
PHYSICAL REVIEW A VOLUME 46, NUMBER 8 15 OCTOBER 1992

Mode-coupling theory of the stress-tensor autocorrelation function
of a dense binary fluid mixture
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We present a generalized mode-coupling theory for a dense binary fluid mixture. The theory is used to
calculate molecular-scale renormalizations to the stress-tensor autocorrelation function (STAF) and to
the long-wavelength zero-frequency shear viscosity. As in the case of a dense simple fluid, we find that
the STAF appears to decay as t ' ' over an intermediate range of time. The coefficient of this long-time
tail is more than two orders of magnitude larger than that obtained from conventional mode-coupling
theory. Our study focuses on the effect of compositional disorder on the decay of the STAF in a dense
mixture.

PACS number(s): 61.20.Lc, 62.40.+ i

I. INTRODUCTION

In a simple fluid the five conserved densities relax very
slowly at small wave vectors. The nonlinearities in the
hydrodynamic equations provide a further mechanism
for slowing down the decay of fluctuations and are re-
sponsible for the long-time algebraic tails of the correla-
tion functions that determine the transport coefficients
[1]. The coefficients of the algebraic tails arising from
these long-wavelength or conventional mode-coupling
effects are, however, often much smaller than those ob-
served by molecular dynamics. In particular, the conven-
tional mode-coupling theory yields a coefficient of the
long-time tail of the stress-tensor autocorrelation func-
tion (STAF) of a dense hard-sphere fluid which is 500
times smaller than observed in simulations [2]. It has
been shown that this difference can be accounted for in
terms of finite-wave-vector or generalized mode-coupling
effects [3]. In a dense fluid density fluctuations relax
slowly even on molecular length scales. As a conse-
quence, density nonlinearities lead to a renormalization
of the transport coefficients via a finite-wave-vector
mode-coupling mechanism [4,3] that can qualitatively ac-
count for the size of the coefficient of the long-time tail of
the STAF [2] for the shear-dependent viscosity [5,6] ob-

served in computer simulations. In addition they provide
a good description of the behavior of the velocity auto-
correlation function at intermediate times [7]. A self-

consistent implementation of the generalized mode-

coupling theory also predicts, at a critical density, the
transition to a glassy state where structural relaxation is

frozen [4,8 —10]. On the other hand, a more detailed
analysis has shown that the transition is an artifact of the
approximation used and is cutoff when additional cou-
plings are included [11]. The generalized mode-coupling
theory has, however, provided considerable insight into
the dynamical properties of dense simple liquids. In par-
ticular, it gives an adequate description of the slowing
down of the dynamics of dense fluids of moderate viscosi-

ty, in a regime above the glass transition were the relaxa-
tion is highly cooperative and nonexponential [12,13].

In this paper we are interested in the mode-coupling

contribution to the shear viscosity and in the long-time
behavior of the stress-tensor autocorrelation function of a
dense binary fluid mixture. In a recent paper [14],Erpen-
beck reported molecular-dynamic studies of an isotopic
hard-sphere mixture at moderate densities and concluded
that in this case the size of the coefficient of the long-time
tail of the time-correlation function for the shear viscosi-

ty observed in the simulations agrees with the prediction
of conventional mode-coupling theory. In mixtures, as in

one-component fluids, the conventional mode-coupling
contribution to the STAF only accounts for the kinetic
part of the correlation function. The kinetic contribution
dominates at low and moderate densities and in this re-

gime the conventionaI mode-coupling theory agrees with
the simulations. Even in one-component fluids [15] it is

only at high densities (no ~0.7) that the largest contri-
bution to the correlation function is the potential one and
the observed coefficient of the t tail of the STAF is

much larger than predicted by conventional mode-

coupling theory. The situation should not be different for
mixtures. The agreement of the simulations with conven-
tional mode-coupling theory can only occur at the rela-

tively moderate densities considered by Erpenbeck. His
observations do not preclude the possibility of obtaining
large finite-wave-vector mode-coupling corrections to the
stress-tensor autocorrelation function at higher densities.
To our knowledge such effects have not yet been investi-

gated in computer simulations of mixtures.
Here we evaluate the generalized (to include finite-

wave-vector effects) mode-coupling contribution to the
STAF and to the shear viscosity of a binary mixture of
hard spheres of different sizes and masses. The general-
ized mode-coupling theory takes into account that in a
dense viscous liquid structural rearrangements are very
slow due to a close packing of the molecules. The slow
dynamics of density fluctuations on molecular length
scales affects the macroscopic transport properties
through a nonlinear mode-coupling mechanism [4,3]. At
large wave vectors the most important of these contribu-
tions involves the product of two density fluctuations
[16,3]: this contribution is the slowest decaying and has
the largest amplitude. In the case of a one-component
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fluid, the dynamics slows down significantly at only one
value of the wave vector corresponding to the location of
the first maximum of S(k ) [17]. In contrast, in a dense
mixture of spheres of different sizes fluctuations in the
mass densities of both species can be long-lived on molec-
ular length scales [18] and the dynamics can slow down
over a range of wave vectors. In paper I [18]we obtained
a set of linear generalized hydrodynamic equations that
describe the dynamics of the density fluctuations of the
two species down to molecular scales. We found that
when the packing fractions of the two species are compa-
rable and all three partial static structure factors of the
mixture are peaked, the density fluctuations of the two
species decay very slowly at two length scales corre-
sponding to the molecular diameters of the two species.
We now consider the nonlinear generalized hydrodynam-
ic equations and discuss the renormalization of the trans-
port coeScients by density nonlinearities. The interplay
of the density fluctuations of the two components leads to
finite-wave-vector mode-coupling corrections to the
correlation functions which determine the transport
coeScients.

