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Theory of nematic surface ordering via a Berezinskii-Kosterlitz-Thouless phase transition
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For a surface interaction quadratic in the magnitude of the order parameter and favoring an in-plane

molecular orientation, it is shown that a nematic surface state with quasi-two-dimensional order can ex-

ist in a narrow temperature range above the bulk transition point. This phase is characterized by fully

biaxial order and the transition between it and the fully disordered one is via the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism. The BKT transition temperature is calculated as are the elastic and inelas-

tic light-scattering intensities. The latter is a possible technique for observing the transition and

confirming its BKT character. Numerical estimates indicate that systems having the surface interactions
required to exhibit this type of nematic phase transition can be prepared.

PACS number(s): 64.70.Md, 68.35.Rh, 61.30.—v

I. INTRODUCTION

The possibility of observing two-dimensional phase
transitions in liquid-crystal systems has been of long-
standing interest [1]. However, while a great deal of at-
tention, both theoretical and experimental, has been de-
voted to the transitions in thin smectic layers, much less
has been paid to the intrinsically simpler nematic system.
The principal reason for this is that free-standing smectic
films are mechanically stable over relatively long time
periods while nematic ones are not.

On the other hand, a properly prepared bounding sur-
face can preferentially orient liquid-crystal molecules in
the vicinity of the interface [2] even when there is no bulk
order (i.e., for T )T„where T, is the bulk critical tem-
perature at which a weak first-order phase transition
from the isotropic to the uniaxially ordered nematic state
occurs). Of course, such nematic-type surface ordering
decays rapidly with distance from the boundary. There
have been a number of studies in this area [3—10] due to
the importance of surface ordering for liquid-crystal de-
vice applications and also for fundamental research.

Here we shall consider a type of interface coupling,
which leads to surface ordering in an otherwise isotropic
liquid-crystal phase. We shall show that this coupling,
under specified conditions, can result in fully biaxial or
der within a surface layer and that this order appears via
a continuous phase transition from the disordered phase.
This naturally leads to the possibility that this phase,
which is quasi-two-dimensional, disorders via defect un-
binding, i.e., through the Berezinskii-Kosterlitz-Thouless
(BKT) mechanism [11,12]. Our study is therefore a
comprehensive development of earlier work by Sluckin
and Poniewierski [6], who noted that particular surface
potentials could result in surface ordering and BKT-type
phase transitions.

e p=+2eb(n np z6 p),
E'; 3

=63J. =0,
(3)

where n is the nematic director and i,j =1,2, 3. It will
follow that the phase transition at T =T, is of the BKT
type.

We note, however, a surface coupling satisfying the
two conditions noted above can have the more general
form

F, =fge335(z)d r —
—,
' fg, e P(z)d r, (4)

with g )0 a second coupling parameter [6]. Then (3) gen-
eralizes to

A crucial ingredient in realizing such a phase transi-
tion is the character of the coupling between the liquid-
crystal molecules and the bounding surface. In order to
quantify this, we shall use a macroscopic description
based upon a second-order traceless-tensor order parame-
ter [13]; A convenient choice is

e„=e, 3Tr(e ")—5;, ,

where e,.~ is the dielectric tensor. We take z =0 as the
bounding surface and consider potentials wherein (a)
there is isotropy within this surface and (b) the molecules
prefer to lie in the plane. Specifically, we shall be in-
terested in the case wherein the dominant surface cou-
pling contribution to the free energy has the form

F, = ,' Ig, e its (z—)d—r. (2)

Here ct,P= 1,2 and g, ()0) is a coupling parameter.
We shall show that this surface interaction, for

sufficiently large g, and temperatures T, )T & T„ leads
to quasi-two-dimensional order essentially characterized
by
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E;j=
p 2 E335ap 0

E11= E22, E12 21 E33 (6a)

(6b)

and, among possible configurations, we can consider as
limiting cases

j ))
BE' j /Bx I and we sum on repeated indices. As be-

fore, latin indices (i,j, l) run from 1 to 3 and greek (a,p)
from 1 to 2.

