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Secondary instabilities in electroconvection in nematic liquid crystals

Satoru Nasuno, Osamu Sasaki, and Shoichi Kai
Department ofElectrical Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan

Walter Zimmermann
Department ofElectrical Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan

and Institut fiir Festkorperforschung, Theoric III, Forschungszentrum Julich,
5170 Jiilich, Federal Republic of Germany

(Received 13 November 1991;revised manuscript received 15 June 1992)

We report experimental results on the stability diagram of the normal-roll pattern in electroconvec-
tion in nematic liquid crystals. The stable wave-number bands of the normal rolls are determined for
various frequencies of the applied voltage. We find that the mode destablizing the normal rolls is of the
zigzag type at low frequencies of the applied voltage and at higher frequencies mainly of the skewed vari-
cos type. The change of the destablizing mode of the normal rolls is closely related to the change of the
transition scenarios to weak turbulence. With increasing amplitude of the external voltage, at low fre-
quencies the normal rolls are followed by a zigzaglike pattern and at higher frequencies they are fol-
lowed by a breathing pattern consisting of a two-dimensional lattice of defects. Both secondary patterns
are therefore on a dift'erent route to weak turbulence to which they finally bifurcate at higher voltages.

PACS number(s): 47.20.Ky, 47.65.+a, 61.30.Gd

I. INTRODUCTION

The physics of pattern formation has attracted consid-
erable attention in various fields recently. In particular,
the conditions for the formation of various types of well-
ordered spatiotemporal patterns, pattern selection, and
the loss of coherence are of a wider interest [1]. For in-
vestigating such problems fluid dynamical systems as, for
instance, Rayleigh-Benard convection (RBC) [2] and elec-
trohydrodynamic convection (EHC) in nematic liquid
crystals [3—5] have been used extensively because of their
richness of phenomena, their experimental handiness,
and their theoretical first-principles accessibility. In both
systems, one has a Quid layer that is bounded from the
top and the bottom by horizontal plates and across the
layer an external stress is applied, which is for RBC a
temperature difference and for EHC an ac voltage. These
and other Quid dynamical systems all have in common
that above a well-defined critical value of the external
stress there appears a well-organized structure such as
stationary periodic convection rolls. There is, however, a
striking contrast between RBC of simple Quid and EHC
in their symmetry. In the former the pattern can appear
essentially with arbitrary orientation at a threshold,
whereas in the latter there is a preferred orientation.
Hence they provide prominent examples of isotropic and
anisotropic pattern-forming systems, respectively. When
external stress is further increased, then well-organized
structures lose their stability and more spatiotemporally
complex structures appear. The transition to weak tur-
bulence, where spatial coherence is destroyed, however a
dominant length scale still survives [6], has particularly
attracted much attention [7—9].

One general and prominant approach to this problem
is to study the destabilizing mechanism of a periodic pat-

tern. For RBC of isotropic fluids the stability of periodic
rolls has been studied in detail, both theoretically and ex-
perimentally [2], and the results obtained there provide
important insights for the understanding of the physical
origin of the onset of weak turbulence [10,11]. On the
other hand, for EHC only a few investigations on the
determination of the stability of convection rolls are
available [12—16], and several questions are left open.
For instance, experiments performed so far in EHC imply
that the transition scenario from the stationary periodic
rolls [Williams rolls (WR's)] to weak turbulence [the so-
called fiuctuating Williams rolls (FWR's) [17]] cannot fit
into a unique scheme. To our knowledge, there are at
least three different transition scenarios for increasing
values of applied voltage. In the first scenario [4,15,17],
the WR undergoes a direct transition to a FWR. In the
second [4,16], the WR first undergoes a transition to a
zigzaglike roll structure (ZZ) at a well-defined threshold
and then a transition from ZZ to a FWR takes place at a
higher threshold. In the third transition [18],instead of a
ZZ one has another stable ordered phase between the
WR and the FWR, where the WR is modulated periodi-
cally in both longitudinal and transversal directions.
These scenarios have been all observed in unsystematic
experimentals. This situation calls for a more systematic
investigation of the stability of Williams rolls as well as
on the transition scenarios in this system.