We are interested in a binary mixture of hard spheres
as the simplest model where one can study in some detail
the role of compositional disorder in slowing down the
fluid dynamics. Compositional disorder seems to be an
essential feature of the simplest glass formers (metallic
glasses). Our work is focused towards understanding
how the structural relaxation of the two species and
interdiffusion affect the dense fluid dynamics. We choose
to study the mode-coupling correction to the stress-
tensor autocorrelation function which determines the
shear viscosity as the simplest of the various mode-
coupling effects in a mixture.

The self-consistent implementation of the generalized
mode-coupling theory of binary mixtures has been dis-
cussed recently by several authors as a model of the glass
transition [19,20]. Our work differs from this work on
mixtures because here we simply study the mode-
coupling corrections to lowest order in perturbation
theory, without attempting any self-consistent closure.
We do so for two reasons. First we believe that one needs
to understand well the simplest perturbation theory be-

fore making it self consistent. Second, and most impor-
tantly, it has been shown [3] that for one-component
fluids a naive mode-coupling theory of the type we dis-
cuss here describes well the slowing down of the dynami-
cal properties above the glass transition, in a regime of
moderate viscosity where the dynamics is cooperative
(and therefore nonexponential), but not yet activated [12].
Our objective is to put the description of the dynamics of
dense mixtures in this regime on the same solid footing as
that of one-component fluids.

The outline of the paper is as follows. In Sec. II the
basic theory used here is described. The perturbation
theory in the nonlinearities in the hydrodynamic equa-
tions is then outlined in Sec. III, where an expression for
the renorrnalized shear viscosity is obtained. In Sec. IV
we present our results for the STAF and the shear viscos-
ity for hard-sphere fluid mixtures. We analyze the con-
centration dependence of the STAF for a mixture and
conclude the paper by discussing our results and by mak-
ing some remarks about connections to earlier theoretical
studies and computer simulations.

II. NONLINEAR GENERALIZED HYDRODYNAMICS

The hydrodynamic properties of a binary fluid mixture
are described in terms of the six conserved densities: the
mass densities p&(r, t) and pz(r, t) of the two species, the
total momentum density g(r, t), and the energy density

e(r, t) [18]. We begin by writing a set of hydrodynamic
equations that have the same structure both at large and
short (molecular) length scales. The starting point for the
derivation of these generalized hydrodynamic equations
is the free-energy functional for an inhomogeneous equi-
libriurn binary fluid mixture, given by

g
2

g
2

F= fdr + +Fy. (2.1)
2Pi 2P

The potential part Fv of the free-energy functional can be
written exactly in the form of an expansion in the fluctua-
tions 5n, (r, t)=n, (r, t) —no, of the number density

n, (r, t) of species s, with s=1,2, from its equilibrium
value n 0„[21]

5Fv k~ T 2

ln[kz;n, (r)]—g fdr'c„(~r —r'~ }.5n, ,(r', t)
5p, m, s'=1

2 2

f dr' fdr"c„,-(r, r', r"}5n,.(r', t)5n, „(r",t )+
s'=1 s"=1

(2.2)

Here m, is the mass of a particle of type s, T- is the tern-
perature, A, r, =(fi l2vrm, k&T)' is the thermal wave-
length of particles of type s, and c„,(

~
r —r'~ ) and

c„.,-(r, r', r" ) are the equilibrium two-particle and three-
particle direct correlation functions. From this free ener-
gy, nonlinear fluctuating hydrodynamic equations can be

I

derived by the standard Poisson bracket method outlined
in Appendix A [22]. Here we neglect temperature fiuc-
tuations since they do not play an important role in
determining the renorrnalization to be discussed in Sec.
III. The equations for the partial mass densities of the
two species and the total momentum density are
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B,p, (r, t)+V g(r, t) = —G, (r, t)+f, (r, t),P1

p

B,p 2(r, t)+V g(—r, t) = G—, (r, t)+f2(r, t),P2

p

gag p &Fv
B,g (r, t)+8& + g p, Bp, ,

'
6p,

(2.3)

(2.4)

through the fluctuation-dissipation theorem. The ran-
dom forces have zero average and correlations given by

(f, (r, t )f,.(r', t') ) =2k~ Ty„~(r, r')8 BP(r —r')5(t t—'),
(2.8)

(fg (r, t)f (r', t')) =2k&TI &(r, r')5(r —r')5(t —t') .

(2.9)

= —G (r, t)+f (r, t) . (2.5)

Here G, (r, t) and G2(r, t ) account for diffusive dissipa-
tion of species type 1 and type 2, respectively, and

Gs (r, t) corresponds to viscous dissipation. We write
ga

these terms in the form

2

G, ( r, t ) = c.)y f d r'y,P ( r, r', n, )i)& (2.6)

for s = 1,2, and

Gg (r, t)= dr'I &(r, r', n, )
5F

5gp r' (2.7)

From the equation of continuity for the total density
fluctuations p(r, t)=p~(r, t)+p2(r, t}, it follows that
G, (r, t )+Gz(r, t ) =0. As we have seen in I, the only fluc-

tuations that are slowly varying on molecular length
scales are the fluctuations of the partial densities of the
two species. Large-wave-vector momentum fluctuations
relax on short-time scales and momentum behaves like a
nonhydrodynamic (nonconserved) variable. We have
therefore written G, (r, t) and G2(r, t) in a form explicitly
consistent with the general structure of dissipative terms
pertaining to conserved variables. The form of Gg (r, t)

ga

corresponds to that of dissipation associated with a non-
conserved variable [23]. On the other hand, it should be
kept in mind that our dissipative kernels y„and I &

are
nonlocal and reproduce the well-known transport
coefficients in the long-wavelength limit.