We simplify our notation by setting

e;, =sp;, , s =P/3/6y, f=F/(P'/36y'),

,'t =—(3y/P )a, —,'g =(3y/P )c„p=c2/c, ,

g=(p'/6&6y'Cv, g =(p'/6y Cv

2E33 11 22~ 12 21 Then (7) becomes6c

The first of these is identical to (3)—it describes a fully
biaxial state. The other two describe uniaxial states, with
the direction n lying, respectively, within and perpendic-
ular to the boundary plane. Of course, E; can in general
have intermediate biaxiality, with two (rather than one)
independent amplitudes at a point r.

%hich order parameter configuration is the stable one
depends upon the parameters g, and g and the tempera-
ture. In the following section, we shall calculate the total
free energy and show, for g =e33 0 that (6a) is the
stable surface state where g, is sufficiently large. We
then find the transition temperature T, at which this state
becomes unstable via a BKT mechanism. Next, we show
that such a phase transition is stable with respect to the
corrections arising when g and E33 are small. %e estimate
the magnitudes of these corrections as well as those aris-
ing from an external field applied normal to the surface
(for the case of negative anisotropy).

In Sec. III, we consider the effect of fluctuations on the
intensity of light scattering near the BKT phase transi-
tion. For this type of transition, disclinations can play a
role, resulting in the renormalization of the parameters
appearing in the order parameter correlation function
which, in turn, determines the scattered-light intensity.
We calculate both elastic and inelastic light-scattering in-

tensities.
In the final section, we review our results and intro-

duce typical values for the parameters appearing in our
calculation. These numerical estimates indicate that this
phase transition is indeed possible. We conclude by dis-

cussing techniques for confirming this experimentally by
observing the fully biaxial BKT surface state in nematic
liquid-crystal systems.

II. THE SURFACE-INDUCED PHASE TRANSITION

f=f d r[ '[tjt j+0 (p';(+W, gati, I)]

&6P,—,j+(P,j ) +gvjt335(z)

—
—,'gv, p g(z)] .

%e now assume that the system is uniform in the x-y
plane [i.e., p;j =p,j(x)]. Setting g=z/g then gives

f /A g= f d g[ ,'(tP, ,j+P—j3+PP3j 3)

—&6P, ,j + (P,j ) +vP 335(g)

—
—,
' vu .'t35(0) ], (10)

where differentiation is now with respect to g. The usual
(first-order) transition to an ordered bulk phase occurs at
E =1.

Consider now the special case g =v=0. (The relaxa-
tion of this constraint will be discussed later. ) The form
of the order parameter which will certainly be relevant
when v, is sufficiently large [with respect to the
coefficient of the cubic term in (10] is the two-
dimensional one of (6a). We therefore consider the ansatz

1 0 0
(b)

p';j = —jj,b(z) 0 —1 0
0 0 0

and, from (1),

fb/ "g= f d0[ .'tIjb+ 4(jtb)-'+pb -,'v&pb5(g)—],—(12)

where the prime denotes d/dg. Note particularly that
the cubic contribution to fb Uanishes; the phase transition
to p';j '%0 can be of second order.

Setting the variation 5fb =0 yields the Euler-Lagrange
equation

A. The basic model

Consider a nernatic liquid crystal confined to the half-
space z )0. The appropriate Landau —de Gennes free en-

ergy, assuming that the surface interaction has the form
F, given in (4), is then [13]

2Pb 2tI I 4I I

whose solution is

v't

2 sinh(3/t /+gab )

(13)

(14)

F= f d r[ ,'(ae; +c&ej I+—c2e&,el I)

pe; e (el; +y(e~ ) +ge335(z)

—
—,'g, e P(z)], (7) pt (6 =0) = vite

—b(/=0) (1Sa)

The constant of integration pb is fixed by the boundary
condition

where a is proportional to a reduced temperature; c1, c2,
p, and y are temperature-independent constants;

to be

cothpb =v, /3/t (15b)
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1&t &vi . (16}

Since coth f& ~1, we immediately find that a surface
state characterized by pb %0 can exist (according to Lan-
dau theory) whenever

t
Pu

2[ 1+v't —1 sinh( V r g+ g„)]
(20)

The constant of integration i'„ is found from the bound-

ary condition

As an extreme alternative to the above ordering, con-
sider the uniaxial order parameter given in (6b). In our
present notation

iu ((=0) 6vip (/=0)

to be

(21a)

2 0 0
p'j"'= p(z) 0 —1 0(.)

