. Consider an Ising-like
magnet in a small applied magnetic field h below its Curie
temperature T,. Using a coarse-grained description, the
free energy of the equilibrium state may be taken to be
[10]



4978 PETER D. OLMSTED AND PAUL M. GOLDBART 46

to nonequilibrium systems, for determining the nature of
the stable states of the system for T ( T, and arbitrary
homogeneous h. We would like to determine, as we did
above by minimizing the free energy, the transition field
h, and the globally selected state for h g h, . Consider a
finite-sized, nonfluctuating, one-dimensional system, and
imagine that the order parameter is specified to be P+ (h)
at one end of the system and P (h) at the other end,
necessitating at least one interface (i.e. , "kink") some-
where within the system. We will determine the coex-
istence field for this system by examining the behavior
of a kink. For a positive field, the configuration P+(h)
has the lower free-energy density, so that the interface is
forced towards the P (h) wall, thus minimizing the total
free energy; the converse happens for a negative field. Fi-
nally, for zero applied field the interface lies in the middle
of the system. This provides a simple numerical scheme
for determining the globally selected state (for h g h, )
and the coexistence field (h, = 0). The above arguments
were made for a finite system; for an infinite system we
should find closely related results, the essential difFerence
being that coexistence is determined by the existence of
a family of neutrally stable equilibrium states generated
by relocating the interface, rather than by its location
at the sample midpoint [46]. (For finite systems with
nonsymmetry-related coexisting phases the interface at
coexistence will generally lie somewhere other than ex-
actly in the middle. However, only at coexistence will
the ratio of volumes of each phase tend to a finite and
nonzero limit as the limit of large systems is taken. )

We now apply this procedure to the fluid of nemato-
gens under shear flow. To do this, we consider a system
of finite extent in the y direction, at fixed homogeneous
temperature and applied stress, and examine the behav-
ior of the interface which interpolates between the two
configurations Q+& (o», T) which are the locally stable
homogeneous states; see Fig. 5. The applied boundary
stress a» induces a velocity gradient Bv~/By = D(y).
As the strain rate and the order parameter are related by
the stress, Eq. (4.2b), they will vary in concert across the
system so as to maintain the homogeneity of the stress
(or, more precisely, the momentum flux density). We
will only consider states which vary in the direction nor-
mal to the interface, thus ignoring interesting phenomena
related to capillary waves on, and instabilities of, the in-

terface. By using this interface technique we have identi-

n(S

fied the globally stable steady states and, hence, the full
stress-temperature phase diagram, Fig. 9 [47].

C. Results of interface method

We have used the implicit Crank-Nicholson method
[48] to find the stable interface profile, using an approach
that correctly finds the stable steady states. However,
the dynamics we have chosen to adopt for the relax-
ation are fictitious, because we have chosen to slave the
velocity-field dynamics to the order parameter through
the imposition of a homogeneous and constant stress
tensor. In other words, in the relaxation scheme hy-
drodynamics is suppressed. We emphasize that the re-

sulting inhomogeneous steady states are not sensitive to
the choice of dynamics —all that is affected is the ap-
proach to these states (to which we are at present at-
taching no physical significance). For the majority of
our computations we have chosen the parameters B/C =
—1.2, Pi = 0.9, P3/Pz = 0.1, and have used the approxi-
mation Li = L2 = L As s.hown in Ref. [37], this choice
of the ratio Ps/Pz is consistent with the correspondence
with LE theory, Eqs. (4.9b) and (4.9c), along with typical
experimental values pi/vz 2 [49]. Experimentally, Li
and Lz are typically found to be roughly equal [30, 50].
Again, we use the dimensionless parameters, Eqs. (5.2a)—
(5.2c), and measure lengths y and times t in dimension-
less units y and t according to

t —= tC/P„
y —= y/C/Li

(6.2a)

(6.2b)

The position of the interface is characterized by a kink
between the two stable configurations of the order param-
eter As the o. rder parameter has several components, we

use the maximum of the distortion free-energy density
as a scalar indicator of the kink location. As an exer-
cise, we first performed this method for the P4 magnet
and verified that we could determine state selection and
coexistence at temperatures below the Curie point.

Using the interface method for the fluid of nematogens
under shear stress we have located a coexistence line in

the applied-stress —temperature plane for system sizes (in
dimensionless units) 64, 128, and 256, with meshes of, re-

spectively, 80, 80, and 160 points. Time steps were chosen
in specific cases to find the stable states eKciently. For
the larger two systems, on the order of 10s time steps
were needed to achieve the stationary configuration.

D. Critical behavior

FIG. 5. Caricature of the order parameter vs spatial po-
sition y showing a stable interface at coexistence (four order-
parameter dimensions have been suppressed). Q+& refers to
the order of the high-temperature state and Q &

refers to the
order of the lour-temperature state.

Figure 6 shows interface profiles at coexistence for

the system of size 256, at reduced applied stresses

s = 0.0001, 0.0035, and 0.00377, which should be com-

pared with the stress at the critical point, (w', s')
(0.081 68, 0.003 795) [51]. The interface is relatively sharp

for small applied stress, and broadens as the stress ap-

proaches its critical value. This behavior is familiar from

equilibrium systems, for which the width R' of the in-

terface between the two coexisting phases diverges like
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FIG. 6. Frank free-energy density profiles for interfaces
at coexistence for a system of size L = 256 and for reduced

applied stresses of 8 = 0.0001, 0.0035, and 0.00377 for mate-
rial parameters B = —1.2C, pi = 0.9, and ps = O. lp2. The
critical point is located at (r;s') (0.08168,0.003795).

the correlation length, as the critical point is approached
[52]. In equilibrium one expects the scaling law [14]

W ( (T,—T) (6.3)

where ( is the fluctuation correlation length and T, is
the equilibrium critical temperature. Within mean-field
theory one expects v = 1/2. If we suppose that a di-
verging correlation length also emerges at the nonequi-
librium critical point, then we expect a similar scaling
law for the nematogenic fluid under stress. Figure 7 in-
dicates scaling similar to classical equilibrium scaling,
with v 0.51 + 0.01. We have defined W as the full
width at half maximum of the distortion free energy, and
verified that our results are robust with respect to this
choice. We have also considered results for W from a
sequence of systems of varying width, to ensure that our
results are not artifacts of the finite system size. Us-
ing parameters typical of low-molecular-weight nematic

fluids (L/C 104%. ), we have found interface widths
for small applied stress (i.e., near equilibrium) of a few

1004., in reasonable agreement with the equilibrium ne-
matic correlation length near the I N-transition [53].

A second scaling law concerns the behavior of the
nematic order-parameter discontinuity along the coex-
istence curve, as the critical point is approached. In the
? G the density difference along on the coexistence curve
(i.e., the order parameter) scales as [54]

p~
—p. - (T.-T)' (6.4)

5
~ ~

Q p =) j'e'p, (6.5)

where pi and ps are the densities of the coexisting liq-
uid and gas phases. Within mean-field theory P = 1/2.
Some care is needed to extend this type of scaling to
the nematic order parameter Q p because of its multi-
component nature. Such a scaling relation characterizes
the behavior of the particular mode in the system whose
fluctuations have a diverging correlation length at the
transition. In equilibrium, and within Landau mean-field
theory, this critical mode is the mode whose quadratic
coefficient in the effective free energy vanishes [11].In a
nonequilibrium system, we may define the critical mode
as the mode whose fluctuations are long-lived (i.e. , relax
slower than exponentially) at the critical point. For the
fluid of nematogens this mode is a certain linear com-
bination of the five independent degrees of freedom of
Q p.