In this paper we present experimental results on the
stability of the stationary periodic rolls (WR's) in EHC.
The WR investigated here is oriented with its axis normal
to the unperturbed director orientation and hence called
normal rolls to distinguish from the WR with its oblique
axis (oblique rolls) [19]. In order to make systematic
measurements of the stability of normal rolls, the present
experiments were performed by controlling three relevant
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parameters of this problem, the wave number k of normal
rolls, and applied voltage V, and its frequency f. We
found that three types of secondary instabilities can occur
depending on these parameters, i.e., the Eckhaus, the zig-
zag, and the skewed varicose instability. The stability di-

agram hence consists of these instability boundaries and
shows striking dependence in its nature on the control-
1ing parameters. Furthermore, we show that the three
scenarios for the transition from a WR to a FWR as men-
tioned above occur in one experimental sample, however,
in difFerent frequency ranges. The change of the transi-
tions with f is closely related with change of the dom-
inant destabilizing mechanism of the WR.

The paper is organized as follows. In Sec. II we de-
scribe briefly our experimental setup and the experimen-
tal procedure used for determining the stability of normal
rolls. In Sec. III we present our experimental results on
the stability of the normal rolls, together with that on the
transition scenarios. Finally we conclude with a discus-
sion of our results in Sec. IV.

II. EXPERIMENT
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A. Experimental setup

The geometry of the liquid-crystal cell used in the
present experiments is similar to that described in Ref.
[20]. In order to achieve a uniform planar alignment of
the director n in the nernatic liquid crystal, the surface of
the electrodes of the cell was coated previously with po-
lyvinyl alcohol and then rubbed in one direction. The
rubbing direction we call the x direction and the coordi-
nate perpendicular to the cell plane we call the z direc-
tion. The distance between the transparent electrodes at
the top and at the bottom is fixed with the space
d =25 pm by a Mylar film at the lateral boundaries of
the cell. The horizontal dimensions of the ce11 are l„=20
mm and I =20 rnm, so that the aspect ratios of the cell
are I „=I =800 with I =—1/d.

The nematic liquid crystal used in the present
experiments is N-p-meth oxybenzylidene-p-butylaniline
(MBBA) doped with 0.01 wt. % of tetra-n-butyl-
ammonium bromide, whose nematic-isotropic transition
temperature is about 39'C. The controlled doping of the
nernatic liquid crystal with a small amount of dissociating
organic molecules allows us to adjust the electrical
conductivity —which is essential for the electrohydro-
dynamic instability —at the required values for the exper-
iment. The nematic liquid crystal was introduced into
the cell under vacuum conditions by taking advantage of
the capillary action and then the cell was finally sealed
completely to avoid deterioration. The temperature of
the cell was kept constant at 30.00+0.01 'C.

The ac electric field applied across the liquid-crystal
layer was generated by the digital wave synthesizer sys-
tem (Analogic Co. Ltd. Data-2020). The convection pat-
terns were visualized under a microscope with polarized
light. Visualized images were taken with a charge-
coupled-device (CCD) camera and stored on video tape.
Images were typically taken from the central 0.1% of the
cell area. The recorded images were analyzed by use of a
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FIG. 1. (a) The critical voltage V, for the onset of convection
and (b) the critical wave number k, as a function of the frequen-

cy of the external applied voltage. At the onset of convection
we observe normal-oriented rolls in the whole conduction re-
gime (below the cuto6' frequency f, which is indicated by the
arrow). (c) and (d) A sketch of the voltage-frequency jump pro-
cedure is given. At fp the convection-roll pattern occurring at
threshold has the wave number kp [(d) minimum of curve P]
After the voltage-frequency jump (V&,f&) the wave number is
unchanged; however the position of the neutral curve (P~Q) is
changed and therefore so is the location of k& with respect to
the neutral curve. This procedure enables the preparation of
convection rolls at well-defined wave-number voltage pairs
( V, k).
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digital image processor system with 512X512 pixels spa-
tial resolution and eight-bit gray-scale resolution.

To give a fingerprint of our system, we present as a
function of frequency f of the applied voltage in Fig. 1

the threshold voltage V, (f) and the critical wave number

k, (f) of the roll pattern at the onset of convection. The
cutoff frequency f, of the sample is at 1400 Hz. Below
the cutoff frequency f„wealways get the normal rolls at
the onset of convection, whose axis is normal to the x
direction. In the present study, the voltage and the
wave number is measured in normalized units
e = [ V —V, (f ) ] /V, (f ) and q =k lk, (f), respectively.