6
0 0 —1

(17) l(i„=ln
ao —(a ii+ a i

—1 }'

1 —a 1

(21b)

with, from (10),

f„/Ag= J dg[4tp, „+4(p,'„) —p„+p

(18)

with

Sv& 5v&
ao= a&=

6&i(r —1) 6v'r
(21c}

2Pu 2tPu+3Pu 4Pu =0
~

whose solution is

(19)

Here g =gv'1+ p/6, v, =vi/V 1+p/6, and g=z /f
Proceeding as before, we have the Euler-Lagrange equa-
tion

By comparing the free energies fb and f„, we can
determine which order parameter configuration, p'; ' or
PIj"i, is necessarily irrelevant at a given point (t, vl). This
is most easily done by using the connection between the
derivative term and the remainder of the bulk free-energy
density given by the first integrals of the Euler-Lagrange
equations (13) and (19). We obtain

t 3/2

fi, /Ag= [cothgb —1 —2coshf&/sinh gb],24

1+ 6 r —1 r'"f /Ag= [ 2/d 1/—2td (—2r 3)/2t —d—]c oshf„—(2t —3)/2(t —1)' t
u 24

(22a)

3(r —1)'" 1 v'r —1—+
5 /2

arctanht'" &t
tanh( Q„ /2 ) V't —1——arctanh

(22b)

with itib and f„give bny (15b) and (21b}, respectively.
In Fig. 1, we show, for p=O and 1, the phase diagram

in the (t) l, vi) plane when the only allowed ground
states are p; =0 (the disordered state), iuIj"', and pIj"'. As
expected, p; ' is irrelevant for v& &2 while iuI"' does not
exist at larger v& values. This is easily understood
physically —for large vi, the surface term in f dominates
the cubic one. Since the numerical coeScient multiplying
v& is greater for the case of p';"' than for p',J"', the former is
therefore energetically favored. For small values of v&,

the opposite is true.
Of course, the above analysis does not prove, even

within Landau theory, that either p'; ' or p';"' is necessari-
ly the ground-state anywhere. In fact, it is easy to see
that neither rigorously fulfills this role. For example,
consider the modified order parameter

f=f&+I dg[ —,'ta +—'(1+—,'p)(a')

—3v 3a)uiz —
—,'v, a 5(g)],

and setting 5J'=0 gives the Euler-Lagrange equation

(24)

—(1+ ', p}a"+t—a=2M 3pzb . (25)

It is clear from (25) that a=O, pb%0 is not a , rigorous
solution for the ground state, even when g =v=0. How-
ever, it is also evident that, to lowest order, a is not
linearly proportional to pb and that the continuous char-
acter of the disordered-to-p', J' phase transition is there-
fore unaffected by this admixture. We conclude that this
transition will still be of the BKT type and that, close to
the phase boundary, the a =0 approximation to the order
parameter is a reasonable one. O(a) corrections will be
estimated in Sec. II C.

Pb +(X
1Pij= ~

—Pb+a 0

2CK

with a(z) «p&(z). To O(a ), we have

(23)
B. BET phase transition

As we have shown, a phase characterized essentially by
the order parameter p';. ' exists for v, 2 and 1(t &t„
where t, (v, ), is the phase boundary between the surface
ordered and disordered phases. We now calculate this
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(o) p=O
where ke is Boltzmann's constant. Using (27), we obtain
finally

(v, Q—t, )=4gy ksT, /P (1+p/2)mc, g .

We shall evaluate (29) numerically in the final section.