In the above equations f, (r, t), f2(r, t), and fg (r, t}
~a

are Gaussian random fluctuating forces which are related
to the corresponding linearized dissipative kernels

g(k, t)=kg, (k, t)+ g k,'gr, (kt.), ,
i =1,2

(2.10}

~
M ~

where k=k/k is a unit vector along k and k~ are unit
vectors normal to k. After neglecting convective and dis-
sipative nonlinearities and retaining only quadratic non-
linearities in the density fluctuations, the Fourier-
transformed equations are given by

Equations (2.3)—(2.5) follow from general considerations
if one neglects temperature fluctuations and non-
Markovian effects.

To complete the equations, one needs to specify the
dissipative kernels. We will neglect dissipative nonlinear-
ities in our analysis. For a dense one-component fluid a
theory that only retains thermodynamic nonlinearities
predicts a t tail for the STAF with a coefficient that
is a factor of 2 smaller than that observed in simulations
[7]. The inclusion of dissipative nonlinearities accounts
for this factor-of-2 difference [17]. For simplicity here we
neglect dissipative nonlinearities and assume
I &(r, r';n, )=I &(r, r', n, o) and y„~(r, r';n, )

=y „~(r, r'; n, o). The simple fluid results indicate that
even with this approximation the theory will provide a
semiquantitative description of the behavior of the STAF
at intermediate times. We also neglect convective non-
linearities which are responsible for the asymptotic t
tails in the STAF. At high density the coefficient of the
asymptotic tail is much smaller that the contribution dis-
cussed here.

It is convenient for the discussion below to consider
the Fourier transform of the generalized hydrodynamic
equations (2.3)—(2.5). The Fourier components of
momentum fluctuations are separated into longitudinal
and transverse parts,

p, o k» 5n, -(k, t )

B,p, (k, t )+ik gI(k, t ) = g y„,(k )[5, ,„—n, ,c, ,„(k )] +f, (k, t ),I &

p
SS SS S SS

ps'O
(2. 1 1)

for s = 1,2, and

2

[Q, +yq (k ) ]gi(k, t )+ ik g [5„—n, c„(k) ]5„,(k, t )

s, s'=1

I p(k)=po[k ktjyt(k)+(5 p
—f kp)yz. (k)],

y„~(k ) =5 py„.(k ) .

(2.14)

(2.1S)

=Iq(k, t )+f~(k, t ), (2.12)

[8,+y (k)]g (k, t)=I (k, t)+f (k, t} . (2.13}

In writing the above equations we have used that for an
isotropic fluid

In the long-wavelength limit the viscous kernel I &(k)
reduces to the usual combination of gradients and bare
shear and bulk viscosities g, and g,

(2.16)limI &(k)=k ki3(g+ —', g, )+(k 5 & kk&)g, . —
k~o
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The diffusion kernels y„(k) are related to the diffusion
constants D„ofa binary mixture, according to

D„.= lim
o+m, p, m, p,

y„.(k} . (2.17)

X5n, (q, t)5n, (k —q, t), (2.18)

2

Ir (k, t)= —,
' g f, [V„'(k,q)+ V, ,'(q, k)]

(2n )

Finally, the nonlinearities in Eqs. (2.12} and (2.13) are
given by

dqIL(k, t)= —,
' g f, [V~ (k, q)+ V„(q,k)]

(2n )
2Pss'

(2.25)d„.(kyar„)X Qm, m, .p,p, .tE

where

function of species s and s' evaluated at contact,
g„=g„(r=o„). The functions d&(x) and dz(x) are
defined in terms of the spherical Bessel functions ji(x ) as

d&(x ) =1—jo(x )+2j2(x ) and d2(x ) =1—jo(x ) —j2(x ).
The four diffusion kernels y„.(k ) are related via the On-

sager reciprocity relations, which require y»(k )

=yzz(k)= —y,2(k)= —yz, (k). Therefore there is only
one independent diffusion constant in a binary mixture.
For hard-sphere fluids it is given by

1

with

X5n, (q, t )5n, .(k —q, t ), (2.19) d„(x ) = —( —1)'+' [jo(x )
—2j2(x )] .

Ps'
(2.26)

V„'(k,q)+ V, ,'(q, k) = [c„.( ~k —
q~ )—c„(q)],r. r. &i q

(2.20)

This concludes the derivation of the nonlinear general-
ized hydrodynamic equations. In the next section we de-
scribe the perturbation theory to evaluate the mode-
coupling contribution to the STAF.

V„(k,q)+ V, , (q, k) = [c„(~k
—

q~ ) —c„(q)]

k+—g no, c„, (q —k; —q).
s"=1

(2.21)

The linearized form of Eqs. (2.3)—(2.5) is identical to
the linear equations obtained in paper I for a binary fluid
of hard spheres from the Enskog theory. For the case of
hard-sphere fluids one can derive explicit analytical ex-
pressions for the dissipative kernels. These expressions
were obtained in I. The viscous kernels are given by

III. MODE-COUPLING THEORY

[8,+y r(k ) ]CP'(k, t )=0, (3.2)

We are interested in evaluating the generalized mode-
coupling contribution to the coefficient of shear viscosity
rt, and to the corresponding STAF, p„(t ). They are relat-
ed by the Green-Kubo formula,

q, =Pf dt p„(t) . (3.1}
0

The shear viscosity governs the decay of the transverse
momentum fluctuations, Cr(k, t ) = (gr(k, t )gz ( —k, 0) ).
When nonlinearities are neglected, the generalized hydro-
dynamic equations discussed in Sec. II give

P, ~ tE„,
(2.22)

where

limyr(k)=k rIE/pOk~0

yr(k)= g d2(ko„),
~ ss E„.