B. Experimental procedure

A detailed quantitative measurement on the stability of
normal rolls requires the control on the wave number of
rolls as well as the voltage and the frequency of the exter-
nal field. This can be done efficiently by utilizing the fre-
quency dependence of the critical wave number k, [21]
(see Fig. 1). The experimental procedure to investigate
the stability of normal rolls with a given wave number kz
at a chosen frequency f& and at a chosen voltage V& is as
follows.

(i) First, we prepare normal rolls with a given wave
number kp by setting the frequency f so that k, (f)=kz
and then increasing the voltage V slightly beyond the on-
set of convection.

(ii) Then both the frequency and the amplitude of the
applied voltage are changed simultaneously to the aimed
values f& and V&. In this manner we can prepare the
normal rolls with a desired wave number kz at a chosen
frequency f& and a chosen voltage V& and test its stabili-

ty. Repeating this procedure for many di8'erent values of
kp, f&, V& we can determine the stability range of nor-
mal rolls as a function of k, V, and f. It is helpful to con-
sider this procedure in terms of the position of the neu-
tral stability curve eo(k, f) for the onset of convection. If
the voltage-frequency jump is made in the frequency
from fp to f& but with keeping e fixed, one will have

some relative shift of the neutral curve along the k axis
with respect to k~ as sketched in Fig. 1(d). In a more
general case, the voltage-frequency jump can give also an
arbitrary jump in a given state in e.

ity diagrams obtained in the present experiments. Finally
we investigate the transition scenarios for the onset of
weak turbulence.

A. Pattern evolutions Uia modulational instabilities

In the first case (i), the evolution always begins with the
long-wavelength modulation of the initial rolls. The
modulations observed are classified into three charac-
teristic types. In Figs. 2, 3, and 4 the typical evolutions
of these three modulational instabilities are shown during
the early transient away from the initial normal rolls. In
order to characterize these modulational instabilities
more clearly, we calculated the two-dimensional spatial
power spectra from the optical images of these pattern
evolutions. The power spectrum before the jump exhibits
the sharp peaks at ko and 2ko, where ko is the initial wave
vector of the pattern. As instability evolves, new peaks
exponentially develop at ko+k„and also at the multiple
combinations of ko and k„,where k„corresponds to the
wave vector of the modulation. Three modulational in-
stabilities as shown in Figs. 2, 3, and 4 can be dis-
tinguished from each other by the relative direction of
the wave vector k„with respect to ko, as is shown in Fig.
5. When k„is parallel to ko we call it the Eckhaus insta-
bility. When k„is perpendicular to ko, we call it zigzag
instability and otherwise the skewed varicose instability.
The new peaks at ko+k„are usually broader than the ini-

tial one at ko. This indicates that nearby modes around
the fastest growing one with the wave vector k„arealso
excited. In the present experiment the type of secondary
instability was determined from the relative orientation
of k„together with direct observation of the pattern evo-
lution. Aspects of these three instabilities are briefly de-
scribed.

III. STABILITY OF NORMAL ROLLS

The behavior of the system after a voltage-frequency
jump depends on parameters and is related to the stabili-

ty of a given initial state. A given state is obviously
stable if the pattern remains unchanged and unstable if
some pattern evolution drives the system away from a
given initial state. In the present experiment stable nor-
mal rolls are observed at small values of e and the initial
wave number adequately close to k, . In the case of un-

stable normal rolls, we observed two kinds of destabiliza-
tion mechanisms: (i) evolutions Uia spatial modulation of
the initial pattern and (ii) evolutions without any modula-
tions.