We identify the critical mode by considering the
dynamics of an infinitesimal homogeneous fluctuation,

SQ p(t)—:Q p(t) Qpl, ab—out the locally stable homoge-

neous steady state Q(p, Eq. (5.8), using the parametriza-
tion of Appendix A, just as we did in Sec. V C. The fluc-
tuation matrix M is positive definite, except at the crit-
ical point, where we find a single zero eigenvalue whose
eigenvector II corresponds to the slow mode. No sym-
metries remain to enforce eigenvalue degeneracies. For
the nonequilibrium fluid of nematogens the (normalized)
critical mode corresponds to a fluctuation along the di-
rection

4.5-

4-

35-

with Q~p Q~p = 1, which is (in principle) a linear combi-
nation of all five independent biaxial degrees of freedom.
In practice, this critical mode corresponds to a combina-
tion of stretching the two amplitudes Si and S2 (fluctua-
tions along ei

p and ez p) and rotating the major director
n in the shear plane (e p). For the choice of parameters
B = —1.2C, pi = 0.9, and ps/p2 = 0.1, this massless
mode is given by

Q~p = 0.402e p+0.283e p+0.871e p. (6 6)
2.5-

-8

ln ]r-r*]

-5 -4

FIG. 7. InW vs & lr r
l

for a system of size L = 256.
The straight line indicates a best fit, corresponding to an
exponent v 0.51 + 0.01.

The next step is to characterize the approach to the
nonequilibrium critical point along the coexistence line
using a scalar order parameter, analogous to the den-
sity difference (pi —pg)]T 7. at LG coexistence. In the
nonequilibrium fluid of nematogens, as one moves away
from the critical point along the coexistence line, the
order-parameter discontinuity grows and rotates (in or-
der parameter space) away from the order parameter dif-
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ference which first emerges at the nonequilibriurn criti-
cal point, i.e., the critical mode. This rotation occurs
because the alignment of the principal axes of Q p de-
pends on the magnitude of order, and thus on the tem-
perature and applied stress. To parametrize the van-
ishing of the critical mode at the critical point we use
the magnitude of the projection of the order-parameter
discontinuity (Q &

—Q &) on to the critical mode Q~p,
Eq. (6.6), measured along the coexistence line. Such a
projection is implicit in the conventional analysis of the
Heisenberg ferromagnet, for which the direction chosen
for the magnetization by the spontaneously broken sym-
metry does not vary as the temperature continues to be
reduced below the transition temperature. Since the in-
ner product for the set (e' &) is defined through a trace,
we expect the following scaling relation, as the critical
point is approached along the coexistence line:

(6.7)

Figure 8 shows a ln-ln plot of the projected order-
parameter discontinuity versus the deviation (w' ~) As.
with the exponent v, we find behavior suggestive of clas-
sical equilibrium criticality, namely P 0.51 6 0.01.

Although we do not have an "efFeetive potential" de-
scription of this system, we may still understand the ap-
parent classical behavior that we have recovered by ex-
amining the equation of motion for the critical mode. In
addition to the vanishing of the mass term for the criti-
cal mode at the critical point, we find that the quadratic
coeKcient of the contribution of the critical mode to the
equations of motion also vanishes. Hence, the structure is

strongly reminiscent of the Landau mean-field theory for
a scalar field near an equilibrium critical point [54]. This
should not be too surprising: because we have omitted
nonlinearly coupled Huctuations we should not expect to
predict nonclassical critical behavior.

As a last remark on the singular temperature and stress
dependence of the properties of the fluid of nematogens
under shear How, we note that we find a single critical
mode. This suggests that the system has Ising-like criti-
cal behavior [14]. However, this scalar critical mode may
be regarded as difFering from that at conventional Ising-

like critical points because it is a linear combination of
both amplitude and orientation fluctuations, rather than
a pure amplitude mode. In addition, the effects of advec-
tion and Huctuations must be included in order to deter-
mine whether the true critical behavior is or is not in fact
classical [1]. These issues will be addressed, in part, in
Sec. VII, when we return to the subject of fluctuations.

E. Nonequilibrium phase diagram, coexistence,
and critical phenomena

Figure 9 shows the complete nonequilibrium phase dia-
grarn in the (dimensionless) applied-stress versus temper-
ature plane, including the coexistence line. This line in-
terpolates smoothly between the equilibrium I Atra-nsi-
tion and the nonequilibrium critical point. In addition to
the nonequilibrium analogues of phenomena associated
with equilibrium phase transitions and criticality, which
we have discussed in detail (and collated in Table I), we
conjecture that the nonequilibrium Huid of nematogens
will exhibit phenomena analogous to the nonequilibriurn
phenomena commonly associated with first-order equi-
librium transitions.

In particular, we conjecture that under careful control
of, e.g. , the temperature and applied stress it will be pos-
sible for the system to exhibit nonequilibrium metastabil-
ity, so that it may be maintained for macroscopic times in
the locally stable (i.e. , nonsteady) but globally unstable
state. In other words, we anticipate the possibilities of su-
percooling, superheating, superstressing, and substress-
ing. In addition, for a decrease in temperature at fixed
strain rate, we also expect the possibility of phase sepa-
ration into regions differing in nematic order and strain
rate, analogous to the phase separation of a fluid into a
mixture of liquid and gaseous phases as, e.g. , the tem-
perature is decreased at fixed volume from the gaseous
phase.

This nonequilibrium phase diagram has important rhe-
ological consequences. For fixed stress in the two-state re-

8 mr

-2.5-

-3.5-

-4-
TIN

-4.5-

ln [T-T ]

FIG. 8. ln Tr[(Q+—Q ) Q] vs ln ~~ —7"
~

for a system
of size L = 256. The straight line indicates a best fit, corre-
sponding to an exponent P 0.51 + 0.01.

FIG. 9. Complete phase diagram in the reduced stress
(s) vs reduced temperature (w) phase diagram for material
parameters B = —1.2C, Pq = 0.9, P3 = 0.1P2, and Lg/C =
L2/C = 10 A . The dashed line represents the coexistence4 2

line; the shaded region is the two-state region with two locally
stable states; the solid lines mark the limits of stability for
the high- and low-temperature states. The nonequilibrium
critical point is located at (w, s") (0.0817, 0.003 795).
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TABLE I. Correspondence between phase transitions and
critical phenomena for the equilibrium liquid-gas system and
the nonequilibrium fluid of nematogens in shear flow.

Liquid-gas transition

Density p

Temperature T
Pressure p
Coexistence line

in y-T plane
Liquid-gas phase separation

Equilibrium critical point
Ising-like critical behavior

(p~ —ps) - (&.—&)s
Critical opalescence

Nematic in shear flow

Order parameter q s
or strain rate D

Temperature T
Stress 0~„
Coexistence line

in cr z —T plane
High-low strain-rate

phase separation
Nonequilibrium critical point
Critical amplitude and

orientation mode Q
T (W+-9-) 9-(&.-&)'
Anomalous light scattering as

k —+ 0 for critical mode

gion, the state with the larger value of the order parame-
ter flows with the larger strain rate and, correspondingly,
has the smaller effective viscosity rI = cr „/B„v. Hence,
accompanying a discontinuity in the order parameter in
the two-state region is also a discontinuity in the strain
rate. Suppose, on the other hand, that the strain rate
were prescribed rather than the stress. Then, for tem-
peratures in the two-state region, it would be possible to
select strain rates for which no homogeneous state is lo-
cally stable. The system would then respond by adopting
an inhomogeneous state on the coexistence line, with the
widths of the phase-separated fractions adjusted so as to
obtain the selected strain rate, just as the equilibrium
LG phase separates in order to exhibit a selected mean
density.

The phase diagram for the fluid of nematogens under
shear flow is topologically identical to that obtained for
an equilibrium nematic with a positive magnetic suscep-
tibility in the magnetic-field —temperature plane. There,
one also finds a critical point for sufficiently strong fields
[30]. Beyond the difference due to the equilibrium versus
nonequilibrium nature of the applied fields, these critical
points differ in symmetry, in the sense that the equilib-
rium transition occurs between identically oriented uni-
axial phases, whereas the nonequilibrium transition (at
least in shear flow) occurs between biaxial states, differ-
ing in both amplitudes and alignment. In addition, for
equilibrium nematic states with a negative susceptibility
a tricritical point is possible. Such a situation could also
be realized for "disorientational" shear flows, i.e., flows
which dictate a preferred plane for the director rather
than a preferred axis [55].

Figure 9 shows the nonequilibrium phase diagram as a
function of dimensionless temperature and shear stress.
This figure, along with Fig. 3, displays several features
reminiscent of the LG.