(29)

I.8-

CL

D

(b)
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NEMAT

UN IAXIA
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C. Modifications to the basic model

We have already noted that even with only a quadratic
surface term, the order parameter is not fully biaxial due
to the cubic invariant in the bulk free energy. Here we
examine this and two other sources of modifications of
the order parameter —the second surface energy term
[proportional to v in (9)] and the effect of an external
electric field applied along z when the nematic material
has a negative dielectric (or, for the equivalent care of an
applied magnetic field, magnetic) anisotropy.

In an external field, there is a further contribution to f
of the form

l.0 2.0 5.0
RED U CE D TEMP, t

f, /Ag= f dgp33

where

e =
i 3y /2~P

i

' E

(30a)

(30b)

FIG. l. Phase diagram in the (t, v, ) space with (a) p=0 and
(b) p=1. The system is restricted to be in one of three possible
states, the disordered one (p;, =0), the fully biaxial one (p;, '),
and the uniaxial one (p';,"').

temperature by considering the BKT mechanism, which
is relevant to continuous phase transitions in two-
dimensional systems [11,12].

According to BKT, phase transitions occur due to
long-wavelength in-plane distortions (fiuctuations) in a
two-dimensional layer. The standard form for the
relevant free energy associated with such distortions is
[14]

FBi.T= —,&f d r(&n ) (26)

where n (a=1,2) are the in-plane components of the
nematic director and X is a stiffness (elastic) coefficient.

Our surface-ordered nematic system can also be re-
garded as effectively two dimensional with an effective
stiffness coeScient Kb arising from the bulk elastic con-
stants c, and cz. To see this, we return to (9) and consid-
er arbitrary fluctuations about the ground-state
configuration pI '. We then obtain [15]a term having the
form (26) with

Ki, /c, g=(2P2/3y')( I+p/2) f ™dip'„

=(I3 /6y')(1+p/2)(v, &t ) . —

As there is no purely two-dimensional system underly-
ing the ordered surface layer, the critical temperature as-
sociated with the BKT phase transition is given by [16]

or

(30c)

for the case of an electric or magnetic field, respectively.
[For the latter, y33 is an element of the traceless part of
the magnetic susceptibility tensor y; . The algebraic sign
of the integral in (30a) is connected with the system's neg-
ative dielectric or magnetic anisotropy. ]

We now examine the effect of these modifications on
p';~'. Considering an order parameter having the form
(23) with a now arbitrary. Adding (30a) to (10), the cor-
responding free energy is

f /A g= ft, + f d (Pta + ,'(1+—', p)(a') ——3&3api,

—5v 3a +6u p&+9a —2e a
—

—,'v, tz 5(g) —2va5(g)] . (31)

—(1+—', p )ct"+ ta = ', e +2&3p„, — (32a)

where p& is the solution given in (14) and (15). The asso-
ciated boundary condition is

—(1+—', p )a'(z =0)=—,
' [v+ v, a(z =0)] .

Equation (32) can be solved explicitly (in fact, analyti-
cally for p =0) and we summarize the lowest-order
corrections to K& arising from the o. component of the
order parameter. These are

In general, the coupled Euler-Lagrange equations for pt,
and a obtained from (31) can only be solved numerically.
However, the lowest-order corrections to Eb arising from
aXO can be easily calculated and the self-consistency of
neglecting them verified. Neglecting terms of 0(a ) or
higher (including a JM&) in (31) and setting 6J' =0, we ob-
tain
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(36)(33a) I(q, c0) =M(cos[28(q, co)] cos[28( —q, —co)]),5K' "/K„=O(1/2),
5K' '/Kq =0(v/v, ;v /v, ),
5K' '/K„=O(e /v, ) .

(33b)

(33c)

Here 5K'" is the additional contribution to K& existing
even when v=e =0, as discussed in Sec. II B. The other
two, 5K' ' and 5K' ', arise from vAO and e+0, respec-
tively. Any of these corrections, when sufficiently large,
suppresses the transition to a BKT phase.

For self-consistency, we therefore require that all
5K "/Kt, be small. Clearly, the strictest constraint is
that on 5K'" as this correction is intrinsic. We therefore
conclude that a BKT-type phase transition is possible
provided that v& &&1. Since, as shown in Fig. 1, we re-
quire v, 2 in any case, it is clear that this constraint can,
in principle, be satisfied.