In this section, we first give a qualitative overview of
these instability processes, and then proceed to the stabil-

FIG. 2. Typical pattern evolution initiated by the Eckhaus
instability iklk, =0.83, @=0.12, f=580 Hz). Only the early

stage of the evolution is shown: (a) initial state, (b) 4.8 sec, (c) 6
sec, and (d) 7.2 sec after the voltage-frequency jurnp. Note that
the original uniform rolls receive the compression-dilatation
modulations.
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FIG. 3. Typical pattern evolution initiated by the zigzag in-

stability (k Ik, = 1.0, e=0.27, f=400 Hz). Only the early stage
of the evolution is shown: (a) Initial state, (b) 10 sec, (c) 13.3
sec, and (d) 16.7 sec after the voltage-frequency jump. Note that
the primary rolls are tilted with zigzag shape. In this case the
growth of zigzag perturbation saturates at around (b) and in the
subsequent stage only the quite slow dynamics of grain bound-

ary can be seen.
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FIG. 5. Two-dimensional power spectrum obtained in the in-
itial stage of (a) the Eckhaus instability, (b) the zigzag instabili-

ty, and (c) the skewed varicose instability. The peak at kp corre-
sponds to the initial wave vector. The peaks at kE kzz and ksv
are responsible for the fastest-growing Eckhaus modulation, zig-

zag modulation, and skewed varicose modulation, respectively.
The Fourier spectra images are displayed using the log opera-
tion (Ref. [22]) to enhance the low-level information.
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FIG. 4. Typical pattern evolution initiated by the skewed
varicose instability on the normal rolls (k/k, =1.04, a=0.22,
f=700 Hz). Only the early stage of the evolution is shown: (a)
initial state, (b) 18 sec, (c) 24 sec, and (d) 42 sec after the
voltage-frequency jump. (e) The skewed varicose modulation
observed in another sample under similar experimental
configuration. Note that the original uniform rolls receive the
periodic skew modulation.

l. Eckhaus instability

The first type of modulational instability observed here
appears as a compression and dilatation of rolls along the
longitudinal direction, as can be seen from Fig. 2. This
instability is observed when the initial wave number is
chosen adequately far from k, . For the rolls with k
smaller (larger) than k„this instability develops the
over-compressed (over-dilated) regions in which local
wavelengths are farther away from k, than the original
one. As the instability develops, the amplitudes of the
(low approach zero at these over-compressed (over-
dilated) regions, and eventually the elimination (nu-
cleation) of roll pairs takes place. Figure 2 shows an ex-
ample of pattern evolution in the case of k & k, . The cor-
responding two-dimensional power spectra taken during
the destabilization show the development of new peaks at
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ko+kz, where kE is parallel to ko [see Fig. 5(a)]. Ap-
parently these features are a manifestation of Eckhaus in-
stability [23]. However, in contrast to pure one-
dimensional Eckhaus instability, the modulations are not
homogeneous along the y direction, and thus the nu-
cleation and elimination of roll pairs are usually accorn-
panied with an appearance of dislocations, as is seen in
Fig. 2. These observations are in agreement with others
[24] and theoretical calculations [25,26].

rolls is shown in the (q, e) plane for three values of the
external frequency f. The symbols represent the experi-
mentally determined stability of normal rolls: The closed
circle indicates stable normal rolls, and the open circle,
the open square, and the open diamond, respectively, in-
dicate the location where the Eckhaus, the zigzag, and
the skewed varicose (SV) instabilities are observed as the

2. Zigzag instability (a} D 0 0
0 0 0 Q 0

The second type of modulational instability leads to
long-wavelength zigzaglike modulations of the rolls along
their axis as shown in Fig. 3. The rolls are tilted with two
oblique angles +8 with respect to the y axis and the
domains with different sign of tilt angle are separated
sharply by the narrow transition regions (i.e., grairi boun-
daries). In the two-dimensional power spectrum this in-

stability can be characterized by the appearance of new
peaks at ko+kzz, with kzz perpendicular to ko [see Fig.
5(b)]. We find that in contrast to isotropic systems [2]
this instability can occur for normal rolls not only for
k &k, but also for k &k, .
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The third type of instability develops the periodic skew
deformations of original rolls, as shown in Fig. 4. As can
be seen in Fig. 4, the bending distortion due to this insta-
bility is not smooth but localized over one or two roll dis-
tances along the y direction, causing shear displacement
of rolls there. As the instability develops, this shear dis-
placement of rolls increases, and eventually the pinching
of the rolls and the nucleation of defect pairs take place
at several points along the shear lines. In general two
symmetrical skew deformations develop simultaneously
in different areas of the sample. The corresponding
power spectra taken during the destabilization show the
appearance of new peaks at ko+ksv, where ksv is oblique
to ko [see Fig. 5(c)].
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B. Pattern evolutions without modulational

instabilities

In the second case (ii), the pattern evolution is much
simpler than those described above. Immediately after
the voltage-frequency jump, the initial pattern begins to
decay exponentially without any deformation. After the
jump to e (0, the resulting state is always the homogene-
ous state without convection. On the other hand, for
e&0, a new normal-ro11 pattern with a wave number
close to k, appears after the exponential decay of the ini-
tial pattern. This kind of pattern evolution is known to
occur in the parameter region below the neutral stability
curve for the onset of convection, where the primary
mode has a negative linear growth rate [14,27].