(i) The phase diagram of each system exhibits a line
of discontinuous transitions which terminates with van-
ishing discontinuity in a critical point. For the LG the
control parameters are, e.g. , the temperature and the
pressure, with the density exhibiting the discontinuity.

For the nematogens in shear flow the control parame-
ters are, e.g. , the temperature and the shear stress, with
the strain rate (and nematic order parameter, efFective

viscosity, etc.) exhibiting the discontinuity.
(ii) In the LG the system can be continuously trans-

formed from one phase at a point on the coexistence curve
to the other, through a sequence of homogeneous phases,
by varying the external control parameters so as to cir-
cumnavigate the critical point. This is possible because
the two phases have the same symmetry. For the same
reason, such a continuous transformation is also possible
between coexisting phases of the flowing nematogens, the
symmetry of the phases being biaxial, due to the biaxi-
ality of the shear stress.

(iii) In the nonequilibrium fluid of nematogens the
quantities BD/BT, BQ p/BT, etc. , diverge as the critical
point is approached at constant shear stress. Similarly,
BD/Bo „,BQ p/Bo „,etc. , diverge as the critical point
is approached at constant temperature. Thus, the differ-

ential viscosity Bo,„/BDvanishes in the neighborhood of
the critical point. This divergence of BD/Bo

„

is analo-

gous to the divergence of the compressibility in the LG.
Just as the LG exhibits divergent conjugate equilibrium
fluctuations, i.e., density fluctuations, which cause crit-
ical opalescence and whose correlation length diverges,
we anticipate analogous divergent strain-rate and order-
parameter fluctuations which will cause polarization-
dependent critical opalescence. Furthermore, we antic-
ipate that the response to external magnetic fields of the
nematic order parameter and strain rate will also be sin-

gular at the critical point. Such issues will be pursued in
detail in Sec. VII, where we consider the role of thermal
fluctuations.

We have now established, at a mean-field level, several
substantial analogies between the I-N transition in shear
flow and equilibrium systems such as the LG. In particu-
lar, there is a coexistence line ending in a critical point, at
which there are singularities. Table I shows a more com-

plete comparison of the two systems. In the next section
we address fluctuations about the mean-field states, fo-

cusing on light-scattering experiments, which provide a
direct probe of nematic fluctuations.

VII. FLUCTUATIONS IN FLUIDS
OF NEMATOGENS UNDER SHEAR FLOW

We now turn to the subject of thermal fluctuations
in fluids of nematogens under conditions of shear flow.
In particular, we analyze the time dependence of linear
inhomogeneous departures from stable stationary homo-
geneous states of the flowing nematic system, and discuss
in detail two regimes of strain rate: (i) small strain rates,
in order to explore the perturbative efFect on equilibrium
fluctuations and (ii) larger strain rates, near the critical
strain rate, where anomalous nonequilibrium fluctuations
lead to light scattering similar to that which characterizes
critical opalescence at the LG critical point. In nematic
fluids light is scattered by collective fluctuations of the
nematic order parameter, which generate fluctuations of
the dielectric tensor. Thus, by studying the scattering of
light we should learn about order-parameter fluctuations
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in fluids of nematogens in nonequilibrium states.
Let us first identify an important length scale which

arises because of flow. Consider a fluctuation of spa-
tial extent E, having corresponding wave-number scale
k 27r/E. In flow two types of stress act to suppress
this fluctuation: (i) elastic stress o,~ associated with the
deformation of the order parameter, which (at the level
of the one-constant approximation) is

~.i. - Li& Q p -Lik Q p
2 2 (7.1)

2n DPz
D (7.3)

For fluctuations with k )) k~ the elastic restoring force
dominates the dynamics, and correlations between fluc-
tuations should essentially retain their equilibrium form.
By contrast, the dynamics of fluctuations with k (( kD is
dominated by the viscous force, and we expect behavior
which reflects the symmetry and advective effect of the
flow.

A. Elastic light scattering from nematic states

Elastic light scattering from a uniaxial nematic state
has been discussed extensively by many workers [50, 53,
56, 57]. However, because planar shear flow has biax-
ial symmetry, we will need to discuss scattering from a
biaxial nematic state. We expand an arbitrary fluctua-
tion about a nonequilibrium steady state, bop(r, t) =

Q p(r, t) —Q~), in the convenient orthonormal basis

(e p) (described in Appendix A) which represents kine-
matically independent fluctuations,

5

bQ p(r, t) = ) ('(r, t) e'p. (7.4)
i=1

We assume that the anisotropy of the dielectric tensor
is determined by the order parameter of the anisotropic
fluid, through the local relation [58]

e p(r, t) = eb p + JV Q p(r, t) + (7.5)

Omitted terms correspond to quantities built from other
tensorial quantities, which may, in principle, affect the
dielectric properties; examples include the temperature
gradient O~T and the stress a~@. We assume that the
stated contribution due to nematic order-parameter in-

homogeneity dominates all other sources. As e is a ho-
mogeneous scalar, the fluctuations of the k g 0 Fourier
components of e p are proportional to the fluctuations of
the order parameter,

(b p(ke, t)beep( —k, t)) = JP (bQ p(k, t)bQpp( —k, t)).
(7.6)

and (ii) viscous stress o';, due to the velocity gradient
which advects the fluctuation,

&vis Pz (cty~z) Pz» (7.2)

where P2 is a viscosity and D the strain rate. [Roughly
speaking, these two stresses represent the forces in the
order-parameter equation of motion, Eq. (4.lb).] These
processes are of a comparable magnitude when the wave-
number has the characteristic value

The constant of proportionality JVz may be determined
experimentally. The angle brackets denote an appropri-
ate average, which in equilibrium would be an ensemble
average with a Boltzmann weight for each microscopic
state; out of equilibrium they denote an average over
noise and initial conditions.

The differential cross section per unit solid angle for
the elastic scattering of light through wave vector k is
related to the fluctuations of the dielectric tensor of the
fluid by [59]

u)4

z 4 (be p(k, t) beep( —k, t)) p pp pp p~,

(7.7)

where p and p' are, respectively, the polarization unit
vectors of the incident and scattered light, and a is
the frequency of the light. Using Eqs. (7.4), (7.6),
and (7.7), it is straightforward to calculate the scatter-
ing cross section in terms of the amplitude correlations

(( (k t) ~'(—»t)):
4 5

d~ =,6 ... ). ((*(»t)L!'(—»t))
i,j=l

x (p e'
& p&) (p» e&~p~) (7.8).

Explicit results for four specific scattering and polariza-
tion geometries are given in Appendix C.

B. Steady-state correlations in nematic fluids
under shear flow

The next step is to evaluate the nonequilibrium steady-
state correlations of the fluctuations, (('(k) (~(—k)),
i.e. , the long-time limit of the equal-time correlations
(('(k, t) P (—k, t)), from which the sensitivity to (the dis-
tribution of) initial conditions has decayed away. In
principle, (('(k, t) (&(—k, t)) should be obtained from
stochastic versions of the equations of motion for the
order parameter and the fluid velocity, Eqs. (4.1b) and
(4.la), subject to appropriate boundary conditions on—inter alia —the velocity field (no slip) and the zy
component of the stress. The boundary stress would
then serve as a control parameter, along with temper-
ature, and to provide fluctuations the equations would
be augmented by noise terms. For the purpose of dis-
cussing fluctuations, however, we instead restrict our at-
tention to states of nonfluctuating homogeneous strain
rate D. Formally, this corresponds to a particular choice
of noise in the ideal Langevin description, for which
the order-parameter noise and stress noise are corre-
lated such that there are no velocity-field fluctuations.
This choice is made solely to ease the analysis: treating
the velocity field as prescribed, homogeneous and im-

mutable, and considering only the stochastic dynamics
of the order-parameter field, produces considerable sim-
plification, while continuing —we hope —to capture the
essence of the physics.