I(r, t)=M exp[ 4[G—(0,0) G(—r, t)]], (37)

where G(r, t) is the Fourier transform of G(q, co), i.e.,

G(r, t)= 2I ksT f f da&dzq exp( itot—+iq r).
(2m) co +I K&(q +(+ )

kqT

4n Ks q +)+

where M=e, co /8' c (e, is the dielectric anisotropy
and c the velocity of light) is the usual factor relating the
light-scattering intensity to the correlation function of
the fluctuations.

Rather than calculating I(q, co) directly from (36), con-
sider the first I(r, t). As a consequence of the Gaussian
distribution of the 0 fluctuations

III. FLUCTUATIONS AND LIGHT SCATTERING X exp[ I K&(—q +(+ )t+iq r] . .
(38)

Setting g(r, t ) =G(0,0)—G(r, t ), (38) gives

kqT

4m Kq q +(+
g(r, t)=

X [1—exp[ I Kq(q—+)+ )t

+iq r]]. (39a)const
~1/2T Ts

('4) and

Bg(r, t) I ka T f d2q exp[[ I'K~(q +—g+ )t+iq r]]

k~T
exp( I Ksg+ t—r /41 K&t)—. (39b)

4mKb t

We now consider the effect of fluctuations on the be-
havior of our system near the BKT phase transition point
T, . It is well known [12] that, in this region, all thermo-
dynamic quantities scale as powers of the correlation
length g+ (defined as the length over which order persists
for T & T, ) and that g+ has an essential singularity at T,
of the form

For T & T„g+= ao.
It is convenient to parametrize the two-dimensional

director field n by an angle 8 [n=(cos8,sin8)]. When T
exceeds T„the BKT mechanism results in a finite density
of free disclinations which inhibit nematic order in the
surface layer. It is therefore necessary to take such dis-
clinations into account. This has been done for the case
of the srnectic-C-A transition in freely suspended thin
films [17]. With slight modifications, we can use the ex-
pression given in [17] for the director angle correlation
function

G(q, co) = (8(q, co)8( —q, —co) )

2I k~T
2+ I 2K2( 2+g —2)2

(35)

Here 8(q, co) is the Fourier component of 8(r, t) with
wave vector q and frequency co and I is the usual kinetic
coefficient (which has no singularity at T, ) characterizing
the relaxation of 0. Its inverse I ' has the dimension
(and physical meaning) of the torsional viscosity y, in
nematic liquid crystals. Note that the coefficients I and
Kb in (35) are both renormalized by disclinations.

To obtain the light-scattering cross section, we must
evaluate the correlation function ( e &(r, t ),ebs(0, 0) ).
Consider, for example, an experimental configuration
wherein the light is in the x-z plane and is initially polar-
ized along y. Then the intensity I(q, co) of scattered light
due to orientational fluctuations is dominated by the
correlation function

We obtain finally for the scattered-light intensity

I(q, co)=M fd r dt exp[ 4g(r, t)—+itot iq r] . — (40)

While we cannot evaluate (40) analytically, we can ob-
tain the dependence of I(q, co) on q and co in some limit-
ing cases. First, we note from (39) that the single-time
correlation function g(r, O) has the following limiting
forms:

k~T r
g(r, O) = ln —,r «g+

7T b
(41a)

g(r, O) = ln(g+ /I ), r »g+,
7T b

(41b)

where l is the usual short-length cutoff for logarithmical-
ly divergent integrals [like that in (39c)]. In our case,
I =g, which characterizes the thickness of the surface or-
dered layer.

We then have

k~T
g (r, t )=g (r, O) + —,exp( I K~ g+ t '—

4m'Kb 0 t

r'/4m I K, t'—)dt' .