(2.23)

E,
4+en, n, tr„.2

(2P )1/2
(2.24)

with p„.=m, m,'/(m, +m, .) and y„. the pair-correlation

where tE is the Enskog mean free time between col-
$$

lisions,

with rtE the Enskog shear viscosity of a mixture [24,25].
The solution to (3.2) is obtained immediately,

CP'(k, t ) =e Cz.(k, O)

=e 'Cz(k, O), (3.3)

where the second equality applies in the limit k ~0 and
Cr(k, O)=P/P. When quadratic nonlinearities are re-
tained in Eq. (2.13), we obtain

dq[8,+yr(k)]Cr(k, t ) = —,
' g f [ V„.(k, q)+ V, ,(q, k)](5n, (q, t )5n, (k —q, t }gz ( —k, O) ),

(2n. )
(3.4)

where the prime on the integral sign denotes a short distance cutoff. The effect of the nonlinearities on the right-hand
side of Eq. (3.4) can be approximately incorporated by a perturbation theory that reexpresses the correlation function
on the right-hand side of Eq. (3.4) in terms of Cr(k, t ). The theory is described in Appendix B. Equation (3.4) is then
recast in a form where the contribution from nonlinearities enters as a non-Markovian renormalization of the transverse
damping y z-,
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[]3,+yT(k)]CT(k, t)+ f d~ X„(k,t —r)CT(k, ~)=0,
0

with

X (k, t)= y
' d' I~ .(k,.)l"""""-'"'"'

T/ ~ P (2 )3 P'v

(3.5)

(3.6)

and

2 2

(k q)l = g p [ V, (k q)+ V, (q k)]tz (q)[ V (k q)+ V (q k)]a,"-,"(k—q) (3.7)

Explicit expressions for the amplitudes e„are given in

Appendix B.
It is convenient to consider the Laplace transform of

(3.5),

[z+yT(k, z)]CT(k, z)=CT(k, t =0),
where

CT(k, z)= f dt e "C&(k, t)
0

(3.&)

(3.9)

yT(k, z) =yT(k)+5yT'(k, z),
with

5yr'(k, z)= f dt e "X„(k,t) .
0

(3.10}

(3.11)

The long-wavelength limit of the transverse dissipative
kernel yT(k, z) defines the frequency-dependent shear
viscosity il,"(z) according to

limyT(k, z)=k il, (z) .
k~0

(3.12)

The mode-coupling contribution to the renormalized
viscosity, il, (z ) =7)E+5i), '(z ), is then given by

5i), '(z)= lim f dt e "X (k, t) .1

k-0 g2 0
(3.13)

By comparing Eqs. (3.1) and (3.13), we see that the long-
wavelength limit of X„(k,t) also determines the mode-

coupling contribution to the STAF pz(t ) according to

for Re(z))0. The renormalized transverse dissipative
kernel y T is the sum of its bare part y T(k ) and a mode-

coupling contribution 5y T'

IV. RESULTS

In this paper we have used a generalized mode-
coupling theory that takes into account molecular scale
effects to compute the STAF of a dense binary-fluid mix-
ture. As in the case of a one-component fluid of packing
fraction i)=(m. /6)no =0.46, in a dense mixture the
coeScient of the long-time tail of the STAF evaluated
from generalized mode-coupling theory is about two or-
ders of magnitude larger than the corresponding
coeScient obtained from conventional mode-coupling
theory.

Here, we consider a mixture of hard spheres of sizes o,
and 0.2, with 0.2&0, As discussed in paper I, the slow-

ing down of the dynamics of the dense mixture on short
length scales is directly related to the short-range correla-
tions that characterize the fluid structure and that show

up as peaks in the partial static structure factors. These
are in turn determined by the relative packing fractions
of the two species, il=]m no], /6= rixa]/(x2+x]a )

and tl2=mn2cr2/6=ilx2/(x2+x]a ), where g=ri, +ill is

the total packing fraction and x& =n, /n and x2=n2/n,
with n =n, +n2, are the concentrations. Notice that in

our calculation we keep i) constant (i'd=0. 46 in all the
data discussed below), while changing the concentration
x2 of the large spheres. Finally, in this paper we only

present results for mixtures of spheres of equal masses.
This is done mainly to dissociate the role of the structural
parameters from the role of the mass ratio in slowing
down the dynamics. All times are normalized to an En-
skog time tE given by

4&at(n]+n2)cr, 2
(4.1)

(2P )]/2 JY]2

5ps'"( t ) = lim X (k, t } .1

k OI 2

Finally, 6p„'"(t ) and 6g, ' are explicitly given by

5ps'"(t ) = —,
' g f I ~„(0,q)l

(2m. )

|z (q)+z ( —q)it
Xe

and

l~ .(o, q)l'
~+ f (2 )3 [z„(q)+z„(—q)]

(3.14)

(3.15)

(3.16)

This time scale is neither the Enskog mean free time of a
hard-sphere fluid of type-1 nor type-2 spheres. It is
chosen because it depends only weakly on the concentra-
tion of each species.