Thus, we consider plane shear flow v(r) = D y x The.
stable steady states for nonzero strain rate have the direc-
tor n in the shear plane (canted with respect to the flow

direction) and the subdirector m also in the shear plane,
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8(—iV) = M —L)I'7 (7.10)

reflecting the biaxiality induced by the shear flow. The
equations of motion for the fluctuation bQ p are found

by expanding Eqs. (4.1b) about the steady-state value
for Q~p, which leads to a set of nonlinear equations of
motion for bQ~p. We truncate the terms beyond linear
order, thus treating the system within the nonequilibrium
equivalent of the Gaussian approximation [10]. Next, we

introduce noise into these equations to represent the cou-

pling between the coarse-grained degrees of freedom that
we are explicitly considering and the residual microscopic
degrees of freedom. This noise encourages the system to
probe configurations other than the homogeneous stable
stationary states.

By expanding bQ p according to Eq. (7.4), project-
ing Eqs. (4.1b) on to the basis set (e'&j, and lineariz-
ing with respect to 6Q p, we obtain the following equa-
tion of motion for the five-component amplitude vector
C(r, t)( = (('(r t))):

(Bg + Dy8 ) g(r, t) = —P
' 8(—iV) g(r, t) + g(r, t),

(7.9)

where the 5x5 fluctuation matrix operator 8(—iV) is
given by

discussion in Sec. III B) the distortion matrix operator is

isotropic in both real space and order-parameter space.
The Langevin noise source g(r, t) in Eq. (7.9) is cho-

sen to obey Gaussian statistics, with mean zero and vari-
ance chosen to satisfy the fluctuation-dissipation theorem

(FDT) [60],

(('(r, t) (~ (r', t')) = 2kBT P2 6'~ b(r —r') b(t —t') .

(7.11)

Invoking the FDT under the present circumstances re-
quires some discussion. Our choice of noise ensures that
in the absence of flow the stationary distribution function
for the state will be the Boltzmann distribution [60]. Our
assumption, then, is that the noise in the driven system
obeys the same distribution as that in the same system
relaxing to equilibrium. It is a nontrivial assumption.
However, there do exist physical situations in which pre-
dictions based on the validity of the FDT for nonequilib-
rium steady states have been verified experimentally; an
example is the series of light-scattering experiments on a
fluid driven out of equilibrium by a stationary tempera-
ture gradient [61].

The mass matrix M is found to have the block struc-
ture

in terms of the mass matrix M, to be described shortly,
and the distortion matrix operator LqV'2I, in which I is
the 5 x 5 identity matrix. Notice that as a consequence
of the one-constant approximation (i.e. , L2 = 0; see the

I

(M~'») O lM =
( Q M(4$)

where the 3 x 3 sector is given by

(7.12)

M~"') = '

(A(T) + BSg + z C(9Si + S2)

Sg~3 (CSg —
s B)

~3P,D

S2v 3 (CSg —sB)
A(T) —BSg + -,'C(S,'+ S,')

p2D—

~3' D

p2D

A(T) + -', B(Sg + S2) + -', C(3S,' + S,') )
(7.13)

and the 2 x 2 sector is given by

M&
(A(T)+ 2B(Sg —S2)+ 2C(3S, + S2)

p2D

p2D—
A(T) —BSg+ 2 C(3Si + Sq)r

(7.14)

The matrix 0 is an appropriately dimensioned matrix
of zeros. The amplitudes Sq and S2 in the mass ma-
trix characterize the stable homogeneous steady state in
question, obtained in the absence of noise, and depend
on (i) the Landau —de Gennes parameters A(T), B, and
C; (ii) the transport coefficients Pq and P2, and (iii) the
strain rate D; see Eqs. (5.1a)—(5.1c). The block struc-
ture results from the fact that the principal axes of the
order-parameter and strain-rate tensors have one com-
mon axis, namely the normal to the shear plane. The
3 x 3 block involves fluctuations in the amplitudes S~
and Sg and the orientation of the director in the shear
plane, while the 2 x 2 block involves tilts of the director
and the subdirector out of the shear plane. Notice that
the efFect of shear flow is to introduce both symmetric
and antisymmetric ofF-diagonal contributions to M, thus
coupling the components of ('(r, t), in addition to mod-

M'& = A(T) S'&. (7.15)

On the other hand, for T ( T, ~ the only nonvanishing
elements of M are

I

ifying the diagonal terms. (We remind the reader that
S2 = 0 when D = 0.) Thus, 8 is not integrable (i.e.,
it cannot be written as a second functional derivative),
which is a reflection of the fact that shear flow does not
admit an "efFective free-energy" formulation.

For the sake of orientation we examine, in passing, the
mass matrix for the uniaxial equilibrium state in the ab-
sence of shear, for which Q p is given by Eq. (3.2), with
Sy(T) = 8 (T, T) So(T) and Sq—(T) = 0, in which
So(T) is given by Eq. (5.5d), and where 8H is the usual
Heaviside step function. For this state, and for T )T,
the elements of the mass matrix M reduce to
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M = —2A(T) —
2 BSP(T),

M22 = —22BSo(T),

M = —2BS()(T) .

(7.16)

The vanishing, for T ( T, „,of Mss and M indi-
cates the presence of Goldstone director fluctuations cor-
responding to the modes e

&
and e

&
(defined in Ap-

pendix A).
Now, our goal is to calculate steady-state correlations

among the amplitudes (('(r, t)). The dynamic correla-
tions are also readily obtained and will be presented
in a forthcoming calculation [62]. To do this we fol-

(7.17)

and the identification of g(k) as the stationary value of
g(k, t). From the stochastic equation of motion for ((r, t)
and the properties of the noise distribution we obtain the
Fokker-Planck equation [60] for the normalized probabil-
ity distribution functional P(,(() [63],

low the technique used by OK [1], and subsequently
Cates and Milner [5], who investigated the effect of
shear flow on, respectively, the LG and I L-transitions.
The starting point is the statement that the station-
ary equal time amplitude-amplitude correlation function
y" (k, t):—(('(k)(~ (—k)) q satisfies

Bgy" (k, t) = 0,

B, P(Q = d'r ), (, —) ' Dkd" 8, +8"( iV) —('(r) 'P(C)). (7.18)

Averages over quantities at time t are calculated us-

ing (G)i —— f 'D('Pi($) GQ'), and the time evolu-

tion of averaged quantities is governed by c)q (0)&

f D(8(()Bt, 'Pq((). Here f 17( indicates functional in-

tegration over the independent coarse-grained degrees

of freedom, namely the amplitudes ((r). By using the
Fokker-Planck equation and enforcing the stationary con-

dition (7.17), we obtain the differential equation

Dkk(, k) —(8(k)k(k)+k(k) 8 (k)) =-
il 2

(7.19)

satisfied by the stationary correlations y(k), in which
U =—-j'.

Integrating Eq. (7.19) is a straightforward matter (de-
scribed in Appendix B) which gives

00 t

y(k) = p2 knT dtexp pz Li d—s f(k, Dk, s/2) exp( —p2 Mt/2)exp( —p2 M t/2),
0 0

(7.20)

where f(k, p) = k~+(I(:i(+p) +k, . In obtaining this result
we have made use of the essential feature that, by virtue
of the one-constant approximation to the distortion free
energy, the fluctuation matrix operator, Eq. (7.10), com-
mutes with itself at difFerent values of the wave-vector
magnitude, i.e., [e(k), e(I(.")] = O. In fact, this result
for y(k) could have been obtained with equal ease from
the direct integration of the linear stochastic equation of
motion, Eq. (7.9).

In order to simplify the expression for y(k) we next
assume that M is diagonalizable by an invertible trans-
formation matrix U [64]. If this is the case then MT is
also diagonalizable, possessing the same set of eigenval-
ues, and we have

UMU ' =(U ) M U ' =m'P~ (7.21)

(7.22)

where

[Recall that summation convention is not implied for our
five-dimensional latin superscripts; thus the index i in
Eq. (7.21) is not to be summed. ] We refer to the eigen-
values (m') as the masses of the fluctuation modes. By
diagonalizing the last two factors in Eq. (7.20) via the
insertion I = UU, and performing the s integration in
the exponent, we obtain

5

&'~(k) = ) F'~ i j" (k),
k, l=l

1~31i = (U-i)'"(UUT)"'[(UT)-i]'~ (7.24)

(We remind the concerned reader that M is not symmet-
ric, so that U is not orthogonal, UUT g I.)