C. Stability diagrams

The quantitative results for the stability of normal rolls
are summarized in Fig. 6, in which the stability of normal
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FIG. 6. The stability of normal rolls as a function of the re-

duced voltage e=( V —V, )/V, and the reduced wave number

k/k, is plotted for three frequencies (a) 400 Hz, (b) 580 Hz, and

(c) 700 Hz. Symbols represent experimental data points and the
lines are guides to the eye. Closed circles refer to linearly stable
and crosses refer to absolutely decaying normal rolls. Open cir-
cles, open squares, and open diamonds refer to the locations
where the normal rolls become unstable against Eckhaus, zig-

zag, and skewed varicose instabilities, respectively.
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fastest g-rowing one. The cross indicates absolutely unsta-
ble normal rolls, i.e., where the initial mode decays ex-
ponentially without deformations. Based on these experi-
mental points given in Fig. 6 we divide the (q, e) space
into several regions by smooth curves as guides to the
eye. In Fig. 6(a) we have only a few data points for
k & k„because smaller values of k cannot be achieved by
the voltage-frequency jumping method [see Fig. 1(b)].

As can be seen in Fig. 6, for all frequencies measured in
the present experiments the Eckhaus instability dom-
inates in the lower part of the stability diagrams, i.e., the
stable bands of the normal rolls are bounded by the Eck-
haus instability for small values of e. However the insta-
bility that dominates in the upper part of the stability di-
agrams strongly depends on the frequency.

At the low frequency f=400 Hz, near the upper
boundary of the stable region the zigzag instability is
dominant, as can be seen in Fig. 6(a). We always ob-
served the zigzag-type instability in the region in between
the ZZ curve and the SV curve. On the other hand,
above the SV curve the most rapidly growing mode is ei-
ther the zigzag or the skewed varicose instability, and it
is in addition not fully reproducible whether the modula-
tional instability corresponds to the zigzag or the skewed
varicose. Moreover after a voltage-frequency jump above
the SV curve, we sometimes observed complicated com-
petition between these modes during the transient away
from the initial normal rolls. These indicate that above
the SV curve both the zigzag and the skewed varicose
mode have a positive growth rate. The y component of
the wave vector of the fastest-growing zigzag mode tends
to decrease as an initial state approaches the ZZ curve
from above. At the higher frequency f =580 Hz [Fig.
6(b)], the region where the skewed-varicose-type instabili-

ty takes place is shifted to lower values of e than that at
f =400 Hz. However, the zigzag instability is still dom-
inant in the narrow region immediately above the top
boundary of the stable region for normal rolls.

At the frequency f =700 Hz [Fig. 6(c)], the zigzag in-

stability seems to be no longer dominant in the upper
part of the stability diagram. We observed the skewed
varicose instability already immediately above the top
boundary of the stable region for normal rolls. As the in-
itial state approaches the SV curve from above, both x
and y components of the wave vector k„ofthe skewed
varicose mode decrease and seem to vanish at the SV
curve. However it is difficult to make the quantitative
determination on the wave vector k„atthis frequency,
because the corresponding peaks in the Fourier spectra
measured during the early stage of the destabilization are
broader than at 400 Hz and 580 Hz. In adchtion the
maxima of the new peaks become weaker in the region
close to the SV curve. This is also the origin of the
difficulty in deciding whether the observed instability is
of the zigzag type or of the skewed varicose type, espe-
cially in the region close to the SV curve. Therefore,
within the errors, it is possible that the open squares close
to the SV curve in Fig. 6(c) also correspond to the skewed
varicose instability. Moreover, even when the fastest-
growing mode is judged as the zigzag type by our cri-
terion, we usually observed the skewed-varicose-type roll

deformations in the subsequent stage of the pattern evo-
lution. Hence the dominant instability above the upper
boundary of the stable region is most likely of the skewed
varicose type at this frequency.