We first discuss the conventional mode-coupling con-
tribution to the STAF of a mixture, denoted by 5p'„'""(t).
As in one-component fiuids, one finds 5p:'""(t)= At 3/2

[26]. This algebraic tail arises from the slow decay of
fluctuations in the conserved densities at long wave-

lengths and the feedback from these long-lived fluctua-
tions through the convective nonlinearities in the hydro-
dynamic equations. It describes the true asymptotic
long-time behavior of the correlation function. The
coefBcient A was evaluated many years ago by Pomeau
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I

0.01

(tjt~)
I

0.02

FIG. 1. The conventional mode-coupling contribution to the
STAF 10'5p„(t) as a function of (t/tE) for o. &/cr&=0. 7
and three values of the concentration x2. The one-component
fluid result is also shown (dashed line).

[26] and, as in one-component fluids, it was found to be
very small. In Fig. 1 we show 5pz'""( t )

=(Ptz jriz )5p'„'""(t ) as a function of (t It@ ) for three
values of the concentration xz =n2/n of larger particles.
Here rjz is the Enskog shear viscosity of the mixture [24].
The coefficient of the long-time tail, given by the slope of
the straight lines of Fig. 1, has a weak dependence on the
concentration x2. The slope is also quite independent on
the total packing fraction g.

The conventional mode-coupling contribution to the
STAF should be compared to the generalized mode-
coupling contribution in Eq. (3.15) and denoted here by
5ps'"(t ). Equation (3.15) can be written as a one-
dimensional integral over the magnitude q of wave vec-
tor. This integral has been evaluated numerically using
an upper cutoff q,„o&2=20. We have checked that the
contribution to the integral from reduced wave vectors
larger than 20 is negligibly small. In Fig. 2 we show the
generalized mode-coupling contribution 5p~'"( t ) as a
function of (t ltE) ~ for a packing fraction rl=0. 46.
The curves are well approximated by straight lines over a
range of time scales, indicating that the generalized
mode-coupling contribution to the STAF appears to de-
cay as -t in this region. The generalized mode-
coupling contribution evaluated here describes the decay
of the correlation function over the intermediate time
scales that are generally accessible to computer simula-
tions. It is very hard to probe by simulations the truly
asymptotic long-time behavior of the correlation func-
tions described by the conventional long-time tails.

The apparent failure of our curves in Figs. 1 and 2 to

0.04

0.03

0.02

0.01

0.01 0.02

FIG. 2. The generalized mode-coupling contribution to the
STAF 5p„(t) as a function of (t/tE) ' for cr&/02=0. 7 and
three values of the concentration x2. The one-component fluid
results is also shown (dashed line).

reduce to the result obtained for a one-component Quid in
the limit of either small (x&=0.01) or large (x&=0.9)
concentration of large spheres is only an artifact of our
choice of the units of time [here we have scaled time with
tE given by Eq. (4.1)]. If in each case (xz &( I and x2 = 1)
we scale the time with the Enskog mean free time of the
majority component, tz„and tE22, respectively [see Eq.
(2.24)], then our results for x2=0.01 and x2=0.9 are
essentially identical to those for a one-component Quid.

By comparing Figs. 1 and 2 we see immediately that at
the large values of the density considered here the gen-
eralized mode-coupling contribution to the STAF is
about two orders of magnitude larger than the conven-
tional mode-coupling contribution (the vertical scales in
Figs. 1 and 2 differ by a factor of 10 ). We also find that
5p~'"( t ) depends strongly on the fluid density. For
r) =0.23 (the value used in Erpenbeck's simulations)
5„'"(t) is smaller than 5p'„'""(t). This is consistent with
the fact that the generalized mode-coupling contribution
accounts for the potential part of the correlation function
that dominates at high density. One of the factors that
controls its size is the height of the first peaks of the stat-
ic structure factors of the fluid, which in turn are large
only at high density.

The generalized mode-coupling contribution given in
Eq. (3.15) is the sum of four terms, corresponding to the
coupling of two density modes ( ——), the coupling of
two diffusion modes (++), and two equal terms corre-
sponding to the coupling of one diffusion mode and one
density mode (+—and —+). In Figs. 3—5, we show
separately these contributions to the STAF as well as
their sum for three values of the concentration x2. For a
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~2 = 0.01
~1/O2 = 0.7

0.04

0.03 0.03-

0.02

G.01 0.01

0.01 0.02 0.02

FIG. 3. The three contributions to 5p„{t ) from the coupling
of different pairs of modes, ++ {dashed line), ——{long-short
dash), and + —(long-short-short dash), are shown separately as
functions of (t lt&) ' for x2=0.01 and 0, /o. 2=0.7. The total
correlation function is also shown {solid line).

0.02

0.01

0.01

(t/t ) -s/2

!

0.02

FKj. 4. Same as Fig. 3 for x~ =0.2.

small (x&=0.01, Fig. 3) and a large (x2=0.9, Fig. 5)
concentration of large spheres the generalized mode-
coupling contribution to the STAF is dominated by only
one of these four terms. For x2 &&1 the density mode

FIG. 5. Same as Fig. 3 for x, =0.9.