From the structure of J"'(k) we see that shear flow

very strongly damps steady-state correlations, except for
modes for which k = 0. In this special case, Huctu-
ations are elongated parallel to the streamlines of the
flow; heuristically we do not expect advection by shear
flow to destroy these fluctuations. On the other hand,
fiuctuations whose wave vectors intersect streamlines (for
which k~ g 0) have their correlations greatly reduced;
see Fig. 11. Such wave-vector-dependent suppression is
a general feature of Huctuations in shear How, and is also
seen in the binary fluid [1], the isotropic-lamellar tran-
sition [5], and the nematic —to—smectic-A transition [4].
Next we exaxnine the behavior of light scattering for spe-
cific situations.

trBT t(m" + m'+ 2Li&')
J"'(k) = dt exp

2 0 2 2

D2t2 I(:,k„
12 k2

(7.23)

in which I(„D is the characteristic wave-vector set by the
strain rate, Eq. (7.3), and
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C. Light scattering near the equilibrium transition

1. Zere strein mete

We first examine the case of zero strain rate. In this
case M is already diagonal [see Eqs. (7.15) and (7.16)]
so that U = I, and Eq. (7.23) may be integrated exactly,
yielding the familiar Ornstein-Zernicke form for scatter-
ing from a uniaxial nematic, Eq. (3.6),

dO D=O
- (I('(k)I') -, (T & Tl ~). (7.26)

For T )T, „allmasses are identical [Eq. (7.15)], and we
expect isotropic scattering of the form do/dA ~ [a(T-
T ) + Like] i, regardless of polarization.

probed by considering, e.g. , polarizations p = n and
pi J n, whence, from Eqs. (A3) and (7.8),

2knT
m'+ m~+ 2L,kz (7.25)

Of particular interest is the case T & T, „,for which the
correlations )( = )( = 1/(Lik ), representing anoms
ious director fluctuations. These may be most efficiently

I

8. Weak shear Pom

Next we find the leading corrections to Eq. (7.25) in the
regime of weak shear flow, which is defined by (k/k~)
Ik I, or equivalently D « Lik /Pz!k~!. In this limit we
may approximate J"'(k), Eq. (7.23), by

2k&T 4 Lzi Ik. I I kw I

k'4'
m" + m' + 2I ik (m" + m' + 2Lik )

4Lk kk1 x a
(m~ + m~ + 2L,k~)s (7.27)

in which we have retained only the leading corrections
to the D = 0 limit. To obtain the correlation function

y(k), we diagonalize the mass matrix M, and express
g(k) as a sum of contributions of correlations J"'(k) of
the eigenmodes. Then there are two cases to consider.

(i) For T ( T, „(D)the stationarity conditions are
given by Eqs. (5.5a) and (5.5b), from which we find the
mass matrix

M = M( ) + M(') D+ O(D ). (7.28)

Here, M( ) is given by Eq. (7.16) and M(i) is given by

(i) (M(iA) P
P M(1B) (7.29)

in which the submatrices M(iA) and M(i+) are given by

( [8+ 9CSp(T)] r
M( = +s [CSp(T) —si 8] S2

(i~) (' 4 [8 —3CSp(T)] r

P~

+s [CSp(T) —
s 8] Sg

[8 —3CSp(T—)] r

P~-
!

[8 —3CSp(T—)] r )

&P2—

4 [8 —3CSp(T)] r)
(7.30a)

(7.30b)

The quantity Sz is given by

S2 = lim S2/D =—V'4A' —9Sp
D~O p

(7.31)

m = 4[8 —3CSp(T)]rD,

m = —~&BSp(T) —[8 —3CSp(T)] rD.

(7.35)

(7.36)

Using polarized light scattering one can isolate the fluc-
tuations of these modes. Perhaps the most striking
effect of weak shear flow on the nematic state is the
acquisition by the Goldstone mode y44(k), Eq. (7.35),
of a mass proportional to the strain rate D. Also
noteworthy is the fact that the correlation )(' (k)
[= )(s4(k)] is now nonzero and, as we see from Eqs. (7.27)
and (7.34), is approximately a sum of three independent
Ornstein-Zernicke forms (rn' + m~ + 2 Li k ) . In other
words, modes that would be independent in equilibrium
are coupled by the flow. The same calculation for the
3 x 3 sector, M&~+&, yields qualitatively identical behav-
ior, with a shift in the mass of the Goldstone mode ass (k)
proportional to D, and shear-induced off-diagonal corre-
lations.

independent of D, and r is given by Eq. (5.5b). To first
order in perturbation theory in D, we diagonalize M
and construct the transformation matrix U. Then, from
Eq. (7.22), we may calculate the weak-shear-flow limit of,
inter alia, the correlations within the set ((4,P),

~44(k) = J44( ),
(k) = J (k),

4ijzD
3BSp(T)

(7.32)
(7.33)

J (k) + J (k) + J (k) ,

(7.34)

+45(k)

where )(s4(k) = )(4s(k), and where J"'(k) is given by
Eq. (7.27), with masses
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(7.37)

in which

BSi ~BSi —+s Pg

B—Si B—Si p2~3

0

(ii) For T & T, „(D)we see from Eq. (5.4b) that Si
Sq D so that the mass matrix becomes

M = A(T) I+ M'" D + O(D'),

lates between the conQuent states, hence involving varia-
tions in the two amplitudes and the in-plane orientation
of n. One may isolate the critical mode, experimentally,
by selecting polarizations in the shear plane, for which,
as we see from Eqs. (A3) and (Cl), fluctuations involving
the amplitudes (4 and (s do not contribute; see Fig. 10.

Near the nonequilibrium critical point we may iden-
tify two distinct regimes, corresponding to wave numbers
large or small compared with the wave number charac-
teristic of the critical point, ko .

where S1 is given by

Si = lim Si/D = pip2/2A(T).

BSi —)
(7.38)

(7.39)

f. Small-st@un-rate, large-eave-vector limit

For (k/k~)z && ~k~~, i.e. , D && Lik2/p2~k, ~, it is
legitimate to approximate J"'(k) by the leading (i.e. ,

Ornstein-Zernicke) form, Eq. (7.27), so that y(k) is then
a sum of such terms, Eq (7..22). As the critical point is
approached this superposition is dominated at long wave-

lengths by the zero mass term, i.e. ,

Just as for T & T, N(D), in the present case shear flow
gives the diagonal modes an additional mass contribution
proportional to the strain rate, and induces off-diagonal
correlations.

D. Light scattering near the nonequilibrium
critical point

In our linear approximation, the eigenvalues of M gov-
ern the time dependence of the modes of bQ~p. For a sta-
ble steady state the real parts of the eigenvalues of M are
non-negative, whereas for an unstable state M has one or
more eigenvalues (i.e. , masses) with a negative real part.
In shear flow, the (massless) Goldstone modes of the equi-
librium nematic acquire a mass, and all eigenvaiues have
a positive real part, except at the nonequilibrium critical
point, where there is a single massless mode correspond-
ing to the critical mode. This mode is a superposition
of the modes (ei &, e &, e &), and corresponds to simul-

taneously adjusting the degree of order (i.e. , changing Si
and S2) and rotating the director n in the shear plane,
as can be seen from Eqs. (A3) and (A4). This massless
mode can be understood physically in the following way.
In the presence of shear flow the steady-state orienta-
tion of the director n lies in the shear plane at a certain
angle. Now consider a departure from this stationary
alignment. A rotation of n nothin the shear plane will be
rapidly suppressed by the flow, which exerts a restoring
torque. However, a tilt out of the shear plane will not
be so strongly affected by Bow, suggesting more frequent
and larger-amplitude excursions out of the plane than
within it. Hence, the molecular orientation distribution
is biaxial.