D. Routes to weak turbulence
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No Flow

I I
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Frequency (Hz)

I

800

FICx. 7. Phase diagram for EHC obtained by increasing the
voltage at each frequency. WR, ZZ, DL, and FWR represent
normal rolls (Williams rolls), zigzag pattern, defects lattice, de-
fect turbulence (fluctuating Williams rolls) phase, respectively.
Symbols indicate the critical points at which a transition be-
tween different phases are observed by increasing the voltage.
Arrows denote the frequencies at which the stability diagrams
in Fig. 6 are obtained. See also Fig. 8.

Here we describe the routes to weak turbulence in this
system in conjuction with the stability diagrams shown in
Fig. 6. As described above the most effective secondary
instability at increasing e is the zigzag instability for low
frequencies and the skewed varicose instability for high
frequencies. One may, therefore, expect in the respective
frequency ranges different transition scenarios from the
normal rolls to the weak turbulent state (FWR). To veri-

fy this we increased at various frequencies the voltage by
small steps of 0.05 V with long enough intervals between
every step. The results are summarized in Fig. 7, in
which qualitatively different scenarios can be seen de-
pending on the frequency.

For the low-f-regime, where the destabilizing mecha-
nism at the second bifurcation is expected to be the zig-
zag instability, the following sequence of bifurcations was
observed. (1) The first bifurcation from the rest state to
the stationary normal rolls takes place at @=0. (2) In-
creasing the voltage further the second bifurcation from
the normal rolls to the zigzag rolls [Fig. 8(b)] takes place
at second thresholds e, . (3) At some critical values e, the
third bifurcation from the zigzag rolls to the FWR with
sustained irregular defect motion [Fig. 8(d)] occurs. At
f =400 Hz, where we obtained our stability diagram
shown in Fig. 6(a), we find e, =0.17+0.02 and

e, =0.35+0.02. In the zigzag-roll regime the tilt angle of
the rolls with respect to the y axis increases with the devi-
ation E' 6 from the second threshold for a given fre-
quency. We found also that the maximum tilt angle 8
just below the third threshold e, decrease with increasing
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FIG. 8. Optical images of four typical patterns in EHC: (a) Normal rolls (WR's), (b) zigzag rolls (ZZ), (c) defect lattice structure

(DL), and {d) fluctuating Williams rolls (FWR's).

At higher frequencies, where the dominant destabiliza-
tion rnechanisrn at the second bifurcation was of the
skewed varicose type (see Fig. 6), the observed sequence
of the bifurcation is as follows. (i) The first bifurcation to
the stationary normal-rolls state takes place at @=0. (ii)
At the second threshold e„the normal rolls become un-
stable. However the secondary pattern after the bifurca-
tion is not the zigzag pattern but instead a new convec-
tive pattern in which the bounded defect pairs form a
two-dimensional lattice structure as is shown in Fig. 8(c).
The distances of these defect pairs in both the x and y
direction tend to diverge near e, and decreases with an
increase in e Each defect p. air shown in Fig. 8(c) oscil-
lates at each lattice site. The characteristic frequency of
this oscillation increases with e —e, [28]. We refer to
this new convective state as a defect lattice. A similar
pattern was also observed in Refs. [18 and 29], whereas in
Ref. [29] the experiments were performed with pure
MBBA. (iii) At the third threshold e„the defect lattice
becomes unstable and changes into a FWR. At the
present moment, however, it is not clear whether the na-

ture of the FWR in this frequency regime is the same as
that in the lower frequency regime. At f =700 Hz,
where we got the stability diagram shown in Fig. 6(c), we
find e, =0.20+0.02 and e, =0.59+0.02.

A transfer from the first scenario to the second one
occurs in the frequency range 550 (f (620 Hz, where
the stability diagram shown in Fig. 6(b) is obtained. As
can be seen in Fig. 7 the distance between e, and e, for a
given frequency decreases as the operating frequency is
closer to this crossover-frequency regime. Therefore it
becomes difficult to identify in the crossover regime the
secondary ordered state between the WR phase and the
FWR phase. This leads us to the third scenario with the
direct transition from a WR to a FWR.