(z ) describes the relaxation of total density fluctuations
which are mainly determined by the majority component
(type 1, in this case). The coupling of two of these densi-
ty modes gives then the dominant generalized mode-
coupling contribution to the STAF. For x2 —-1 it is the
mode we label diff'usion mode (z+ ) that describes the re-
laxation of density fiuctuations and the coupling of two of
these modes dominates the mode-coupling contribution
to the STAF. At an intermediate value of the concentra-
tion of large spheres (x2=0.2, Fig. 4) we find that the
contributions from all four terms in Eq. (3.15) are of com-
parable magnitude. For large or small values of the con-
centration of one of the two species (here the large
spheres), the mixture resembles a one-component fluid
and the density fluctuations of the majority component
govern the slow structural relaxation of the quid. The
effect of diffusion of the low-concentration component on
slowing down the decay of the STAF appears to be small.
For the intermediate value of the concentration the pack-
ing fractions of the two species are comparable and the
mixture structurally resembles a metallic glass. The mix-
ture is structurally very disordered and all three partial
static structure factors are peaked at well-separated
values of the wave vector, determined by the sizes of the
two species. As discussed in paper I, fluctuations in the
density of both species decay slowly at molecular length
scales. The two extended modes of diffusion and total
density fluctuations cannot be decoupled: both soften ap-
preciably at large wave vectors and contribute to the
mode-coupling integral. There is therefore a range of
large wave vectors where density fluctuations decay slow-
ly. This should be contrasted to what happens in the case
of a simple fluid, where the mode-coupling integrals are
dominated by the single value of the wave vector corre-
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sponding to the first maximum of the static structure fac-
tor.

We now discuss in some detail the effect of composi-
tional disorder on the decay of the STAF in a dense mix-
ture. For the present discussion we normalize all times to
t* given by

0.04

~o0.03

0.02

0.01

20 40

0.04

0.03
0

0.02

0.01

20
I

40

FIG. 6. The conventional mode-coupling contribution to the
STAF, 10 5p'„'"" (t), as a function of t/t* for o.&/cr2=0. 7 and
various values of the concentration: (a) x2=0.01 (solid line),
x2 =0.1 (dashed line), and x2 =0.2 (long-short dash); (b)
x& =0.9 (solid line), x2 =0.6 (dashed line), and x2 =0.4 (long-
short dash).

4&m(n. , cr, + n 2 0 2 )
(x 1+11+x 2+22+ 2x lx 2X12 ) '(2'»)'"

(4.2)

This time scale, unlike tE, has the feature of going to the
one-component fluid limit for x2 &(1 and x2 ——1.

We first consider the case of conventional mode cou-
pling. In Fig. 6(a) we show 5p'„'""*( t )

=(pt'/r)F)5p'„'""(t) as a function of (t/t') for three
small values of the concentration xz =n2/n of larger par-
ticles. Increasing the concentration of large particles in a
fluid of small spheres slightly shifts the characteristic
time scale governing the decay of the STAF to larger
times. For a given value of (t/t'), the STAF of the mix-
ture is then larger than that of a one-component fluid.
This is, however, a very small effect and it is entirely due
to the concentration dependence of the Enskog shear
viscosity of the fluid. A similar behavior is observed
when small particles are added to a fluid of large particles
[see Fig. 6(b)].

The concentration dependence of a generalized mode-
coupling contribution to the STAF is quite different.
In Figs. 7(a) and 7(b) we display 5ps'"'( t )

=(pt'/gz)5p~'"(t) as a function of (t/t*) for various
values of the concentration xz = n2/n of larger particles.
For values of x2 close to I [Fig. 7(b)], when the large
spheres are much more abundant than the small spheres,
increasing the fraction of small spheres results in a shift
of the characteristic time regime where the mode-
coupling contribution to the STAF is large to shorter
times. The shift is in the opposite direction as compared
to that observed for the conventional contribution and it
is more pronounced. A similar behavior is also observed
for small values of x2 [Fig. 7(a)].

A comparison of Figs. 6 and 7 shows that the concen-
tration dependence of 5ps'"(t) is stronger than that of
5p'„'""(t). This indicates that the degree of compositional
disorder in the fluid plays a role in the dense fluid dynam-
ics.

In order to assess more precisely when compositional
disorder enhances large-wave-vector mode-coupling
effects, we have also evaluated the mode-coupling contri-
bution to the shear viscosity, 5g~',". In Fig. 8 we show
5g ',"/gE as a function of x2 for a few values of the size
ratio a. Here gE is the Enskog shear viscosity of the
mixture. In order to properly interpret the results
displayed in Fig. 8 it is important to first clarify the con-
centration dependence of the Enskog shear viscosity. At
the high densities considered here the Enskog shear
viscosity of a hard-sphere fluid is dominated by the po-
tential contribution. For a one-component fluid this is
given by gz= —,', v'mm/p[(no ) y/o~] If the re.duced
density no. is kept fixed, then gE —1/o. and the viscosi-
ty decreases as the sphere diameter increases (the pair
correlation at contact y only depends on no ). The En-
skog shear viscosity gE of a binary mixture depends on
the concentration x2 of larger particles and reduces to
the Enskog viscosity of a fluid of hard spheres of size o.„
gE&, for x2=0, and to the Enskog viscosity of a fluid of
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hard spheres of size o 2 & o-, , g&2, for x 2
= 1, with

gE2&gE&. Compositional disorder always increases the
bare viscosity in the sense that for x2 &&1, gz & gE, and
for X2 ——1, YJE ) r/E2.