The nonequilibrium transition occurs between a state
governed primarily by the flow (a rather weakly ordered,
biaxial state) and a state governed primarily by the ther-
modynamics of the I Ntransition (a s-trongly ordered,
more uniaxial state). These two states differ in their am-

plitudes S1 and S2, and in their in-plane alignment of n.
As the critical point is approached these states merge,
and the massless mode is thus the mode which interpo-

I ij,11
y'~ (k) r'~' J (k) rnl + Ll k2

(7.40)

2. Iarge-strain-rate, small-eave-vector limit

In the limit (k/k ) « ~k, ~, or equivalently D &)
Lik /Pq~k ~, we may approximate J"'(k) by

FIG. 10. Geometry for observing fluctuations in the crit-

ical mode via light scattering near the critical point. The

polarization vectors p and p' lie in the shear plane, and the

broken arrows denote the velocity field.

for the sector (i,j = 1, 2, 3), where we have chosen rn to
label the (vanishing) mass of the critical mode. Hence,
in this wavelength regime we expect that, as the critical
point is approached, the system behaves qualitatively like
the LG system near its equilibrium critical point, except
that the observation of divergent fluctuations becomes
polarization dependent. For example, if we choose p ~m
and p'~~E, we find from Eq. (C3) that do/dA (~( (k) ),
which does not diverge at the critical point. Note also
from Eq. (7.27) that for k )& k~ the scattering is isotropic
in k space. This coincides with the intuitive picture, pro-
posed by OK [1], that shorter-wavelength fluctuations
decay via thermodynamic relaxation before shear flow

can act to suppress them. (Recall that within the one-
constant approximation, equilibrium scattering proper-
ties are isotropic in k space. )
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k, rr(-,') t 2k. i'~'
L& k2 q3k )

I'(-,') t'3) ~' (rn" urn'+2L&k')
I'(-') q2) L (k k')'~s (7.41)

In this regime correlations are strongly suppressed by
the flow, J"'(k) D ~s, and are independent, in the
large-strain-rate limit, of the incident and scattering po-
larizations (i.e. , the indices t and k). Note also the strong
anisotropy: fluctuations at small k~ are enhanced, reflect-
ing their relative immunity to deformation by advection;
see Fig. 11.

E. Discussion of fluctuations

To summarize, we find the following behavior
from an analysis of linear fluctuations at the critical
point: (i) polarization-dependent divergent fluctuations,

(ii) anisotropic correlations at long wavelengths, and
(iii) isotropic scattering at small wavelengths. Figure 12
shows a plot of g~~(k) at the critical point, as calculated
from Eqs. (7.22) and (7.23), exhibiting the anisotropy for
small wave vectors which gives way to an isotropic profile
for large wave vectors.

We have shown that the effects of shear flow on the
I-N transition can be considerable, inducing a variant
of critical opalescence near the nonequilibrium critical
point. The spatial anisotropy of the correlations reflects
the role of shear flow in selecting certain fluctuations for
destruction, a general feature which is also important for
the LG and I-L transitions. The polarization dependence
of the anomalous scattering is a feature of the critical
point not present at the LG critical point. This behavior
follows directly from the additional role of shear flow, pe-
culiar to the I-N system, as an ordering field which acts
on particular degrees freedom within the five-dimensional
order-parameter space. This ordering field imposes biax-
ial nematic order on both the high- and low-temperature
phases (which differ in nematic order and strain rate)
and, when sufficiently strong, induces a continuous tran-
sition. Our linear theory predicts that through a proper
choice of polarization configurations one may selectively
probe fluctuations which either exhibit divergences at or
remain smooth through the critical point. A more re-
fined treatment which accounts for nonlinear couplings

between modes would lead to additional singular corre-
lations.

It should be noted that one also expects polarization-
dependent critical fiuctuations near the equilibrium crit-
ical point induced in a fluid of nematogens (of positive
magnetic susceptibility) by an applied magnetic field.
However, the sensitivity to polarization is then deter-
mined neither by the amplitude of the magnetic field
nor by the temperature. Therefore, the nature of the
critical point in the equilibrium nematogenic fluid differs
qualitatively from that in the nonequilibrium fluid of ne-

matogens under shear flow. The critical mode of the
equilibrium nematic system in a field is a pure amplitude
mode of the nematic system order parameter, whereas
that of the flowing nematic system is a linear combina-
tion of amptitude and orientation modes. (See Ref. [65]
for measurements distinguishing amplitude from orien-
tation modes near the equilibrium I-N transition. ) A
manifestation of this peculiarity occurs when one con-
siders the discontinuity in the nematic order parameter
across the coexistence line in the nonequilibrium phase
diagram. We find that the orientation of the principal
axes of the nematic order parameter spontaneously ro-
tate as one moves away from the critical point, e.g. , along
the coexistence line. Thus, in order to parametrize cor-
rectly the approach to the critical point it is necessary to
project the nematic order-parameter discontinuity on to
the critical mode.

A second issue which superficially distinguishes the
stressed fluid of nematogens from the stressed LG con-
cerns the strain rate at which strong fluctuations oc-
cur. In the LG one may, in principle, observe strong
fluctuations at any strain rate, by making a strain-rate-
dependent tuning of the pressure and temperature so as
to locate the system near to its critical point. Thus, one
can in essence adjust k~. Now suppose that the exper-
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FIG. 11. Advection of fluctuations in shear flow: (a) is
intended to represent a fluctuation with lk l » lk„l,which is
quicldy suppressed by the flow; (b) represents a fluctuation
w'th 1k*i && lkwl which is more robust under flow.

FIG. 12. Scattering intensity at the critical point for the

mode y, for material parameters B = —1.2C, and Py =
0.9. Wave vectors are plotted in dimensionless units, A: =
k( r'', where (' = L/a(T T) gives the equilib—rium

correlation length.
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imental conditions determine the order of magnitude of
the "momentum" transfer k during a scattering exper-
iment, e.g. , momentum transfers in the optical range.
Then, by adjusting kD one can probe all three regimes,
with k~ larger, smaller, or comparable with k.

In contrast, for a given fluid of nematogens, and in the
absence of a magnetic field, there is a specific material-
dependent critical strain rate near which one can ob-
serve strong fluctuations. Hence, for experimental cir-
cumstances that dictate the order of magnitude of k we
expect that near the critical point of certain materials
one will find k )) k~, i.e. , predominantly isotropic scat-
tering, whereas for other materials the relevant limit will
be k &( k~, so that light scattering would probe the
anisotropy caused by the shear flow.

The distinction between LG and the fluid of nemato-
gens, mentioned above, is only superficial. If one is pre-
pared to impose an external magnetic field on the ne-

matogens, in addition to shear stress, then one can ob-
serve strong fluctuations at any strain rate. The rea-
son for this is that a magnetic field can induce a criti-
cal point even in the absence of shear stress [30]. Thus,
there is a closed loop of critical points in the magnetic-
field —shear-stress —temperature phase diagram. This loop
interpolates between two extremes: (i) the equilibrium
critical point (in the absence of stress but the presence
of a strong magnetic field) for which the critical mode
resides entirely within the amplitude sector of nematic
order-parameter space; and (ii) the nonequilibrium crit-
ical point (in the absence of a magnetic field but the
presence of strong stress), for which the critical mode in-

cludes both amplitude and orientational degrees of free-
dom. Hence, the combined application of shear stress
and magnetic field may provide the most convenient ex-
perimental situation in which to bring to more readily
accessible strain rates the flow-induced nonequilibrium
critical point.

To illustrate the issue of wave-number regimes in zero
magnetic field we present an alternative expression for
the critical wave number. From Eq. (7.3) we see that the
characteristic wave number at the critical point is given

by
k~ = QD'/32/Li . (7.42)

As the dimensionless temperature 7. and strain rate 6
are given by b = DPq/C and 7 = A(T)/C, Eqs. (5.2a)
and (5.2b), the characteristic wave number at the critical
point is given by

ko. (* = Q6'/r', (7.43)

where (' = QLi/A(T*) is the equilibrium fluctuation
correlation length associated with the nematic state at
the nonequitibrium critical temperature 7.*. The critical
parameters ~* and b* are themselves functions of only
two parameters: (i) the ratio B/C, which is a measure
of the weakness of the first-order transition (because
ASi = 2B/9C [30]), and (—ii) the kinetic coefficient Pi,
which is a ratio of rotational viscosities and is approxi-
mately material independent. Hence, we may roughly say
that the characteristic wave number at the critical point
depends on the weakness of the equilibrium Grst-order

transition, and on the equilibrium correlation length at
temperatures near the critical temperature.