(39c)
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From (40) and (41), it follows that the integrated inten-
sity l(q) = jdcol(q, co) is

where the exponent x is

x =2k~ T/mKb . (42b)
const

q
2 x

I const

4+q'

for qg+ »1

for qg+ «1,
(42a)

It follows from (15) that, at the phase transition point T„
x =—'.4'

Similarly, one can find the dependence of I(q, co) on q
and co in different limiting cases. We obtain

M, qg+ »1, a) » I Kbg+'q
coq

—2 2—2 /2 i —( /ii ' q~ && 1, I Kbg+ &&M && PKbq
q (1Kb/+ )" co

I(q, co) = .
M, qg+»1, ~ «I'Kb(+1 —2

coq

1
qg+ « 1 for all co .

~P+q

(43a)

(43b)

(43c)

(43d)

Note that in all these expressions for I(q, co), the critical
behavior near the BKT phase transition enters only
through the correlation length g+.

IV. DISCUSSION

In Sec. II, we showed, for a particular type of surface
interaction, that a phase transition to a BKT state with
its characteristic two-dimensional order becomes possi-
ble. This state is expected to exist in a narrow tempera-
ture region (see below) above the bulk nematic ordering
temperature.

However, a BKT phase is possible only when the re-
duced coefficient vi of the quadratic (in the order parame-
ter) surface coupling interaction is sufficiently large ( 2).
In physical units

Using the values noted above, this is equivalent to require
that

g/g, &0. 1 . (45b)

That is, g must be less than 0.5 erg/cm . In itself, this is
not unreasonable; the crucial point, of course, is to
achieve this while simultaneously having g, greater than
5 erg/cm . This dual requiretnent must be realized in or-
der to make the observation of a BKT phase experimen-
tally feasible.

Assuming that the required conditions are met, the
BKT phase transition temperature is given by (29). (Of
course, the mean field value for this phase transition is
just t =vi. ) Using the typical values given above and as-

suming that T, = T, =350 K, we obtain )=79 A and

gi =(P'ci/3r )'"vi (44a) vi Qt, =0.59/(—1+p/2) . (46a)

g &

=2.3v] erg /cm (44b)

and, taking as typical values [4,18], P/&6 =0.53 X 10
erg/cm, @=0.98X10 erg/cm, and —,'c, =4.5 X 10
erg/cm, we have 2.0

s 2.6

for p=0
for p=1 .

For v, =2, we have

(46b)

v/vi =(P/&6y )(g /g, ) & 1 . (45a)

We thus require an in-plane quadratic surface coupling of
at least 5 erg/cm in order for a BKT-type phase transi-
tion to be possible. This is well within the range of sur-
face potentials which have been obtained by various sur-
face treatments [2]. Interfaces characterized by interac-
tion potential strengths sufhcient for testing the predicted
phase transition can therefore very likely be prepared.

However, an additional requirement was noted in Sec.
II; i.e., the reduced coeicient v of the second symmetry-
allowed surface interaction term should (when taken to-
gether with the lower bound on vi itself) satisfy

Since the reduced unit of temperature t = 1 is of the order
of 0.5 —1 K [19],we find that the BKT phase should exist
in a temperature region 1 —2.5 K above the transition to
the bulk nematic phase for g &

= 5 erg/cm .
One possible technique for observing a surface phase

transition is via evanescent-wave ellipsometry [7—9]. In
this approach, one measures the phase difference 6 be-
tween p- and s-polarized incident laser light totally
reflected from the liquid-crystal boundary at the critical
angle. This phase difference is directly proportional to
the integrated birefringence at the interface. In Landau
theory
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b, —f dip&(g) —lntanh(gb/2)

-(v, l&t —1)'~ as Pb —mao . (47)

surements, together with the theoretical results given in
Sec. III, could provide direct experimental confirmation
of a BKT surface ordered state in nematic liquid crystals.

The critical behavior of 5 appears only through its
dependence on the reduced temperature t. It follows that
confirmation of a BKT character for the phase transition
by this technique would be difficult. This is not surpris-
ing as the singularities associated with static critical be-
havior are very weak for this type of transition.

For this reason, dynamic critical behavior studies are
likely to be more fruitful. Inelastic light-scattering mea-
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