In contrast we see from Fig. 8 that the concentration
dependence of the generalized mode-coupling contribu-
tion 5il, ' (relative to ilE) is quite different. The dashed
line in the figure indicates the value of 5i), '/i)z for a g „2.0

oE

~~/~2 ——0.5
~i/~2 ——0.7
&l. /~2 = 0,9

(a)

I

0.20 0.60

0.03

4D

0.02

FIG. 8. The reduced generalized mode-coupling shear viscos-
ity 5g ',"/gE as a function of x2 for various values of the size ra-
tio: o. l/0. 2=0.5 (solid line), o.&/o2=0. 7 (dashed line), and
0., /F2=0. 9 (long-short dash). The value of 5g ',"/g& for a one-

component quid is also shown.

0.01

0.04

0.02

0.01

20 40

one-component hard-sphere fluid with no. =0.88 as ob-
tained before by other researchers [27]. Our results show
that in a mixture with a small fraction of large spheres (a
colloidal suspension) the generalized mode-coupling
corrections are larger than in a one-component fluid.
This corresponds to the fact that the motion of large
spheres in a dense background fluid is very slow. Shear
relaxation also gets slower as the size difference increases
(smaller a ). On the other hand, in a mixture containing a
small fraction of small spheres in a fluid of large spheres
(xz-1) the generalized mode-coupling correction to the
shear viscosity, while still larger than the one-component
value, is considerably smaller than obtained in a
colloidal-fiuid-like mixture (xz « 1). This is because
small spheres can move rather easily through a matrix of
large spheres. These considerations are strictly meaning-
ful only for a=0.5 and a=0.7, that is, for mixtures of
spheres of rather disparate sizes. The a=0.9 value
shows how the curves converge to the one-component
fluid limit. Our findings are in agreement with the results
of simulations of mixtures by Mountain and Thirumalai
[28]. These authors reported that a mixture with a small
fraction of small particles can crystallize more easily than
a mixture with a few large particles, due to the fact that
small particles can move more easily in a matrix of large
particles compared to large particles in a matrix of small
particles.

20 40
V. DISCUSSION

FIG. 7. The generalized mode-coupling contribution to the
STAF, 5p„'"*(t), as a function of t /t* for o., /o2=0. 7 and vari-

ous values of the concentration: (a) x&=0.01 (solid line), 0.1

(dashed line), and 0.2 (long-short dash); (b) x2 =0.9 (solid line),

x, =0.6 (dashed line), and x2 =0.4 (long-short dash).

In this paper we have formulated a generalized mode-
coupling theory for a dense binary fluid mixture that
takes into account the slowing down of the fluid dynam-
ics at molecular scales due to the closely packed fluid
structure. This has been used to evaluate the renormal-
ization of the STAF due to density nonlinearities in the
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hydrodynamic free energy. As in the case of a one-
component fluid [3], in a dense fluid mixture the long-
time tails in the STAF are about two orders of magnitude
larger than the conventional long-wavelength contribu-
tions. The concentration dependence of 5p~z'"( t ) is
stronger than that of 5p„'""(t). This clearly indicates that
at high densities the degree of compositional disorder in
the fiuid affects the static fluid structure and plays an im-
portant role in slowing down the fluid dynamics. In this
section we make a few comments on the results obtained
in this paper.

(1) In our analysis we have considered a dense binary
mixture of different sizes and equal masses at different
values of the concentration. The packing fraction of each
species is the main parameter controlling the static
structural properties of dense fluids at molecular length
scales. For this reason concentration and size ratio have
qualitatively the same effect on the short-wavelength dy-
namics. We find that at intermediate values of the con-
centration when the fluid is structurally disordered, there
is a finite range of wave vectors over which the dynamics
slows down and consequently the mode-coupling in-
tegrands are large over a range of length scales. This is
reflected in the fact that all possible couplings of the den-
sity fluctuations of the two species make comparable con-
tributions to the total 5p~'"(t). The presence of a range
of length scales and hence a distribution of time scales for
a disordered dense binary mixture that we predict is a
characteristic feature of glass-forming liquids [29]. In
contrast, in a simple fluid the mode-coupling integrands
are very sharply peaked at the position of the first rnax-
imurn of the static structure factor. The presence of com-
positional disorder shifts the time regime where the gen-
eralized mode-coupling contribution to the STAF is large
to shorter times. In order to test our results one needs to
perform molecular-dynamics simulations for mixtures of
dissimilar sizes at high densities.

(2) In this paper we only considered mixtures of
spheres of equal masses. This choice was motivated by
our desire to focus on the role of frustration caused by
size difference in slowing down the fluid dynamics. In ad-
dition, both our previous work [18]and computer simula-
tions [20] have indicated that the slowing down of the dy-
namics in a dense, closely packed binary mixture depends
more weakly on the mass ratio than on the size ratio of
the two species.

(3) The nonlinear fluctuating hydrodynamic equations
presented here can also be used to discuss the mode-
coupling theory of the glass transition in fluid mixtures.
In this case the mode-coupling contribution to the time-
dependent density-density correlation function is evalu-
ated self-consistently. The self-consistent mode-coupling
theory of mixtures has been discussed by other authors
[19]. It involves a considerable amount of computation
that tends to obscure the physics. It would be interesting
to consider a simplified model obtained, for instance, by
replacing the static partial factors of the mixture by con-
stant values with appropriate wave-vector cutoffs or by
Lorentzians. A calculation of this type has been carried
out by Mazenko and Valls [30] for a one-component
fluid.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under Contract No. DMR-91-12330.