Let us examine this length scale for low-molecular-
weight systems such as MBBA. For the choice of pa-
rameters B = —1.2 C and Pi —— 0.9, representative
of low-molecular-weight systems, we have found a ra-
tio b*/r' 0.1 . Then the typical experimental value

150 A. [50], together with the shift (T" T—) 1.0 K
(see Sec. VD), yields k~ 107 m i. For comparison,
light-scattering experiments typically explore wave num-
bers k = 2kosin(8/2), where ko 10 m i and 8 is
the scattering angle. Hence, we expect thermotropic ma-
terials to have critical wave numbers in the readily ob-
servable range so one may observe fluctuations at wave
vectors both greater (yielding isotropic scattering) and
smaller (yielding anisotropic critical scattering) wave-
lengths than the characteristic wavelength k~.

VIII. CONCLUDING REMARKS

A. Summary of results

In this paper we have presented a description of the
influence of shear flow on the I %transit-ion in fluids of
thermotropic nematogens. In doing this, we have dis-
cussed the time evolution of the nematic order param-
eter and fluid velocity, identified homogeneous nonequi-
librium steady states, examined inhomogeneous steady
states, and constructed the first-order phase boundary in
the nonequilibrium phase diagram, analyzed the nonequi-
librium critical point, developed a theory of fluctuations
about biaxial states, and examined polarized light scat-
tering. As we have seen, coherent macroscopic shear flow

can significantly influence the nature of the I-N tran-
sition, by inducing nematic alignment at the molecular
level and also by distorting thermal fluctuations through
advection.

From the deterministic coupled equations of motion we
have established the following points. The stable homo-
geneous steady states exhibit several features characteris-
tic of equilibrium first-order phase transitions, including
a discontinuous transition between states, accompanied
by a region of the phase diagram possessing two states,
each locally stable with respect to homogeneous fluctua-
tions, and a critical point at which the transition becomes
continuous and singularities are found in the response to
temperature and external probes. There exists an ana-
log of a coexistence line in the applied-stress —temperature
phase diagram, found by analyzing states inhomogeneous
in one spatial dimension; within our approximations, the
behavior near the critical point is classical.

From the linearized stochastic dynamics of ne-

matic order-parameter fluctuations about locally stable
nonequilibrium steady states, but neglecting fluctuations
in the velocity Geld, we have found the following points.
Flow destroys the massless Goldstone modes of the equi-
librium uniaxial nematic state, as it should, due to its bi-
axial symmetry, and introduces anisotropy into the flu-
ctuatio correlations. Flow also induces a massless fluc-
tuation mode at the nonequilibrium critical point, which
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may be probed by specific choices of polarizations in elas-
tic light-scattering experiments. The critical behavior is
associated with a single mode, which, unlike conventional
Ising-like critical modes, involves both amplitude and ori-
entation variations.

B. Assumptions and approximations

We have made a number of signi6cant assumptions,
which we now review. In our analysis of homogeneous
and inhomogeneous states, and the nonequilibrium phase
diagram, we have entirely neglected the role of thermal
fluctuations, except with regard to the issue of local sta-
bility. Even in this regard we have been incomplete,
especially concerning the issue of fluctuations at con-
stant applied stress and spatially inhomogeneous fluctu-
ations. Thus, apart from the transition that we have
explicitly been considering, we have assumed that the
system exhibits smooth behavior, as the shear stress and
temperature are varied. Nor have we entertained the
quite reasonable possibility, at least for certain ranges
of the material and control parameters, of transitions to
states with qualitatively difFerent flow patterns. Many
such possibilities can be envisaged, including nonlinear
dynamical instabilities to nonstationary states at high
shear stress, e.g. , giving rise to so-called "tumbling"
states. Such transitions have been observed in certain
low-molecular-weight systems, above a critical strain rate
[66]. One should also consider the interesting possibility
of a transition to a tumbling state, as the temperature is
lowered. Recalling the alignment condition, Eq. (5.lc),
2Pi cos28 = 3Si + Sz, we observe that for sufFiciently
strong ordering in Si and Sz, this condition cannot be
satisfied, and one does not expect to find a stationary
state. Such behavior has been observed by Gahwiller
in measurements of the temperature-dependence of the
Leslie coefficients [49], and has recently been discussed by
Larson, for the case of liquid-crystalline polymers [39].

We have also neglected to face the possibility of in-
stabilities associated primarily with the shear flow itself,
such as the Taylor-Couette instability [9], which occurs
for simple fluids in Couette flow. It would be most in-
teresting to investigate how such instabilities are affected
by the stress induced on the fluid by nematic ordering.
Related shear instabilities, such as those concerning un-
dulations in sliding stratified fluids, have been discussed
for smectic fluids in shear flow [67]. Such processes could
certainly be of relevance to interfaces between coexisting
homogeneous states; we have not as yet performed calcu-
lations rich enough to encounter such phenomena. In ad-
dition, as we have essentially been focusing on bulk prop-
erties, we have not attempted to investigate the role of
boundary conditions either on the fluid velocity or, more
importantly, on the nematic order parameter. Moreover,
we have omitted any critical discussion of heat flow, as-
suming that the thermal diffusivity is suEciently high
that the temperature remains, for all practical purposes,
uniform.

In our discussion of the fluctuations near the critical
point we have made at least three crucial assumptions.
First, we have introduced a noise source which obeys the

fluctuation-dissipation theorem. Thus, we have assumed
that the nonequilibrium microscopic fluctuations @re gov-
erned by their equilibrium probability distribution. This
issue is a fundamental one in nonequilibrium physics,
and is presently an active and controversial subject of re-
search [68]. Second, we have treated fluctuations at the
linear level, thus omitting nonlinear couplings between
fluctuating degrees of freedom. Thus, we are unable to
probe the critical point at a level beyond the analog of
the Gaussian approximation. Third, even within this
Gaussian approximation, we have omitted fluctuations in
the velocity and, less crucially, the density, concentrating
solely on nematic fluctuations.

C. Future directions

In this final section we mention certain issues which
we consider to be important and worthy of future in-

vestigation. (This list is certainly not intended to be
exhaustive. ) First, the issue of universality and scaling
in the vicinity of the nonequilibrium critical point should
be addressed using renormalization-group ideas, and the
experimental consequences of non-Gaussian fluctuations
for light-scattering and viscosity anomalies should be elu-
cidated. Second, the impact of applied magnetic fields
on the nonequilibrium phase transition should be ascer-
tained. Third, the stability, structure, and excitations
of interfaces between coexisting nonequilibrium states
should be analyzed, and spatio-temporal instabilities of
such interfaces should be considered. Fourth, the kinet-
ics of the discontinuous nonequilibrium phase transition
should be studied, including nonequilibrium metastabil-
ity near coexistence, and nonequilibrium spinodal decom-
position beyond stability limits. Fifth, the theoretical
picture presented here should be enlarged to encompass
concentration fluctuations, so that lyotropic systems may
be addressed.

We have seen that the typical critical strain rate for
thermotropic liquid crystals is of the order of 10s s
Such strain rates are comparable with the currently ac-
cessible experimental limit. They are also high enough
to make dynamical instabilities a serious issue: such in-
stabilities could set in before the critical point is reached.
Recalling the form for the dimensionless strain rate,
6 = DPz/C, we see that a larger viscosity Pz enables
the critical point b' to be reached with smaller strain
rates D. Ideal candidates, then, are mesogenic materi-
als possessing high viscosities: lyotropic systems, such as
solutions of the tobacco mosaic virus [i.e., TMV, rigid
rodlike objects of length 1800k), have much higher
viscosities than smaller (length ~ 20k.) low-molecular-
weight thermotropic materials, and are known to be very
sensitive to flow gradients [40].