In the normal-rolls regime the pattern remains per-
fectly periodic, but its wave number k tends to increase
approximately as k =ae+k„where a =0.15+0.05 for
the frequencies displayed in Fig. 7. Extrapolating this to
Fig. 6 the second bifurcation point could be predicted at
e, =0.17+0.01 for f =400 Hz and at e, =0.17+0.01 for
f =700 Hz, because the selected wave number should
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cross the instability boundary at these values of e. These
thresholds agree with the measured values within experi-
mental errors.

IV. DISCUSSION AND CONCLUSlVW

We have measured the stability of normal-oriented
rolls in EHC and found that there exist three destabiliz-
ing modes, i.e., the Eckhaus, the zigzag, and the skewed
varicose instability. All three instabilities are also
relevant for the stability of straight convection rolls in
Rayleigh-Benard convection in simple isotropic fluids [2].
In isotropic systems the zigzag instability always takes
place for k & k, and is understood as a wavelength ad-

justing mechanism for straight convection rolls, because
the length of the effective wave vector always gets closer
to k, through the zigzag deformation. In EHC the zig-

zag instability occurs also for k & k, as is shown in Fig. 6
and triggers the transition from a normal-rolls to a zig-
zaglike pattern. Therefore in EHC the zigzag instability
acts more like a wave-vector-adjusting mechanism. In
isotropic systems the skewed varicose instability plays an
essential role in the transition to weak turbulence [10].
On the other hand, in EHC the skewed varicose instabili-

ty generally leads to a new ordered pattern, i.e, the zigzag
pattern at low frequencies and the defect lattice at high
frequencies.

Recent analysis of the stability of normal rolls qualita-
tively agrees with the present results [12,13,25,30]. The
calculations were done on two-dimensional anisotropic
model systems [12,25] and directly in the framework of
the electr ohydro dynamic equations [13,30]. In both
works special attention was paid to the mean-flow effects.
These calculations show that the zigzag instability and
the skewed varicose instability are dominant in the upper
part of the stability diagram. However there seems up to
now no quantitative agreement between the experimental
and the theoretical results. The lack of the quantitative
agreement is perhaps related to different material con-
stants used in calculations, to the incompleteness of the
fundamental equations and boundary efFects at the elec-
trodes [31].

We have here only considered the stability of the nor-
mal rolls. The stability of the oblique rolls remains an in-
teresting problem, because the differences between EHC
and RBC should be more drastic. It was shown, e.g., in
Ref. [32] that the oblique rolls are destabilized by the
skewed-varicose-like instability, which leads to a station-
ary ordered pattern, i.e., the so-called varicose pattern.

Another interesting question related to the difference be-
tween isotropic and anisotropic systems would be to mea-
sure also the k„dependence of the neutral stability
[Vo(k„„ks,f)] and to compare it with the theoretical
predictions about a neutral surface for EHC [27,33].

In the present experiment three different transition
scenarios from the straight convection rolls to weak tur-
bulence have been observed in the identical sample: (i)
the WR-zigzag-FWR, (ii) the WR-FWR, and (iii) the
WR-(defect-lattice}-FWR. The selection of these
scenarios strongly depends on the external frequency f.
According to the stability diagram obtained in the
present experiments, such a change in the scenario with f
seems to be closely related to the change of the destabiliz-
ing mechanism at the second threshold.

Recently in the first scenario of a WR-zigzag-FWR
another group made similar investigations [16]. In this
work several samples with several cell thicknesses and
several aspect ratios have been investigated in a restricted
range of the external frequency. They concluded from
their measurements that there is some maximum tilt an-
gle of the zigzag rolls for the onset of the persistent nu-
cleation and annihilation of defects (FWR). However the
present results will not support them. We find that the
maximum tilt angle at the transition threshold e, to a
FWR changes as a function of the frequency of the exter-
nal voltage and goes presumably to zero at some medium
frequency. In a previous study [15], we observed the
second scenario of a WR-FWR. At that time we found
that the skewed varicose boundary locates just above the
zigzag boundary. This qualitatively agrees with the
present results. However the physical origin of the direct
transition from a WR to a FWR remains unresolved. On
the transition scenario WR-(defect-lattice}-FWR, a num-
ber of interesting questions clearly remain unresolved. In
particular, the formation mechanism and the quantitative
characterization of a defect lattice pattern are subjects of
further investigation [28].
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