APPENDIX A

In deriving the nonlinear fluctuating generalized hy-
drodynamic equations of a binary fluid mixture we follow
the approach described by Ma and Mazenko [22]. The
Langevin equation governing the time evolution of the
hydrodynamic variables denoted by g, may be written
formally as

(A 1)

The reversible part of the dynamics is given by

SF 1 &Q;j[0]
i[ P]=Qij [ Pl

gy ( ) p
(A2)

where Q;j[g]=[/;,gj] is the Poisson bracket between
the variables P; and F[P] is the free-energy functional
given in Sec. II. The damping coefficients L;. and the
thermal noise f; pertain to the dissipative part of the dy-
namics. The noise f; obeys the fluctuation dissipation re-
lation

(f;(t)f.(t')) =2ktt TL; 5(t t') . — (A3)

For our binary mixture the relevant hydrodynamic vari-
ables are [P, J =(p„g). The Poisson brackets needed in
the hydrodynamic equations are

[p, (r),g (r')[ = —8 5(r —r')p, (r'), (A4)

(A5)

APPENDIX B

In this appendix we briefly describe the perturbation
theory that leads to Eq. (3.5). In order to close Eq. (3.4)
we need to construct an equation for the correlation func-
tion of three phase functions appearing on the right-hand
side of Eq. (3.4). This is done most simply by using the
invariance of equilibrium correlation functions under
time translations,

(5n, (q, t )5n, ,(k —q, t)gr( —k, O) )

= (5n, (q, O)5n, .(k —q, O)g&( —k, t ) ) . (Bl—)

By letting t~ t and k~ —k in Eq. (2.13—), multiplying
the resulting equation with two density fluctuations, and
taking the ensemble average, we then obtain
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[
—8, +y T(k)](5n, (q, O)5n, .(k —q, O)gT( —k, —t ) )

d '

f [ V, ,- ( —k, q')+ V,-, , (q', —k)](5n,„(q', t—)5n, -( —k —q', t—)5n, (q, O)5n, (k —q, O) ) .
(2m )t

(82)

We then perform a cluster expansion of the four-point correlation function on the right-hand side of Eq. (82) and
neglect cumulants. With this approximation Eq. (82) becomes

[8,+yT(k)](5n, (q, O)5n, (k —q, O)gT( —k, t))—
2 I

[ Vr, ,"{—k, q')+ V, -, (q', —k)](5n;.(q', t )5n, {q,O) ) (5n, -.( —k —q', t )5n, .(k —q, O) ),
(2n. )

(83)

The time dependence of the density-density correlation on the right-hand side of Eq. (83) is now evaluated from Eqs.
(2.11) and (2.12) by neglected nonlinearities. The most important contribution to the mode-coupling integrals comes
from wave vectors near the peaks of the static structure factors. Momentum fluctuations of such large wave vectors de-
cay rapidly and one can neglect the time derivative in Eq. (2.12) as compared to the viscous damping yt in treating all
except the largest time scales. The longitudinal momentum can then be eliminated between Eqs. (2.11) and (2.12). The
resulting two coupled linear equations for density fluctuations are given by

B,5n, (q, t)+q b„(q)5n, (q, t)=0,
where summation over s' is intended, and

}„f, {q)
b„(q)= +

PpyL (q ) Pm, p,

with

1
g, (q ) = [S22(q ) Qn2/—n, S,~(q )],

b, q

1
g, (q ) = [S»(q ) —Qn

&
/n2S, ,(q )],

b, q

1 m&
f&(q)= S»(q}+

b, q m2

(84)

(85}

(86)

1 m2
f2(q ) = S&&(q )+ Qn2/" &S&2(q )

Aq m&

with b(q)=S»(q)S22(q) —S,2(q). The approximate modes obtained from Eqs. (84) were discussed in paper I, where it

was shown that this simple approximation is indeed accurate at large wave vectors. The time decay of the density-
density correlation function is then governed by two relaxation rates that we label density mode [z (q )] and diffusion

mode [z+(q)],
2 2

z+(q } (bll+b» }— [(bll b»)'+ bi»zi ]
2 2

The density-density correlation functions are given by

(5n, (q, t)5n, .( —q, O)) = g a,", (q)e ".
(87)

where

Qn, n, .S„.(q )(b22+z„)—Qn2n, ,S~,.(q )b, 2

[(b„b}+4b b ]'~—

Qn2n, .S2, .(q )(b» +z„)—Qn, n, .S„.(q )b2&
a"„(q)=p, [(b„b) +4b b ]'—

The partial static structure factors are defined as (5n, (q)5n;( —q) ) =Qn, n, .S„.(q }. Finally the eigenvalues given in

Eq. (B7) can be rewritten in the more transparent form presented in paper I and rewritten here for completeness,
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mppp

q 1 'Yt]q f& q fzq
Z+

2 AT(q)yL (q) P m, p,

2

2
1

f Xr(q }ri(q } m)p) mgpp

fi(q} fz(q} 4r»(q) ft(q) f2(q}
py yl, (q) ml

(B10)

Here yT(q ) is the generalized isothermal compressibility, defined as

S„(q}$~~(q}—S,~(q )
XT(q ) =x'T

xzS&, (q)+x&Stz(q) —2V x&xzS, t(q}
(B1 1)

with y T =P/n the ideal-gas compressibility.
Finally, by insertinII the solution of Eq. (B3) on the right-hand side of Eq. (3.4) and replacing

CP'(k, r)=(p/13)e with Cr(k, r) in the mode-coupling integral, we immediately obtain Eq. (3.5). The derivation
described here is entirely phenomenological. It can, however, be shown that the same result is obtained by using di-
agrammatic methods [1,22].
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