In extending our dynamical treatment to lyotropic sys-
tems, the composition should be treated as an additional,
kinematically independent hydrodynamic variable. Ad-
ditionally, the equilibrium I-N transition in lyotropic
systems can typically be controlled by both temperature
and concentration, and the specific volume discontinuity
at the transition is not negligible, unlike thermotropic
systems. Hence, there are regions in the temperature-
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APPENDIX A: ORDER-PARAMETER
DECOMPOSITION

In this appendix we define the parametrization of the
order parameter used throughout this paper. First, we

consider the order parameter for a general biaxial state,

Q P = 2sSi(n nP —sb P)+ ziSz(m mP —l lP),

where fl is the director, m is the subdirector which iden-

tifies the asymmetry in the distribution of rod orienta-

tions relative to n, and {n,m, l ) form a right-handed

orthonormal triad [29]. The amplitudes Si and S2

parametrize the strength of uniaxial and biaxial order-

ing, respectively. Upon performing a variation in Q~p, it

is possi'~le to expand a deviation bop in a convenient ba-
r i q5

sis of orthonormal traceless symmetric tensors ye &y,

with amplitudes {(')s, [57]:

(Al)

5

bQ p=) ('e'p, (A2)

where

concentration phase diagram in which phase-coexistence
occurs, because of the large concentration difference
between isotropic and nematic phases, thus adding a
level of complexity to the problem. Finally, the order-
parameter discontinuity is usually larger in lyotropic sys-
tems (ESi 0.5 for TMV, compared to ESi 0.3
for MBBA) [40], which makes the Landau-de Gennes ex-
pansion less reliable. Nevertheless, the prospect of Qow-

induced effects at comparatively low strain rates makes
lyotropic systems attractive.

To conclude, we have attempted to present a coher-
ent treatment of the isotropic-nematic transition in ther-
motropic fluids of nematogens under applied shear stress,
which illustrates the similarities and difFerences between
equilibrium and nonequilibrium phase transitions and
critical phenomena. The tensorial nature of nematic or-
dering brings with it a wealth of interesting physical phe-
nomena, and makes nematic systems a natural environ-
ment in which to study the effects of flow on phase tran-
sitions. It also brings a considerable technical complexity
to the subject which guarantees that much remains to be
revealed by future investigators.

(i = /3/2 bSi,
(z = bSz/~2,

= (3Si —Sz) m bn/v 2,
(4 = (3Si + Sz) I bn/~2,
(s=i/2 Szl bm.

(A4)

Note that (i and (z parametrize amplitude fluctuations,
whereas (s, (4, and (s parametrize orientation fluctu-
ations For .fluctuations along eip the degree of order
along the director increases; such fluctuations correspond
to the standard amplitude fluctuations found in uniaxial
nematics. Fluctuations along ezp produce a change in
the asymmetry of the distribution about fl, i.e. , a change
in the biaxiality of the state. Fluctuations along e

&
and

e p correspond to the two directions in which to rotate
fl, and esp fluctuations correspond to a rotation of the
subdirector m about fl. For Sz = 0 the fluctuations esp
and e4

p represent the Goldstone modes found in uniaxial
nematic states.

APPENDIX B: INTEGRATION OF
STATIONARITY CONDITION

Consider the following system of ordinary difFerential
equations:

—Z(q) = K(q) Z(q) + Z(q) K (q) + G(q)
dg

(Bl)

in which Z, K, and G are N x N matrix functions of
q, with K and G supposed known, and Z sought. To
find the solution Z(q), subject to the boundary condition

Z(qp) = Zp, write the solution in the form

Z(q) = &(q) Zo& (q)+Q(q)W(q) 9 (q), (B2)

with Q(q) satisfying

—&(q) = K(q) Q(q),
d

dg
(B3)

subject to the initial condition Q(qp) = I, in which I is
the (N x N) identity matrix. Then W(q) satisfies

—„W(q)= 4 '(q) G(q) (9 ) (q), (B4)

subject to the initial condition W'(qp) = O. Equa-
tion (B4) is readily integrated, giving the solution

Z(q) = Q(q)ZpQ (q)

+ ""&(q)& '(A) G(A') (Q ) (A) 4'(q),
(B5)

e'p ——/3/2(n np —sib p),
e2p ——Ql/2(m mp —l lp),
es

p
——y 1/2 (n mp + m np),

e4
p

——Ql/2 (n l p + l np),
e p

——gl/2 (m~lp + l mp),

and orthonormality is defined by e'
p

ej = b'j. In ob-
taining this expansion we have only allowed variations
which maintain the orthonormality of the directors. The
amplitudes {(')are related to the explicit variations in
the order parameter through
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Q(q) =T exp dkK(k)),
qo

(B6)

where T denotes the "time-ordering" operation. If it
should happen that K(k) commutes with itself through-
out the interval qo & k & q then the time-ordering oper-
ation is redundant, and we have the explicit solution

in terms of (the as yet unknown) matrix Q(k). Equa-

tion (B3) is also readily integrated, at least formally, giv-

ing

For the application of this solution to fluctuation cor-

relations in flowing nematogens we identify Z(q) with

y(k)Ii, ~ in Eq. (7.19). We then apply the boundary
condition that Zo = Z(qo) = 0 at qo = oo, because
the gradient free energy suppresses spatial variations in

the nematic order parameter at extremely short length
scales. Finally, two straightforward changes of integra-
tion variables [from p to t with —t/2Pz = (k„—p)/Dk
and from k to s with —s/2Pz = (k„—k)/Dk~j yield the
solution Eq. (7.20).

q

Q(q) = exp dkK(k)
qo

(B7)
APPENDIX C: POLARIZATION

CONFIGURATIONS

Z(q) = exp dkK(k) Zo exp dkK (k)

+ @exp K
qo p

xG(p) exp dkK'(k)) .
p

(Bs)

In this case, the complete solution, Eq. (B5), reduces to In this appendix we present specific expressions for
the differential cross section for elastic light scattering
for four polarization configurations of interest. In the
following, expressions p and p' are, respectively, the po-
larizations of the incoming and outgoing light; k is the
difference between the incident and scattered wave vec-

tors; the shear plane contains n and m; and l = n x m.
These expressions are constructed from Eq. (7.8).

(i) Polarizations in the shear plane (p J l, p' J z; p
n = cos 8, p' n = cos 8'); see Fig. 10:

s (I( (k)I ) (2cos8cos8' —sin 8sin 8') + z (I( (k)I ) sin 8sin 8'+
z (I( (k)I ) sin (8+ 8')

+(( (k)( (—k)) sin(8+ 8') sin8sin8'+ (( (k) ( (—k)) sin(8+ 8')(2cos8cos8' —sin8sin8')

1+ (( (k)( (—k)) sin8sin8'(2cos8cos8' —sin8sin8').

(ii) Polarizations in the I-n plane (p J m, p'J m; p n = cosP, p n = cos()()'):

dt's

s (I( (k)I ) (2cosgcosg' —sin/sing') + 2 (I( (k)I ) sin /sin P'+ z (I( (k)I ) sin (P+ P')

—(( (k) (' (—k) ) sin (P + P') sin P sin P' + (( (k) ( (—k) ) sin (P + P') (2 cos P cos P' —sin P sin P')

1
(( (k)( (—k)) sin/sing'(2cosgcosg' —sinPsinP').

(iii) Polarizations normal to the director (p J n, p'J n; p m = cosV), p' m = cosy'):

~
- s (I('(k) I') «s' (v —

v ') + z (I('(k) I') «s' (v + v ') + z (I('(k) I')»n'(v + v ')

(&'(k)('(—k)) «s(V —v') cos(v + V') — ((!'(k)('(-k))»n(v + v') «s(V —v')

+R'(k) 0'(—k))»n(V + V') «s(V + V').

(iv) Polarizations normal to and parallel to n (p = n, p' J n; p' m = cos Q):„„-—,
' (I('(k) I') «"@+ & (I("(k)I')»n'@+ —,

' (('(k) ('(-k))»n 2@. (C4)
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